Eigenvalues of Schrödinger operators and Dirichlet-to-Neumann maps

Jussi Behrndt1, Christian Kühn1,*, and Jonathan Rohleder1

1 Institut für Numerische Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria

Eigenvalues and eigenspaces of selfadjoint Schrödinger operators on \(\mathbb{R}^n \) are expressed in terms of Dirichlet-to-Neumann maps corresponding to Schrödinger operators on the upper and lower half space.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

It is known that the eigenvalues of a Schrödinger operator \(A_D \) with Dirichlet boundary condition on a bounded domain \(\Omega \subset \mathbb{R}^n \) with a bounded, real-valued potential \(V \) coincide with the poles of the meromorphic operator function \(\mu \mapsto M^{\Omega}(\mu) \), where \(M^{\Omega}(\mu) \) is the Dirichlet-to-Neumann map of \(-\Delta + V - \mu\), see, e.g., [1, 2]. Moreover, for each eigenvalue \(\lambda \) the map

\[
\tau : \ker(A_D - \lambda) \to \text{ran} \, \text{Res}_\lambda M^\Omega, \quad u \mapsto \partial_\nu u|_{\partial \Omega}
\]

(\(\partial_\nu u|_{\partial \Omega} \) denotes the trace of the normal derivative of \(u \) at the boundary \(\partial \Omega \)) is an isomorphism between the eigenspace and the range of the residue of \(M^\Omega \) at \(\lambda \); cf. [2]. Such a result is also desirable for a selfadjoint Schrödinger operator \(A = -\Delta + V \) in \(L^2(\mathbb{R}^n) \), \(n \geq 2 \). In order to define an operator function which plays the role of \(M^\Omega \) we introduce the artificial “boundary” \(\Sigma := \mathbb{R}^{n-1} \times \{0\} \), which separates \(\mathbb{R}^n \) into \(\mathbb{R}^n_+ := \mathbb{R}^{n-1} \times (0, \infty) \) and \(\mathbb{R}^n_- := \mathbb{R}^{n-1} \times (-\infty, 0) \), and consider the Dirichlet-to-Neumann maps \(M^{\pm}(\mu) \) in \(L^2(\Sigma) \) corresponding to the Schrödinger operators \(-\Delta + V - \mu \) on \(\mathbb{R}^n_\pm \), respectively. A natural candidate for the description of the eigenvalues of \(A \) is \(M(\mu) := (M^+(\mu) + M^-(\mu))^{-1} \); cf. [3] for a similar function defined in the case that \(\Sigma \) is a sphere. In Theorem 2.1 of this note we show that each pole of \(M \) is an eigenvalue of \(A \) but in general the analog of the map \(\tau \) is not bijective. We indicate in Theorem 2.2 that this drawback can be avoided by considering a certain \(2 \times 2 \) block operator matrix function with entries formed by \(M^\pm \) and \(M \).

2 Characterization of eigenvalues and eigenspaces with Dirichlet-to-Neumann maps

Let \(n \geq 2 \) and denote by \(H^s(\mathbb{R}^n) \) and \(H^s(\Sigma) \) the Sobolev spaces of order \(s > 0 \) on \(\mathbb{R}^n \) and \(\Sigma \), respectively. Moreover, let \(V \in L^\infty(\mathbb{R}^n) \) be a real-valued potential. We consider the selfadjoint Schrödinger operator

\[
A u = -\Delta u + Vu, \quad \text{dom } A = H^2(\mathbb{R}^n),
\]

in \(L^2(\mathbb{R}^n) \). For \(\mu \) in the resolvent set \(\rho(A) \) of \(A \) we define

\[
\mathcal{N}^\pm_\mu := \{u^\pm_\mu \in H^2(\mathbb{R}^n_\pm) : (-\Delta + V - \mu)u^\pm_\mu = 0\},
\]

\[
\mathcal{N}_\mu := \{v_\mu^+ \oplus v_\mu^- \in \mathcal{N}^+_\mu \oplus \mathcal{N}^-_\mu : v_\mu^+|_\Sigma = v_\mu^-|_\Sigma\},
\]

where \(v|_\Sigma \) denotes the trace of a Sobolev function \(v \) at \(\Sigma \). Let \(\partial_\nu v := \frac{\partial v}{\partial \nu} \). One can show, that for every \(g \in H^{\frac{1}{2}}(\Sigma) \) there exists a unique element \(u_\mu \in \mathcal{N}_\mu \) with \(\partial_\nu u_\mu^+|_\Sigma = \partial_\nu u_\mu^-|_\Sigma = g \). Hence the operator-valued function \(M \) defined via

\[
\rho(A) \ni \mu \mapsto M(\mu), \quad M(\mu)(\partial_\nu u_\mu^+|_\Sigma - \partial_\nu u_\mu^-|_\Sigma) := u_\mu|_\Sigma
\]

is well-defined. \(M(\mu) \) is a bounded operator in \(L^2(\Sigma) \) with domain \(H^{\frac{1}{2}}(\Sigma) \) and range in \(H^{\frac{1}{2}}(\Sigma) \) for every \(\mu \in \rho(A) \). Moreover, for every \(g \in H^{\frac{1}{2}}(\Sigma) \) the function \(\mu \mapsto M(\mu)g \) is holomorphic and has poles of at most order one; cf. [2]. Note that for \(\mu \in \mathbb{C} \setminus \rho(A) \) the operator \(M(\mu) \) coincides with \((M^+(\mu) + M^-(\mu))^{-1}\), where \(M^\pm(\mu) \) denotes the Dirichlet-to-Neumann map with respect to \(-\Delta + V - \mu \) on \(\mathbb{R}^n_\pm \), i.e. \(M^\pm(\mu)u_\mu^+|_\Sigma = \mp \partial_\nu u_\mu^-|_\Sigma \) for \(u_\mu^\pm \in \mathcal{N}^\pm_\mu \), respectively.

* Corresponding author: e-mail kuehn@tugraz.at, phone +43 316 873 8625, fax +43 316 873 8621

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Theorem 2.1 If $\lambda \in \mathbb{R}$ is a pole of M then λ is an eigenvalue of A, but in general $\dim \text{ran } \text{Res}_\lambda M \leq \dim \ker(A - \lambda)$.

Proof. Let $\lambda \in \mathbb{R}$ be a pole of M. We show $\dim \ker(A - \lambda) \geq \dim \text{ran } \text{Res}_\lambda M$, from which, in particular, the first assertion follows. Let $\mu, \nu, \zeta \in \mathbb{C} \setminus \mathbb{R}$ be distinct and let $g \in H_1^2(\Sigma)$. For $j, k \in \{\mu, \nu, \zeta\}$ denote by u_j the unique element in N_j with $\partial_n u_j |_{\Sigma} - \partial_n u_j^+ |_{\Sigma} = g$ and choose u_k analogously. Due to $u_j - u_k \in \text{dom } A$ and

$$ (A - j)(u_j - u_k) = (-\Delta + V - j)(u_j^+ - u_k) \oplus (-\Delta + V - j)(u_j^+ - u_k) = (j - k)u_k $$

we obtain $(A - j)^{-1}u_k \equiv \frac{u_j - u_k}{j - k}$ if $j \neq k$. Hence we get

$$ \left. \frac{1}{z - \nu} \left((A - \mu)^{-1}u_\nu \right) \right|_{\Sigma} = \left. \frac{1}{z - \nu} \left((A - \mu)^{-1}(u_\nu - u_\nu) \right) \right|_{\Sigma} = \left. \frac{1}{z - \nu} \left(\left[\frac{u_\mu - u_\nu}{\mu - \nu} \right] \right) \right|_{\Sigma}, $$

and hence

$$ \left. \frac{1}{z - \nu} \left[M(\mu) g - M(\nu) g \right] \right|_{\Sigma} = \left. \frac{1}{z - \nu} \left[M(\mu) g - M(\nu) g \right] \right|_{\Sigma}. $$

By the spectral theorem one gets $i P u_\nu \equiv \lim_{\eta \to 0} \eta (A - (\lambda + i \eta))^{-1} u_\nu$, where P denotes the orthogonal projection in $L^2(\mathbb{R}^n)$ onto $\ker(A - \lambda)$. As the map $v \mapsto [(A - \mu)^{-1}v] |_{\Sigma}$ is continuous from $L^2(\mathbb{R}^n)$ to $L^2(\Sigma)$ we get for $z = \lambda + i \eta$

$$ \left. \frac{1}{z - \nu} \left[M(\mu) g - M(\nu) g \right] \right|_{\Sigma} = \lim_{\eta \to 0} \frac{i \eta}{(z - \mu)(z - \nu)} M(z) g = \text{Res}_\lambda M g. $$

We have shown $\{u|_{\Sigma} : u \in P N_{\nu}\} = \text{ran } \text{Res}_\lambda M$, hence $\dim \ker(A - \lambda) \geq \dim \text{ran } \text{Res}_\lambda M$. In general equality does not hold. For example for a potential V reflection symmetric with respect to Σ (i.e., $V(x', x_n) = V(x', -x_n)$) eigenfunctions with vanishing traces on Σ may exist.

In order to characterize all eigenvalues and eigenspaces of A we define the block operator matrix function \mathcal{M} via

$$ \mu \mapsto \mathcal{M}(\mu) := \begin{pmatrix} M(\mu) & -M(\mu) M(\mu) \\ -M(\mu) M(\mu) & M(\mu) M(\mu) \end{pmatrix}, \quad \mu \in \mathbb{C} \setminus \mathbb{R}. $$

$\mathcal{M}(\mu)$ is an operator in $L^2(\Sigma) \times L^2(\Sigma)$ with domain $H_1^2(\Sigma) \times H_1^2(\Sigma)$ and range in $H_1^2(\Sigma) \times H_1^2(\Sigma)$. The function \mathcal{M} is holomorphic in the strong sense and can be extended to a strongly holomorphic function (also denoted by \mathcal{M}) defined on $\rho(A)$. Similar functions were already considered in, e.g., [5] for the ODE case and in [6, 7] in an abstract setting.

Theorem 2.2 $\lambda \in \mathbb{R}$ is a pole of \mathcal{M} and $\text{ran } \text{Res}_\lambda \mathcal{M}$ is finite-dimensional if and only if λ is an isolated eigenvalue of A with finite multiplicity. In this case the map

$$ \mathcal{T} : \ker(A - \lambda) \to \text{ran } \text{Res}_\lambda \mathcal{M}, \quad u \mapsto \left[u|_{\Sigma}, -\partial_n u|_{\Sigma} \right]^T. $$

is bijective.

We omit the proof of Theorem 2.2, which uses methods similar to the proof of Theorem 2.1 and a unique continuation argument; cf. [4] for a similar reasoning.

Remark 2.3 With the help of the function \mathcal{M} one can even characterize all (embedded and isolated) eigenvalues and the corresponding eigenspaces of A; cf. [4] for the case of a Schrödinger operator on an exterior domain.

Acknowledgements The authors gratefully acknowledge financial support by the Austrian Science Fund (FWF): P 25162-N26.

References