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Abstract

Dirac structures appear naturally in the study of certain classes of physi-
cal models described by partial differential equations (p.d.e.’s). They are
the underlying power conserving structures of the p.d.e.’s. We study these
structures and their properties from an operator-theoretic point of view. In
particular, we find necessary and sufficient conditions for the composition
of two Dirac structures to be a Dirac structure and we show that they can
be seen as Lagrangian (hyper-maximal neutral) subspaces of Krĕın spaces.
Moreover, special emphasis is laid on Dirac structures associated with oper-
ator colligations. It turns out that this class of Dirac structures is linked to
boundary triplets and that the class is closed under composition.
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1. Introduction

Consider the following simple partial differential equation (p.d.e.) on the
spatial domain (−∞,∞):

∂

∂t
x(z, t) =

∂

∂z
(ℓ(z)x(z, t)) , z ∈ (−∞,∞), t ≥ 0. (1.1)

This p.d.e. is an example of a conservation law (a notion which can be
directly extended to non-linear p.d.e.’s, see e.g. [12]). In particular, as-
suming that ℓx is zero at z = −∞ and z = ∞, it is easy to see that
E(t) = 1

2

∫ ∞

−∞
ℓ(z)x(z, t)2 dz is a conserved quantity, that is dE

dt
= 0. Hence,

without knowing ℓ and without knowing existence of a solution of (1.1), we
have a conserved quantity. This implies that the existence of a conserved
quantity is underlying the partial differential equation. Another way of look-
ing at this is by fixing t and replacing ∂

∂t
x(z, t) by f(z) and ℓ(z)x(z, t) by

e(z). Hence instead of the partial differential equation (1.1) we then have

f(z) =
∂e

∂z
(z), z ∈ (−∞,∞). (1.2)

Under the assumption that e is zero in z = ∞ and z = −∞, we have that∫ ∞

−∞
f(z)e(z) dz = 0. If E(t) = 1

2

∫ ∞

−∞
ℓ(z)x(z, t)2 dz can be interpreted as

total energy of the system (as is the case for many physical systems), then
this last equality amounts to the fact that the total power is zero. Indeed,
since the change of the total energy per unit of time equals the total power,
the total energy is conserved if and only if the total power is zero. The power
is a bi-linear product of two variables, called the effort and the flow, e and
f , respectively. The notion of infinite-dimensional Dirac structures has been
developed before in the study of non-linear partial differential equations on
an infinite spatial domain, see in particular [11].

In many cases of physical interest the spatial domain will have, contrary
to the above, a boundary, and there will be an energy flow through this
boundary. As an example, consider (1.1) on the spatial domain [0, 1] with
boundary {0, 1}

∂

∂t
x(z, t) =

∂

∂z
(ℓ(z)x(z, t)) , z ∈ [0, 1]. (1.3)
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Defining analogously the internal energy as E(t) = 1
2

∫ 1

0
ℓ(z)x(z, t)2 dz, we

now find that
d

dt
E(t) =

1

2

[
ℓ(z)2x(z, t)2

]1

0
. (1.4)

So we have to take the energy flow [ℓ(z)2x(z, t)2]
1
0 through the boundary into

account. However, the underlying structure remains very similar to what
we have described above; one just defines extra efforts and flow variables,
see [13], [19], [27] or [28]. In fact, since we want the product of these extra
variables to equal minus the right-hand side of (1.4), a possible choice is

f∂ =
(
− e(1) + e(0)

)
/
√

2, e∂ =
(
e(1) + e(0)

)
/
√

2, (1.5)

with e(z) = ℓ(z)x(z, t).
From (1.2) we see that the pair (f, e) lies in a linear subspace, called a

Dirac structure. Hence the Dirac structure associated with (1.2) is

{
(f, e) ∈ L2(R) × L2(R) | e absolutely continuous, and f =

∂

∂z
e

}
.

The Dirac structure associated with (1.3) and (1.5) is

{
(f, e, f∂, e∂) | f, e ∈ L2(0, 1), e absolutely continuous, and f =

∂

∂z
e,

f∂ =
(
− e(1) + e(0)

)
/
√

2, e∂ =
(
e(1) + e(0)

)
/
√

2

}
. (1.6)

For (f, e, f∂, e∂) belonging to this Dirac structure we have that

∫ 1

0

f(z)e(z) dz + f∂e∂ = 0, (1.7)

see also (1.4). These ideas can be used to define quite general Dirac struc-
tures, see for instance [13], [19], [27] and [28].

The extension to higher-dimensional spatial domains is immediate, see
[27]. For example, consider the differential operator associated with the
wave equation on a two-dimensional domain. Let Ω be a two-dimensional
bounded domain with smooth boundary Γ, and let H(div, Ω) = {e ∈ L2(Ω)2 |
div(e) ∈ L2(Ω)}. By η we denote the outward normal, and by · we denote
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the standard scalar product in R2. Consider the subspace

{(f1, f2, e1, e2, f∂, e∂) | e1 ∈ H1(Ω), e2 ∈ H(div, Ω), (1.8)

f1 = div(e2), f2 = grad(e1), f∂ ∈ H
1

2 (Γ),

e∂ ∈ H− 1

2 (Γ), f∂ = e1|Γ, e∂ = η · e2|Γ
}

.

By Green’s identity we have that every element in this subspace satisfies
∫

Ω

f1(z)e1(z) + f2(z) · e2(z) dz −
∫

Γ

f∂(γ)e∂(γ) dγ = 0. (1.9)

Moreover, the subspace (1.8) is a Dirac structure with respect to this balance
equation, see Theorem 4.7, Remark 4.4.5 and [20].

Dirac structures are the key to the definition of port-Hamiltonian systems.
These are systems which may exchange power with its surrounding via its
ports, and have an internal energy function, the Hamiltonian, see [6], [27]
or [26]. In the examples above the ports are at the boundary of the spatial
domain.

Given two, or more, port-Hamiltonian systems, it is natural to connect
them to each other, through their ports. For instance, consider a transmis-
sion line connected on each side to an electrical device, a multi-body system
where some of the masses are connected to each other via flexible beams, or
a coupled network of transmission lines. We illustrate this on the physical
example of an ideal transmission line, described by the telegrapher’s equa-
tions.

Consider three transmission lines, i = 1, 2, 3, each described by the tele-
grapher’s equations

∂

∂t
Qi(z, t) = − ∂

∂z

(
1

Li(z)
φi(z, t)

)

∂

∂t
φi(z, t) = − ∂

∂z

(
1

Ci(z)
Qi(z, t)

)
, z ∈ [a, b],

with i = 1, 2, 3, and Li(z), Ci(z) denoting the distributed inductance and
distributed capacitance of the transmission lines, respectively. In this case
the natural flow and effort variables at the boundary {a, b} are the voltages
Va,i = 1

Ci(a)
Qi(a, t), Vb,i = 1

Ci(b)
Qi(b, t) and the currents Ia,i = Li(a)φi(a, t),

Ib,i = Li(b)φi(b, t). We assume that the transmission lines are connected at
z = a, by putting Va,1 = Va,2 = Va,3 and Ia,1 + Ia,2 + Ia,3 = 0.
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The coupling of the p.d.e.’s gives naturally an interconnection (composi-
tion) of the corresponding Dirac structures. If the Dirac structures are finite-
dimensional, then it is well known that the composed structure is again a
Dirac structure, see [5], [6] or [25]. However, this result does not hold if all
the Dirac structures are infinite-dimensional, see [13, Ex. 5.2.23] for a coun-
terexample. In the above (infinite-dimensional) example it is not hard to
show that the composition of the three underlying Dirac structure is again a
Dirac structure. However, it is not clear whether this will hold for more com-
plicated p.d.e.’s. Obviously, the problem of interconnecting multiple Dirac
structures can be reduced without loss of generality to the problem of the
interconnection of two Dirac structures.

Although the examples discussed so far are elementary (for expository
reasons), our approach and results are applicable to many physical examples,
also for spatial domains of dimension two or higher.

The aim of the present paper is to study Dirac structures and their com-
position from an operator-theoretic point of view, and the outline is the
following. We first define Dirac structures and develop their scattering rep-
resentations in a Krĕın-space setting in Section 2. We present necessary and
sufficient conditions for the composition of two Dirac structures to be a Dirac
structure in terms of scattering representations, after we have introduced the
necessary notions in Section 3. Furthermore, we investigate Dirac structures
associated to operator colligations or boundary nodes in Section 4. Here we
also find necessary and sufficient conditions for the entries in the colligation
to induce a Dirac structure. It will also be shown that the composition of
Dirac structures associated to strong colligations is again a Dirac structure
associated to a strong boundary colligation in Section 5.

During the final stages of writing this article the authors became aware
that some of the results in Sections 4 and 5 follow from more general results
obtained by Derkach, Hassi, Malamud and de Snoo in [7, 8]. The connection
is clarified after Proposition 4.5.

It should also be mentioned that the work towards so-called state/signal
systems in continuous time by Ball and Staffans in [2] and that of Kurula and
Staffans in [16, 18] is very closely related to the work which we present in this
article. The connection is made in [17]. The interconnection results in Section
3 in the present article are expected to be adaptable to interconnection of
state/signal systems in discrete time, as developed by Arov and Staffans; see
[24] for an overview.
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2. Dirac structures, Krĕın spaces and scattering representations

Let E and F be the two Hilbert spaces, which we call the space of efforts
and the space of flows, respectively. Assume that there exists a unitary
operator rE,F from E to F .

By referring to “the Hilbert space F ⊕ E” we mean the product space
F × E equipped with the usual Hilbert-space inner product

〈[
f1

e1

]
,

[
f2

e2

]〉

F⊕E

= 〈f1, f2〉F + 〈e1, e2〉E , (2.1)

where f1, f2 ∈ F , e1, e2 ∈ E . In order to introduce the notions of Dirac and
Tellegen structures we first define an indefinite inner product on F × E by

[[
f1

e1

]
,

[
f2

e2

]]

B

: =

〈[
f1

e1

]
,

[
0 rE,F

r∗E,F 0

] [
f2

e2

]〉

F⊕E

= 〈f1, rE,Fe2〉F + 〈e1, r
∗
E,Ff2〉E .

(2.2)

By the bond space B we mean F × E equipped with the inner product [·, ·]B.
In the context of Dirac structures it is common to use real-valued func-

tions, and therefore it is natural to take E and F to have real fields. Our
definitions and results, however, are equally valid for complex Hilbert spaces.
A connection is made in [17, Lem. 4.1], and Example 3.9 below uses complex
Dirac structures.

For a linear subspace C ⊂ B the orthogonal companion C[⊥] of C is defined
by

C[⊥] :=
{
b′ ∈ B | [b, b′]B = 0 for all b ∈ C

}
. (2.3)

From (2.2) we see that for any linear subspace C of B we have that

C[⊥] =

[
0 rE,F

r∗E,F 0

]
(C⊥),

where C⊥ denotes the orthogonal complement of C with respect to the scalar
product (2.1). Hence any orthogonal companion will be closed, and B[⊥] =
{0}. This last property is known as the non-degeneration of the bond space.

Definition 2.1. Let E and F be the spaces of efforts and flows, respectively,
let B be the associated bond space and let D be a linear subspace of B. Then
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D is called a Tellegen structure on B if D ⊂ D[⊥] and D is called a Dirac
structure on B if D = D[⊥]. We sometimes omit “on B” if it is clear from the
context what the bond space is.

Bond spaces can be viewed as Krĕın spaces and Dirac structures as hyper-
maximal neutral subspaces of these. Let us briefly recall some concepts from
the theory of Krĕın spaces and make this connection explicit. We refer the
reader to the monographs [1] and [4] for more details.

Definition 2.2. Let K be a vector space and let [·, ·]K be an indefinite inner
product on K. Then (K, [·, ·]K) is said to be a Krĕın space if K can be
decomposed as

K = K+ [+̇]K−, (2.4)

where (K+, [·, ·]K) and (K−,−[·, ·]K) are Hilbert spaces and [+̇] stands for the
direct [·, ·]K-orthogonal sum. A decomposition of the form (2.4) is called a
fundamental decomposition of K.

Let (K, [·, ·]K) be a Krĕın space. Any fundamental decomposition (2.4) of
K induces a positive definite inner product 〈·, ·〉K on K via

〈h, k〉K := [h+, k+]K − [h−, k−]K, h = h+ + h−, k = k+ + k−, h±, k± ∈ K±.

With this positive definite inner product (K, 〈·, ·〉K) becomes a Hilbert space.
Let P+ and P− be the projections in K defined by P+k := k+ and P−k := k−

for k = k+ + k−, k± ∈ K±. The operator J := P+ −P− is called fundamental
symmetry of K corresponding to the fundamental decomposition (2.4). It is
not difficult to see that J2 = I and J = J∗ = J−1 holds. Here ∗ denotes
the adjoint with respect to the scalar product 〈·, ·〉K. Furthermore, the Krĕın
space inner product [·, ·]K and the Hilbert space inner product 〈·, ·〉K on K
are related by

[h, k]K = 〈Jh, k〉K and 〈h, k〉K = [Jh, k]K, h, k ∈ K. (2.5)

The orthogonal companion of a subspace H in the Krĕın space (K, [·, ·]K)
is defined to be the space of all vectors in K that are [·, ·]K-orthogonal to
every vector in H as in (2.3). A linear subspace H ⊂ K is said to be neutral
if H ⊂ H[⊥] and H is said to be Lagrangian, or hyper-maximal neutral, if
H = H[⊥].

The statements in the following two propositions are now immediate
translations of the notions of bond space, Tellegen and Dirac structure into
the language of Krĕın space theory.
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Proposition 2.3. Let B = F × E be the bond space equipped with the
power product [·, ·]B from (2.2). Then (B, [·, ·]B) is a Krĕın space and

B = B+ [+̇]B−, where B± =

[
±rE,F

I

]
E , (2.6)

is a fundamental decomposition of B, where (K+, [·, ·]K) and (K−,−[·, ·]K) are

Hilbert spaces. The corresponding fundamental symmetry is J =
[

0 rE,F

r∗
E,F

0

]

and the projections onto B+ and B− are given by

P+ =
1

2

[
IF rE,F

r∗E,F IE

]
and P− =

1

2

[
IF −rE,F

−r∗E,F IE

]
. (2.7)

Proof. Note that P+ and P− are orthogonal projections of the Hilbert space
F ⊕ E onto P+ and P−, respectively, and that J = P+ − P− holds. Fur-
thermore, ±[b±, b±]B = ±〈Jb±, b±〉F⊕E = 〈b±, b±〉F⊕E , b± ∈ B±, which shows
that (B±,±[·, ·]B) are Hilbert spaces.

Observe that from (2.6) we have

E = {e ∈ E | there exists a f ∈ F such that [ f
e ] ∈ B+}

= {e ∈ E | there exists a f ∈ F such that [ f
e ] ∈ B−}

and that a similar representation holds for F .

Proposition 2.4. Let B = F × E be the bond space equipped with the
power product [·, ·]B in (2.2). Then D is a Tellegen structure on B if and
only if D is a neutral subspace of the Krĕın space (B, [·, ·]B) and D is a Dirac
structure on B if and only if D is a hyper-maximal neutral subspace of the
Krĕın space (B, [·, ·]B).

In order to show that a subspace is Dirac structure, one normally begins
by showing that it is a Tellegen structure. The following lemma gives an easily
checkable condition for this. A proof can be found e.g. in [1, Statement 4.17,
p. 29].

Lemma 2.5. Let D be a subspace of B. The following conditions are equiv-
alent.

1. D is a Tellegen structure.

2. d ∈ D implies that [d, d′]B = 0 for all d′ ∈ D.
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3. d ∈ D implies that [d, d]B = 0.

In the following theorem we describe the concept of a scattering repre-
sentation of a Dirac structure. Roughly speaking, we show that a Dirac
structure can be represented by a unitary operator O, a so-called scattering
operator, which connects the scattering variables e− r∗E,Ff and e + r∗E,Ff . In
the case of a Tellegen structure, O is in general only a partial isometry, i.e.,
it is isometric from its domain but neither its domain nor its range needs to
be the full space. Besides the spaces of efforts E and flows F , we make use
of a Hilbert space G and a unitary map rE,G from E to G.

The theorem is known from [13, Sect. 5.2], but for the convenience of the
reader we present a short proof which fits into the Krĕın-space theory and
makes use of Propositions 2.3 and 2.4.

Theorem 2.6. Assume that D is a Dirac structure on the bond space B =
F × E . Then there exists a Hilbert space G, a unitary operator rE,G from E
to G, and a unitary operator O on G such that

[
f
e

]
∈ D ⇐⇒ (e + r∗E,Ff) = r∗E,GOrE,G(e − r∗E,Ff). (2.8)

On the other hand, if O is a unitary operator on a Hilbert space G and
rE,G : E → G is unitary, then

D :=

{[
rE,Fr∗E,G(Og − g)

r∗E,G(Og + g)

]
| g ∈ dom (O)

}
(2.9)

defines a Dirac structure on B = F × E for which (2.8) holds.
The claims remain valid for Tellegen structures D, but then O is in

general only a partial isometry. Moreover, we need to add the condition
rE,G(e − r∗E,Ff) ∈ dom (O) to the right-hand side of (2.8) in order for the
equality to make sense in the Tellegen-structure case.

Proof. Let B± and P± be given by (2.6) and (2.7), respectively. Assume that
D is a Tellegen structure, i.e., that D is a neutral subspace of the Krĕın space
B. Then it is well-known, see e.g. [1, Thm 8.10], that there exists a partial
isometry U−, partially defined on the Hilbert space (B+, [·, ·]B), mapping into
the Hilbert space (B−,−[·, ·]B), such that

d ∈ D ⇐⇒ P−d ∈ dom (U−) and P+d = U−P−d. (2.10)
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Now note that the operators

rE,B+
:=

1√
2

[
rE,F

1

]
and rE,B−

:=
1√
2

[
−rE,F

1

]

are unitary from E to the Hilbert spaces (B+, [·, ·]B) and (B−,−[·, ·]B), respec-
tively. Moreover, we observe that P+ = rE,B+

r∗E,B+
and P− = rE,B−

r∗E,B−
, and

substituting this into (2.10), we obtain for d = [ f
e ] that

[
f
e

]
∈ D ⇐⇒ rE,B−

r∗E,B−

[
f
e

]
∈ dom (U−) and

rE,B+
r∗E,B+

[
f
e

]
= U−rE,B−

r∗E,B−

[
f
e

]
.

(2.11)

Now let G be any Hilbert space, such that there exists a unitary operator
rE,G : E → G, for instance, but not necessarily, G = E with rE,G = I. Setting

O := rE,Gr
∗
E,B+

U−rE,B−
r∗E,G (2.12)

in (2.11), we obtain (2.8) with both sides of the equality pre-multiplied by
1/
√

2. Moreover, O is a partial isometry or unitary if and only if U− is
a partial isometry or unitary, respectively, because rE,G, rE,B+

and rE,B−
in

(2.12) are all unitary. According to [1, Thm 8.10], D is a Dirac structure if
and only if U− is unitary. We have now proved the first part of the theorem.

We now prove the second claim, and therefore assume that D is given by
(2.9), where O is a partial isometry on G. Then [ f

e ] ∈ D if and only if there
exists a g ∈ dom (O), such that

[
f
e

]
=

[
rE,Fr∗E,G(Og − g)

r∗E,G(Og + g)

]
.

Pre-multiplying this equality by the boundedly invertible bounded operator[
r∗
E,F

1

−r∗
E,F 1

]
, we obtain that [ f

e ] ∈ D if and only if

[
r∗E,Ff + e
−r∗E,Ff + e

]
=

[
r∗E,GO2g
r∗E,G2g

]

for some g ∈ dom (O). Eliminating g, we obtain that this is equivalent to
(2.8) with the extra condition that rE,G(e − r∗E,Ff) ∈ dom (O).
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Letting U− be the unique operator which satisfies (2.12), we obtain (2.11),
and therefore (2.10). Since U− is a partial isometry or unitary if and only if
O is a partial isometry, or unitary, respectively, [1, Thm 8.10] yields that D
is a Tellegen structure, and moreover, that this Tellegen structure is a Dirac
structure if and only if O is unitary. The proof is done.

Note that we made no claims on uniqueness of the scattering represen-
tation (2.8) in Theorem 2.6. The following remark, whose proof is based
directly on (2.8), elaborates on this issue.

Remark 2.7. The Hilbert space G and the unitary operator (partial isom-
etry) O in Theorem 2.6 are unique in the following sense: Assume that H is
another Hilbert space and that rE,H : E → H is unitary. If Q is a unitary op-
erator (partial isometry) in H such that (2.8) holds with rE,G and O replaced
by rE,H and Q, respectively, then it immediately follows from (2.8) that

r∗E,G dom (O) = dom (OrE,G) = r∗E,H dom (Q) = dom (QrE,H)

=

{
e − r∗E,Ff |

[
f
e

]
∈ D

}

and that rE,Hr∗E,GO = QrE,Hr∗E,G.

(2.13)

In particular, the scattering operators O and Q are unitarily equivalent.

In many situations it is convenient to choose the auxiliary Hilbert space
G in Theorem 2.6 to be E and take rE,G = I. In this case the scattering
representation is unique and Theorem 2.6 reduces to the following corollary.

Corollary 2.8. If D is a Dirac structure (Tellegen structure) on the bond
space B = F × E , then there exists a unique unitary operator (partial isom-
etry) O on E such that

[
f
e

]
∈ D ⇐⇒ (e + r∗E,Ff) = O(e − r∗E,Ff). (2.14)

On the other hand, if O is a unitary operator (partial isometry) on E ,
then

D :=

{[
rE,F(Oe − e)

Oe + e

]
| e ∈ dom (O)

}

11



defines a Dirac structure (Tellegen structure) on B = F ×E such that (2.14)
holds. Furthermore, we have

dom (O) =
{
ẽ ∈ E | there exists [ f

e ] ∈ D such that ẽ = e − r∗E,Ff
}
,

ran (O) =
{
ẽ ∈ E | there exists [ f

e ] ∈ D such that ẽ = e + r∗E,Ff
}
.

We are now ready to study the composition of Dirac and Tellegen struc-
tures. This is the subject of the following section.

3. Composition of Dirac structures

In this section we study the composition (interconnection) of two Dirac
structures. In order to define composition, both Dirac structures need to
have a joint pair of variables that can be used for interconnection. Hence we
assume that the efforts and flows of both Dirac structures can be split into an
“own” pair and a “joint” pair, and that the power product splits accordingly.
This is formalised in the following definition.

Definition 3.1. Assume that the spaces of efforts and flows are decomposed
as E = E1 ⊕ E2 and F = F1 ⊕ F2, and that rEi,Fi

are unitary mappings
from Ei onto Fi, i = 1, 2. A subspace D ⊂ B = (F1 ⊕ F2) × (E1 ⊕ E2)
is called a split Tellegen structure (split Dirac structure) if it is a Tellegen
structure (Dirac structure, respectively) in the sense of Definition 2.1, with

rE,F =
[

rE1,F1
0

0 rE2,F2

]
.

The composition of two split Dirac structures is defined as follows.

Definition 3.2. Let Fi and Ei, i = 1, 2, 3, be Hilbert spaces and let

DA ⊂ (F1 ⊕ F2) × (E1 ⊕ E2) and DB ⊂ (F3 ⊕ F2) × (E3 ⊕ E2) (3.1)

be split Tellegen or Dirac structures. Then the composition DA ◦ DB of DA

and DB (through F2 × E2) is defined as

DA ◦ DB =









f1

f3

e1

e3




∣∣∣ ∃




f1

f2

e1

e2


 ∈ DA and




f3

−f2

e3

e2


 ∈ DB





. (3.2)
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eB
2

fB
2 f3

e3

f1

e1

fA
2

eA
2

D
A
◦ D

B

"!
# 

"!
# 

�
�� D
B

D
A

⇆

Figure 1: A graphical interpretation of composition. We compose the structures DA

and DB by making the power-conserving connection “⇆”, i.e. by setting eA
2

= eB
2

and
fA
2

= −fB
2

Composition of two Dirac structures is illustrated graphically in Figure 1.
In the following we find necessary and sufficient conditions for the com-

position to be a split Dirac structure. We start with the following simple
proposition on split Tellegen structures. The straightforward proof is left to
the reader. It makes use of (3.2) and Lemma 2.5.

Proposition 3.3. Assume that DA and DB in Definition 3.2 are split Tel-
legen structures. Then the composition

DA ◦ DB ⊂
(
F1 ⊕ F3

)
×

(
E1 ⊕ E3

)

is a split Tellegen structure with rE,F =
[

rE1,F1
0

0 rE3,F3

]
.

From now on let DA and DB in (3.1) be split Dirac structures. According
to Corollary 2.8 there exist unique unitary operators

OA =

[
OA

11 OA
12

OA
21 OA

22

]
:

[
E1

E2

]
→

[
E1

E2

]
, OB =

[
OB

22 OB
23

OB
32 OB

33

]
:

[
E2

E3

]
→

[
E2

E3

]

such that
[

e1 + r1f1

eA
2 + r2f

A
2

]
=

[
OA

11 OA
12

OA
21 OA

22

] [
e1 − r1f1

eA
2 − r2f

A
2

]
,

[
eB
2 + r2f

B
2

e3 + r3f3

]
=

[
OB

22 OB
23

OB
32 OB

33

] [
eB
2 − r2f

B
2

e3 − r3f3

] (3.3)

hold for all (f1, fA
2 , e1, eA

2 ) ∈ DA and (f3, fB
2 , e3, eB

3 ) ∈ DB, respectively.
Here and in the following we use the abbreviations ri = r∗Ei,Fi

, i = 1, 2, 3.
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Now compose the Dirac structures DA and DB by setting eA
2 = eB

2 and
fA

2 = −fB
2 , or equivalently:

eA
2 − r2f

A
2 = eB

2 + r2f
B
2 and eA

2 + r2f
A
2 = eB

2 − r2f
B
2 .

From Proposition 3.3 we know that DA◦DB is a Tellegen structure and hence
by Corollary 2.8 there exists a unique partial isometry OAB on E1⊕E3, which
connects the scattering variables as

[
e1 + r1f1

e3 + r3f3

]
= OAB

[
e1 − r1f1

e3 − r3f3

]
, (3.4)

with

dom (OAB) =

{[
e1 − r1f1

e3 − r3f3

] ∣∣(3.3) holds for some eA
2 = eB

2 , fA
2 = −fB

2

}

and

ran (OAB) =

{[
e1 + r1f1

e3 + r3f3

] ∣∣(3.3) holds for some eA
2 = eB

2 , fA
2 = −fB

2

}
.

The mapping OAB is depicted in Figure 2 in the case Ek = Fk, rk = I. For
clarity we have abbreviated f1 = fA

1 , e1 = eA
1 , f2 = fA

2 , e2 = eA
2 , f3 = fB

3

and e3 = eB
3 in the picture.

In a composed Dirac structure, the scattering operator OAB is called the
Redheffer star product of the scattering operators OA and OB. We refer the
reader to [29, Chapter 10] and [22] for further information on the Redheffer
star product.

-

-

�

� �

-

e3 − f3

e1 + f1

O
AB

D
B

D
A

e3 + f3

e1 − f1

e2 − f2 e2 + f2

Figure 2: Composition considered from a scattering point of view

Let DA and DB be split Dirac structures with scattering operators OA

and OB, respectively, cf. (3.3). It follows from (3.15) and (3.16) in the proof
of Theorem 3.7 below that the following claims are true:

14



(i) ran
([

OA
21 OA

22OB
23

])
⊂ ran(OA

22OB
22 − I), where the bar denotes clo-

sure (in E2), and

(ii) ran
([

OB∗
22 OA∗

12 OB∗
32

])
⊂ ran(OB∗

22 OA∗
22 − I).

Compare these range inclusions to the following theorem, where we give
necessary and sufficient conditions for the partial isometry OAB to be unitary,
that is, we characterise the case when DA ◦ DB is a Dirac structure.

Theorem 3.4. Let DA and DB be split Dirac structures on (F1⊕F2)×(E1⊕
E2) and (F3 ⊕F2)× (E3 ⊕E2), respectively. Let OA and OB be corresponding
scattering operators in (3.3) and let OAB be the unique partial isometry in
(3.4). Then the following claims are valid:

(i) dom
(
OAB

)
= E1 ⊕ E3 if and only if

ran
([

OA
21 OA

22OB
23

])
⊂ ran(OA

22OB
22 − I). (3.5)

(ii) ran
(
OAB

)
= E1 ⊕ E3 if and only if

ran
([

OB∗
22 OA∗

12 OB∗
32

])
⊂ ran(OB∗

22 OA∗
22 − I). (3.6)

(iii) DA ◦DB is a split Dirac structure on (F1 ⊕F3)× (E1 ⊕E3) if and only
if the (non-equivalent) conditions (3.5) and (3.6) both hold.

Proof. Step 1. Observe first that by the definition of OAB we have

[
e1 − r1f1

e3 − r3f3

]
∈ dom (OAB)

if and only if there exists some (composition) flow-effort pair
[

f2
e2

]
and cor-

responding scattering output

[
e1 + r1f1

e3 + r3f3

]
∈ ran (OAB), such that




f1

f2

e1

e2


 ∈ DA, and




f3

−f2

e3

e2


 ∈ DB.

Analogously we have

[
e1 + r1f1

e3 + r3f3

]
∈ ran (OAB)
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if and only if there exists some (composition) flow-effort pair
[

f2
e2

]
and cor-

responding scattering input

[
e1 − r1f1

e3 − r3f3

]
∈ dom (OAB), such that




f1

f2

e1

e2


 ∈ DA,




f3

−f2

e3

e2


 ∈ DB.

From the scattering representations (3.3) of DA and DB it follows that
an element (f1, f3, e1, e3) belongs to the composition DA ◦DB if and only if
there exist e2 ∈ E2 and f2 ∈ F2 such that




e1 + r1f1

e2 + r2f2

e3 + r3f3



 =




OA

11 OA
12 0

OA
21 OA

22 0
0 0 I








e1 − r1f1

e2 − r2f2

e3 + r3f3



 (3.7)

and 


e1 − r1f1

e2 − r2f2

e3 + r3f3



 =




I 0 0
0 OB

22 OB
23

0 OB
32 OB

33








e1 − r1f1

e2 + r2f2

e3 − r3f3



 . (3.8)

By multiplication it follows that



e1 + r1f1

e2 + r2f2

e3 + r3f3



 =




OA

11 OA
12OB

22 OA
12OB

23

OA
21 OA

22OB
22 OA

22OB
23

0 OB
32 OB

33








e1 − r1f1

e2 + r2f2

e3 − r3f3



 . (3.9)

We denote the 3 × 3 block operator matrix on E1 ⊕ E2 ⊕ E3 in (3.9) by Õ
and remark that Õ as a product of two unitary operators is also unitary.
Pre-multiplication of (3.9) with the adjoint of Õ yields




e1 − r1f1

e2 + r2f2

e3 − r3f3


 =




OA∗
11 OA∗

21 0
OB∗

22 OA∗
12 OB∗

22 OA∗
22 OB∗

32

OB∗
23 OA∗

12 OB∗
23 OA∗

22 OB∗
33







e1 + r1f1

e2 + r2f2

e3 + r3f3


 . (3.10)

Step 2. We verify assertion (i). Suppose first that dom
(
OAB

)
= E1 ⊕ E3

holds. This implies that for all
[

e1−r1f1

e3−r3f3

]
∈

[
E1

E3

]
there exist e1 + r1f1 ∈ E1,

e2 + r2f2, e2 − r2f2 ∈ E2 and e3 + r3f3 ∈ E3, such that (3.7) and (3.8) hold.
The second row of (3.9) then implies that for all

[
e1−r1f1

e3−r3f3

]
∈

[
E1

E3

]
there exists

e2 + r2f2 ∈ E2 such that

−(OA
22OB

22 − I)(e2 + r2f2) =
[
OA

21 OA
22OB

23

] [
e1 − r1f1

e3 − r3f3

]
, (3.11)
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i.e., (3.5) holds.
Assume now that (3.5) holds. Then for an arbitrary

[
e1−r1f1

e3−r3f3

]
∈

[
E1

E3

]
,

choose e2 + r2f2 ∈ E2 such that (3.11) holds and define e2 − r2f2, e3 + r3f3

by (3.8) and e1 + r1f1 by (3.7). We claim that then also the second row in
(3.7) holds. In fact, since OB is unitary, (3.11) and (3.8) yield

e2 + r2f2 =
[
OA

21 OA
22OB

22 OA
22OB

23

]



e1 − r1f1

e2 + r2f2

e3 − r3f3




=
[
OA

21 OA
22OB

22 OA
22OB

23

]



I 0 0
0 OB∗

22 OB∗
32

0 OB∗
23 OB∗

33








e1 − r1f1

e2 − r2f2

e3 + r3f3





=
[
OA

21 OA
22 0

]



e1 − r1f1

e2 − r2f2

e3 + r3f3


 .

As (3.7) and (3.8) both hold we have (f1, f3, e1, e3) ∈ DA ◦ DB, and so any
choice of

[
e1−r1f1

e3−r3f3

]
∈

[
E1

E3

]
lies in the domain of OAB.

Step 3. In order to verify (ii) one has to study which
[

e1+r1f1

e3+r3f3

]
∈

[
E1

E3

]
lie in

the range of OAB. Instead of (3.9) one makes use of (3.10) and obtains as
the counterpart of (3.11) that

−(OB∗
22 OA∗

22 − I)(e2 + r2f2) =
[
OB∗

22 OA∗
12 OB∗

32

] [
e1 + r1f1

e3 + r3f3

]
.

The proof then continues with an argument similar to Step 2 above.
Step 4. We prove assertion (iii). As DA ◦ DB is a Tellegen structure the
scattering operator OAB in (3.4) is a partial isometry. We have dom

(
OAB

)
=

ran
(
OAB

)
= E1 ⊕ E3 if and only if OAB is unitary. By Corollary 2.8 this

holds if and only if DA ◦ DB is a Dirac structure.

For the case OB = −I Theorem 3.4 can be found in [13]. In his thesis
Golo gives an example which shows the non-equivalence of conditions (3.5)
and (3.6) in Theorem 3.4.

Remark 3.5. Trivially, DA◦DB is a Dirac structure on (F1⊕F3)×(E1⊕E3)

with rE,F =
[

rE1,F1
0

0 rE3,F3

]
if and only if DB ◦ DA is a Dirac structure on

(F3 ⊕F1)× (E3 ⊕E1) with rE,F =
[

rE3,F3
0

0 rE1,F1

]
. Swapping places of DA and
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DB, i.e. A ↔ B and the indices 1 ↔ 3, in Theorem 3.4 turns conditions
(3.5) and (3.6) into the respective equivalent conditions

ran
([

OB
22OA

21 OB
23

])
⊂ ran(OB

22OA
22 − I) and

ran
([

OA∗
12 OA∗

22 OB∗
32

])
⊂ ran(OA∗

22 OB∗
22 − I).

Let again DA and DB in (3.1) be split Dirac structures and let OA and
OB be corresponding scattering operators as in (3.3). Since OA and OB are
unitary it follows, in particular, that OA

22, OB
22 and OA

22OB
22 are contractive

operators on E2, i.e., for instance ‖OA
22e2‖E2

≤ ‖e2‖E2
for all e2 ∈ E2.

We formulate the following lemma for a general contraction T on the
Hilbert space E for simplicity of notation. Later we will apply the lemma
in the case T = OA

22OB
22 and E = E2, where the operators OA

22 and OB
22 arise

from scattering representations of split Dirac structures.

Lemma 3.6. Let T be a contraction on the Hilbert space E, and decompose
E into

E =
(
ker(T − I)

)⊥ ⊕ ker(T − I). (3.12)

Denote the orthogonal projection in E onto (ker(T − I))⊥ by P and the
canonical embedding of (ker(T − I))⊥ into E by I. Then the following holds:

(i) ker(T − I) = ker(T ∗ − I),

(ii) ran(T − I) =
(
ker(T − I)

)⊥
= ran(T ∗ − I),

(iii) with respect to the decomposition (3.12) we have

T =

[
PTI 0

0 I

]
and T − I =

[
P(T − I)I 0

0 0

]
,

(iv) and P(T−I)I is an injective operator on
(
ker(T−I)

)⊥
with a (possibly

unbounded) inverse which we denote by
(
P(T − I)I

)−1
.

Proof. (i) Let e ∈ ker(T−I). Since T is a contraction we have ‖T ∗‖ = ‖T‖ ≤
1 and from Te = e we obtain

0 ≤ ‖(T ∗ − I)e‖2 = ‖T ∗e‖2 − 〈e, T e〉 − 〈Te, e〉 + ‖e‖2

= ‖T ∗e‖2 − ‖e‖2 ≤ 0.
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Therefore e ∈ ker(T ∗ − I). The converse inclusion in (i) follows by inter-
changing T and T ∗.
(ii) This assertion follows immediately from (i).
(iii) With respect to the decomposition (3.12) it is clear that

T − I =

[
P(T − I)I 0

(I −P)(T − I)I 0

]
. (3.13)

By the definition of P and claim (ii), ker(I −P) = ran(T − I) and therefore
(I − P)(T − I)I = 0. This gives the second statement in (iii) and then the
expression for T follows immediately.
(iv) The validity of this claim is obvious.

From now on we always denote the orthogonal projection in E2 onto
(ker(OA

22OB
22−I))⊥ by P and the canonical embedding of (ker(OA

22OB
22−I))⊥

into E2 by I.
In the next theorem we give a sufficient criterion for DA ◦ DB to be a

Dirac structure and an explicit expression for one of its scattering operators
OAB in terms of the entries in the block matrix representations of OA and
OB in (3.3).

Theorem 3.7. Let DA and DB be split Dirac structures with scattering op-
erators OA and OB as in (3.3). Then the scattering operator OAB in (3.4)
corresponding to the Tellegen structure DA ◦ DB is

OAB =

[
OA

11 OA
12OB

23

0 OB
33

]

−
[
OA

12OB
22

OB
32

]
I
(
P(OA

22OB
22 − I)I

)−1P
[
OA

21 OA
22OB

23

] (3.14)

with domain given by

{[
g1

g3

]
∈ E1 ⊕ E3 | P

[
OA

21 OA
22OB

23

] [
g1

g3

]
∈ ran(OA

22OB
22 − I)

}
.

Furthermore, if ran (OA
22OB

22−I) is closed, or equivalently, ran (OB∗
22 OA∗

22 −
I) is closed, then DA ◦ DB is a Dirac structure and the scattering operator
OAB is unitary.
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Proof. We first verify the representation (3.14) of the scattering operator
OAB of the split Tellegen structure DA ◦ DB. For this decompose E = E2

as in (3.12), with T = OA
22OB

22, and rewrite the block operator matrix Õ in
(3.9) with the help of Lemma 3.6 (iii) accordingly, in order to obtain

Õ =




OA
11 OA

12OB
22I OA

12OB
22(I − I) OA

12OB
23

POA
21 POA

22OB
22I 0 POA

22OB
23

(I − P)OA
21 0 I (I −P)OA

22OB
23

0 OB
32I OB

32(I − I) OB
33


 .

Since DA and DB are Dirac structures the operator Õ is unitary (see Step 1
in the proof of Theorem 3.4) and therefore we have

(I −P)OA
21 = 0, (I − P)OA

22OB
23 = 0, (3.15)

OA
12OB

22(I − I) = 0 and OB
32(I − I) = 0. (3.16)

Hence (3.9) becomes



e1 + r1f1

P(e2 + r2f2)
(I − P)(e2 + r2f2)

e3 + r3f3


 =




OA
11 OA

12OB
22I 0 OA

12OB
23

POA
21 POA

22OB
22I 0 POA

22OB
23

0 0 I 0
0 OB

32I 0 OB
33







e1 − r1f1

P(e2 + r2f2)
(I −P)(e2 + r2f2)

e3 − r3f3




(3.17)

and we obtain

P(e2 + r2f2) = −
(
P(OA

22OB
22 − I)I

)−1P
[
OA

21 OA
22OB

23

] [
e1 − r1f1

e3 − r3f3

]
,

whenever
[

e1−r1f1

e3−r3f3

]
∈ dom (OAB). Substituting this back into (3.17) we have

eliminated e2+r2f2 and the representation of OAB follows without difficulties.
Next we will use Theorem 3.4 to show that DA◦DB is a Dirac structure if

the range of OA
22OB

22 − I is closed. By the closed range theorem, OB∗
22 OA∗

22 − I
has closed range if and only if OA

22OB
22 − I has closed range. In that case

Lemma 3.6 yields that

ran(OA
22OB

22 − I) = ran
(
P(OA

22OB
22 − I)I

)
= ker

(
(OA

22OB
22 − I)

)⊥
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holds. As a consequence of (3.15) we have

ran
([

OA
21 OA

22OB
23

])
= ran

([
POA

21 POA
22OB

23

])
(3.18)

and hence ran ([OA
21 OA

22OB
23]) ⊂ ker((OA

22OB
22 − I))⊥ = ran(OA

22OB
22 − I), i.e.,

condition (3.5) in Theorem 3.4 holds. By taking adjoints in (3.16), we obtain
that (I − P)OB∗

22 OA∗
12 = 0 and (I −P)OB∗

32 = 0. Hence by Lemma 3.6,

ran
([

OB∗
22 OA∗

12 OB∗
32

])
= ran

([
POB∗

22 OA∗
12 POB∗

32

])

⊂ ker
(
(OA

22OB
22 − I)

)⊥
= ran (OB∗

22 OA∗
22 − I),

so that also condition (3.6) in Theorem 3.4 is satisfied. Therefore DA ◦ DB

is a split Dirac structure on (F1 ⊕ F3) × (E1 ⊕ E3).

The following corollary highlights two useful consequences of Theorem
3.7.

Corollary 3.8. Let DA and DB be split Dirac structures with scattering
operators OA and OB, respectively, as in (3.3). Then the following hold:

(i) If ‖OA
22‖ < 1 or ‖OB

22‖ < 1, then DA ◦ DB is a split Dirac structure;

(ii) If F2×E2 is finite-dimensional, then DA ◦DB is a split Dirac structure.

Proof. Assertion (i) holds since ‖OA
22OB

22‖ < 1 implies that OA
22OB

22 − I is
boundedly invertible and, in particular, has closed range. Assertion (ii) fol-
lows from the fact that the range of the finite-rank operator OA

22OB
22 − I is

closed.

We now conclude the section with an example that illustrates how The-
orem 3.7 can be applied. In the example, the Dirac structures are intercon-
nected through an infinite-dimensional channel. Note that this example uses
a complex bond space.

Example 3.9. We set E1 = F1 = L2(0,∞) ⊕ C, E2 = F2 = L2(0,∞) and
E3 = F3 = {0}, and we take r1, r2 and r3 equal to the identity. The first
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Dirac structure is defined as

DA =

{
(f1, f2, e1, e2) ∈ (F1 ⊕ F2) × (E1 ⊕ E2) |

e1 = (e1,1, e1,∂), f1 = (f1,1, f1,∂),

e1,1 and e2 absolutely continuous, and f1,1 =
∂

∂z
e2,

f2 =
∂

∂z
e1,1, f1,∂ = e2(0), e1,∂ = e1,1(0)

}
. (3.19)

A slight adaptation of the argument in [19, Section 3] can be used to prove
that DA is a Dirac structure. That DA is a Dirac structure can also be seen
using Theorem 4.3 by taking L =

[
0 ∂/∂z

∂/∂z 0

]
, G =

[
δ0 0

]
and K =

[
0 δ0

]
,

where δ0 is the operator that evaluates its continuous argument function
at zero. We may see DA as the Dirac structure associated with the wave
equation on the half-line R+.

The second Dirac structure is given by

DB = {(f2, e2) ∈ F2 × E2 | f2 = ie2} .

The unitary operator which maps the scattering variable e2 − f2 into e2 + f2

is for the Dirac structure DB clearly

OB = OB
22 =

1 + i

1 − i
= i.

Thus it remains to determine the lower-right block OA
22 of OA. For this we

define the two operators

A

[
e1

e2

]
=




e1,1 − ∂e2

∂z

e1,1(0) − e2(0)

e2 − ∂e1,1

∂z


 and (3.20)

B

[
e1

e2

]
=




e1,1 + ∂e2

∂z

e1,1(0) + e2(0)

e2 +
∂e1,1

∂z


 ,

where we have used the splitting of e1 as given in (3.19). From (2.14) it
follows that OA = BA−1 is the scattering representation of DA corresponding
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to G = E and rE,G = I. We begin by calculating the inverse of A. For this
we introduce

A

[
e1

e2

]
=

[
g1

g2

]
=




g1,1

g1,∂

g2


 , (3.21)

and since we are interested in the lower-right block of OA, we may take
g1 = 0. Combining (3.21) with (3.20) gives an ordinary differential equation
which we can solve for e. The solution is given by

e1,1(z) =
1

2

∫ ∞

z

ez−τg2(τ) dτ − 1

2

∫ z

0

e−(z−τ)g2(τ) dτ

e1,∂ =e1,1(0) = e2(0)

e2(z) =
1

2

∫ ∞

z

ez−τg2(τ) dτ +
1

2

∫ z

0

e−(z−τ)g2(τ) dτ.

Letting B operate on this, we find

B

[
e1

e2

]
=




∫ ∞

z
ez−τg2(τ) dτ −

∫ z

0
e−(z−τ)g2(τ) dτ∫ ∞

0
e−τg2(τ) dτ∫ ∞

z
ez−τg2(τ) dτ +

∫ z

0
e−(z−τ)g2(τ) dτ − g2(z)




By the definition of A and B, we know that this equals OA
[

0
g2

]
. Concluding,

we find

(
OA

22g2

)
(z) =

∫ ∞

z

ez−τg2(τ) dτ +

∫ z

0

e−(z−τ)g2(τ) dτ − g2(z). (3.22)

The first two terms on the right-hand side of (3.22) can be combined into

∫ ∞

0

h(z, τ)g2(τ) dτ =: (Qg2) (z),

where h(z, τ) = e(z−τ)H(τ−z)+e−(z−τ)H(z−τ) and H denotes the Heaviside
step function, i.e., H(x) is one for positive x and zero otherwise. Since
h(z, τ) = h(τ, z) with values in R whenever z, τ ∈ R, we have that Q is self-
adjoint, see, e.g. [15, Ex. III.3.17]. This in turn implies that the spectrum
of iQ lies on the imaginary axis.

The operator OA
22OB

22 − I equals

(Q − I)i − I = iQ − (1 + i)I,
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the point 1 + i lies outside the spectrum of iQ, and we conclude that the
range of OA

22OB
22 − I is the whole space L2(0,∞). In particular, the range is

closed and Theorem 3.7 yields that DA ◦ DB is a Dirac structure.
We finish this example by determining

DA ◦ DB =






[
f1

e1

] ∣∣∣ there exists




f1

f2

e1

e2


 ∈ DA and

[
−f2

e2

]
∈ DB





.

Using the definitions of DA and DB, we find that an element (f1, e1) ∈
DA ◦ DB satisfies

f1 =

[
f1,1

f1,∂

]
=

[
∂e2

∂z

e2(0)

]
=

[
i∂f2

∂z

if2(0)

]
=

[
i∂2e1,1

∂z2

i∂e1,1

∂z
(0)

]
.

Thus

DA ◦ DB = {(f1, e1) ∈ F1 × E1 | e1 = (e1,1, e1,∂), f1 = (f1,1, f1,∂),

e1,1 and
∂e1,1

∂z
are absolutely continuous, f1,1 = i

∂2e1,1

∂z2
,

f1,∂ = i
∂e1,1

∂z
(0), and e1,∂ = e1,1(0)

}
.

This is the Dirac structure associated with the Schrödinger equation/operator
with zero potential on the half-line R+; see [21, Sect. 7.5.2].

If we were working on a compact subinterval of R in Example 3.9, instead
of [0,∞), then the unitary operator OA would be a Fredholm operator, and
so the closedness of the range of OA

22OB
22 − I would be immediate.

4. Dirac structures defined by boundary colligations

In this section we introduce a class of Dirac structures to which, e.g.,
the Dirac structure DA in Example 3.9 and the examples in the introduction
belong. The Dirac structures studied here are obtained from operator colli-
gations associated with boundary control. They can alternatively be viewed
as unitary operators with respect to a particular indefinite structure. This
point of view and the connection to abstract notions from extension theory of
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symmetric operators, as, e.g., boundary triplets and the more general recent
concept of boundary relations, is explained after Proposition 4.5.

The following definition is compiled from Definitions 2.1 and 4.4, and the
introduction to Section 5 in [20]. See also [2] for similar ideas.

Definition 4.1. Let U , X and Y be Hilbert spaces, and let G, L, and K be
linear operators, with common domain dom(Ξ) ⊂ X, that map into U , X,
and Y , respectively.

1. The pair
([

G
L
K

]
,
[

U
X
Y

])
is called an operator colligation or colligation.

2. The colligation is said to be strong if Ξ :=
[

G
L
K

]
and L are both closed

operators (with domain dom(L) = dom (Ξ)).

3. The minimal (interior) operator of Ξ is defined as

L0 := L|{x∈dom (L) |Kx=0,Gx=0}.

We will often call Ξ the colligation, when the spaces are clear.

Now we want to associate a Dirac structure D to a colligation. Therefore
we assume that the Hilbert spaces U and Y have the same cardinality, and
we fix a unitary map rU,Y between U and Y . Furthermore, we introduce the
effort and flow spaces as

E := X ⊕ U and F := X ⊕ Y, (4.1)

respectively. As our unitary mapping from E to F we take

rE,F :=

[
I 0
0 −rU,Y

]
. (4.2)

Observe that according to (2.2) the indefinite power product on the bond
space B = F × E is then given by






z1

y1

x1

u1


 ,




z2

y2

x2

u2







B

= 〈z1, x2〉X−〈y1, rU,Y u2〉Y +〈x1, z2〉X−〈u1, r
∗
U,Y y2〉U , (4.3)

where x1, z1, x2, z2 ∈ X, y1, y2 ∈ Y and u1, u2 ∈ U . Let
([

G
L
K

]
,
[

U
X
Y

])
be a

colligation defined on dom(Ξ) as given in Definition 4.1. In the following we
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study the space D defined by

D :=




L
K
I
G


 dom(Ξ) ⊂ F × E = (X ⊕ Y ) × (X ⊕ U). (4.4)

We find necessary and sufficient criteria for the operators L, K, and G for D
to be a Dirac structure on B = F × E with respect to rE,F in (4.2).

First, however, we give a characterisation of Tellegen structures defined
by colligations. The proof follows directly from Lemma 2.5, and it is left to
the reader.

Proposition 4.2. Let the bond space B = F × E with its power product
be as in (4.1) – (4.3), and let D be defined by (4.4). Then D is a Tellegen
structure on B if and only if

Re〈Lx, x〉X = Re〈Kx, rU,Y Gx〉Y , x ∈ dom(Ξ). (4.5)

We now characterise a class of Dirac structures originating from colliga-
tions. Since the graph of the colligation Ξ and the linear subspace D in (4.4)
are unitarily equivalent the following result gives, roughly speaking, neces-
sary and sufficient conditions for the graph of a colligation to be a Dirac
structure.

Theorem 4.3. Let the bond space B = F × E with its power product be as
in (4.1) – (4.3), let D be defined as in (4.4), and assume that the operator
L is closed. Then D is a Dirac structure on B if and only if the following
conditions hold:

1. Equation (4.5) is satisfied.

2. The minimal operator L0 is densely defined and it satisfies L∗
0 = −L.

3. The range of the operator [ G
K ] is dense in U ⊕ Y .

Proof. Assume first that D in (4.4) is a Dirac structure. Then, in particular,
D is a Tellegen structure and hence (1) is satisfied. Next it will be shown that
dom (Ξ) is dense. Let z ∈ X be such that 〈z, x1〉 = 0 for all x1 ∈ dom(Ξ).
Then

0 = 〈x1, z〉X =







Lx1

Kx1

x1

Gx1


 ,




z
0
0
0







B
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for all x1 ∈ dom(Ξ). Thus (z, 0, 0, 0) ∈ D[⊥], and since D is a Dirac struc-
ture, we conclude that (z, 0, 0, 0) ∈ D. In particular, z = L0 = 0 and
hence dom (Ξ) = dom (L) is dense. In particular, the (possibly unbounded)
adjoint L∗ of L is well-defined. An element x2 ∈ X lies in dom(L∗) if and
only if there exists some z2 ∈ X such that for all x1 ∈ dom(L) we have
〈Lx1, x2〉X = 〈x1, z2〉X , that is,

0 = 〈Lx1, x2〉X + 〈x1,−z2〉X =







Lx1

Kx1

x1

Gx1


 ,




−z2

0
x2

0







B

for all x1 ∈ dom(L).

Since dom(L) = dom(Ξ), we see that (−z2, 0, x2, 0) ∈ D[⊥]. Using the fact
that D is a Dirac structure, we conclude that x2 ∈ dom(Ξ), Lx2 = −z2,
and Gx2 = Kx2 = 0. Thus x2 ∈ dom(L0) and L0x2 = −z2 = −L∗x2,
i.e., L∗ ⊂ −L0. By reading the above reasoning backwards, we see that if
x2 ∈ dom(L0), then x2 ∈ dom(L∗) and L0x2 = −L∗x2. Hence L∗ = −L0

and since L is a closed operator we conclude L = −L∗
0, i.e., (2) holds. In

order show (3) suppose that (u, y) ∈ U ⊕ Y is orthogonal to ran ([ G
K ]). This

implies 





Lx1

Kx1

x1

Gx1


 ,




0
rU,Y u

0
r∗U,Y y







B

= 0 for all x1 ∈ dom(Ξ)

and hence (0, rU,Y u, 0, r∗U,Y y) ∈ D[⊥]. Since D is a Dirac structure we con-
clude that r∗U,Y y = G0 = 0, and rU,Y u = K0 = 0, and hence u = 0, y = 0.

Let us now prove the converse direction. Condition (1) and Proposi-
tion 4.2 imply D ⊂ D[⊥] and so we only have to show D[⊥] ⊂ D. For this let
(z2, y2, x2, u2) ∈ D[⊥]. For any x1 ∈ dom(L0), we see that

0 =







Lx1

0
x1

0


 ,




z2

y2

x2

u2







B

= 〈L0x1, x2〉X + 〈x1, z2〉X .

This implies x2 ∈ dom(L∗
0) and L∗

0x2 = −z2. Hence by item 2 we have
x2 ∈ dom(Ξ) = dom (L) and Lx2 = z2. Now let x1 ∈ dom(Ξ) be arbitrary.
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Since (z2, y2, x2, u2) ∈ D[⊥] and D is a Tellegen structure we can compute

0 =







Lx1

Kx1

x1

Gx1


 ,




z2

y2

x2

u2







B

=







Lx1

Kx1

x1

Gx1


 ,




Lx2

y2

x2

u2







B

= 〈Lx1, x2〉X + 〈x1, Lx2〉X − 〈rU,Y Gx1, y2〉Y − 〈Kx1, rU,Y u2〉Y
= 〈rU,Y Gx1, Kx2〉Y + 〈Kx1, rU,Y Gx2〉Y

−〈rU,Y Gx1, y2〉Y − 〈Kx1, rU,Y u2〉Y
= 〈rU,Y Gx1, (Kx2 − y2)〉Y + 〈Kx1, rU,Y (Gx2 − u2)〉Y .

Using the denseness of the range of [ G
K ], we conclude u2 = Gx2, y2 = Kx2

and hence (z2, y2, x2, u2) = (Lx2, Kx2, x2, Gx2) ∈ D.

We note that the minimal operator L0 in Theorem 4.3 is skew-symmetric,
i.e., L0 ⊂ L = −L∗

0 and that in the proof of Theorem 4.3 we have shown
L∗ = −L0, even when L is not closed and not even closable. We also mention
that strong colligations whose graph form a Dirac structure are the same as
so-called impedance conservative internally well-posed boundary nodes; cf.
[20, Theorem 5.2].

Remark 4.4. If Ξ is a colligation and D in (4.4) is a Dirac structure, then Ξ
must be a closed operator. It thus follows from assumptions 1 – 3 in Theorem
4.3 that D is closed. Hence, if D is a Dirac structure and L is closed, then
the colligation Ξ is automatically strong. According to [20, Lemma 4.5] this
holds if and only if L is closed and G and K are continuous with respect to
the graph norm of L.

Condition (3) in Theorem 4.3 can be strengthened. This is done in the
following result which is inspired by [7, Proposition 2.3]. The result can also
be deduced from [23]. For the convenience of the reader we give a short direct
proof.

Proposition 4.5. Let the bond space B = F × E and its power product
be as in (4.1) – (4.3), and assume that D in (4.4) is a Dirac structure on
B = F ⊕E . Then the operator L is closed if and only if the operator [ G

K ] has
closed range.
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Proof. Let M ⊂ X ⊕ X ⊕ U ⊕ Y be the subspace

M :=




L
I
G
K


 dom(Ξ).

Since D is a Dirac structure, and thus a closed linear subspace, we have that
M is a closed linear subspace. As N we define X ⊕ X ⊕ {0} ⊕ {0}. The
following relation is immediate:

M + N = X ⊕ X ⊕ ran

([
G
K

])
. (4.6)

Next we calculate M⊥. Let (z, x, u, y) ∈ M⊥, then for all x1 ∈ dom(Ξ)

0 = 〈z, Lx1〉X + 〈x, x1〉X + 〈u, Gx1〉U + 〈y, Kx1〉Y =







x
−rU,Y u

z
−r∗U,Y y


 ,




Lx1

Kx1

x1

Gx1







B

.

Thus (x, −rU,Y u, z, −r∗U,Y y) ∈ D[⊥] and since D is assumed to be a Dirac
structure this element belongs to D. By the definition of D this implies that
x = Lz, −rU,Y u = Kz, and −r∗U,Y y = Gz. So we find that

M⊥ ⊂




I
L

−r∗U,Y K
−rU,Y G


 dom(Ξ).

The other inclusion is shown similarly. Since N⊥ = {0} ⊕ {0} ⊕ U ⊕ Y , we
find that

M⊥ + N⊥ = ran

([
I
L

])
⊕ U ⊕ Y. (4.7)

By Theorem IV.4.8 of [15] we have that M + N is closed if and only if
M⊥ + N⊥ is closed. Using (4.6) and (4.7) we see that this implies that
ran ([ G

K ]) is closed if and only if ran ([ I
L ]) is closed. The latter is closed if

and only if L is a closed operator.
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Next we will explain how Dirac structures defined by colligations are
related to linear operators which are unitary with respect to certain Krĕın
space inner products. The following (more abstract) considerations are of
auxiliary nature and will not be used further in the present paper.

Let Ξ be a colligation as in Definition 4.1 and let D be as in (4.4). We
associate to D a linear mapping D from X ×X into U × U which is defined
on the graph of the operator −iL by

D : X × X ⊃ dom (D) → U × U,

[
x

−iLx

]
7→

[
Gx

−ir∗U,Y Kx

]
. (4.8)

Observe that D is a well defined linear operator mapping a closed subspace
of X × X into U × U . The space X × X will be equipped with the Krĕın
space inner product

[[
x1

x2

]
,

[
z1

z2

]]

X×X

:= i
(
〈x2, z1〉X − 〈x1, z2〉X

)
, x1, x2, z1, z2 ∈ X,

and the Krĕın space inner product [·, ·]U×U on U × U is defined in the same
way. The adjoint D

[∗] of D with respect to (X × X, [·, ·]X×X) and (U ×
U, [·, ·]U×U) is defined in the sense of linear relations:

D
[∗] =

{{[
u1

u2

]
,

[
x1

x2

]}
|
[[

Gx
−ir∗U,Y Kx

]
,

[
u1

u2

]]

U×U

=

[[
x

−iLx

]
,

[
x1

x2

]]

X×X

}
,

where the equality of the indefinite inner products holds for all x ∈ dom (Ξ).
The operator D is said to be isometric (unitary) with respect to the inner

products [·, ·]X×X and [·, ·]U×U if D
−1 ⊂ D

[∗] (D−1 = D
[∗], respectively),

where D
−1 denotes the inverse of D in the sense of linear relations. The

next proposition which connects Dirac and Tellegen structures defined by
colligations with isometric and unitary operators acting between the Krĕın
spaces (X × X, [·, ·]X×X) and (U × U, [·, ·]U×U) is now immediate.

Proposition 4.6. Let Ξ, D and D be as above. Then the following holds:

1. D is a Tellegen structure if and only if D
−1 ⊂ D

[∗] and

2. D is a Dirac structure if and only if D
−1 = D

[∗].
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The fact that Dirac structures defined by colligations can be regarded as
unitary operators in Krĕın spaces also provides a direct connection to the
concepts of boundary triplets, generalised boundary triplets, quasi boundary
triplets and boundary relations used in the extension theory of symmetric
operators; cf. [3, 7, 8, 9, 10, 14]. With the help of these connections also
Theorem 4.3 can be proved. Without going into further details on boundary
relations we mention for completeness that by Proposition 4.6 (ii) the oper-
ator D in (4.8) is a boundary relation for −iL if and only if D in (4.4) is a
Dirac structure.

For brevity we only recall here the notion of boundary triplets, i.e., single-
valued boundary relations, and we point out only a few facts that are of
interest to us.

Let A be a densely defined, closed and symmetric operator in the Hilbert
space X. A triplet (G, Γ0, Γ1) is said to be a boundary triplet or boundary
value space for the adjoint operator A∗, if G is a Hilbert space and Γ0, Γ1 :
dom (A∗) → G are linear mappings such that the abstract Green’s identity

〈A∗x, z〉X − 〈x, A∗z〉X = 〈Γ1x, Γ0z〉G − 〈Γ0x, Γ1z〉G

holds for all x, z ∈ dom (A∗) and the mapping
[

Γ0

Γ1

]
: dom (A∗) → G ⊕ G is

surjective.
It can be shown that a boundary triplet for A∗ exists if and only if

the symmetric operator A has equal (possibly infinite) deficiency indices
n±(A) := dim (ker(A ∓ i)). Then necessarily dim(G) = n±(A) holds and
Γ0 and Γ1 are continuous with respect to the graph norm of A∗. We note
that a boundary triplet (if it exists) is never unique. Furthermore, it follows
that

dom (A) = {x ∈ dom (A∗) | Γ0x = Γ1x = 0}
and hence A = A∗|ker(Γ0)∩ker(Γ1). The following result is a consequence of
(4.8) and Proposition 4.6.

Theorem 4.7. Let A be a densely defined closed symmetric operator in X
with equal deficiency indices and let (U, Γ0, Γ1) be a boundary triplet for A∗.
Then the subspace D in (4.4) associated with the strong colligation

Ξ =




Γ0

iA∗

irU,Y Γ1



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is a Dirac structure of the type described in Theorem 4.3.
Conversely, if L is a closed operator in X and D is a Dirac structure

as in Theorem 4.3, then iL0 is a densely defined closed symmetric operator
with equal deficiency indices n±(iL0) = dim(U) and (U, G,−ir∗U,Y K) is a
boundary triplet for −iL.

Finally we consider Dirac structures associated to colligations which are
not necessarily strong. In particular, the operator L is not assumed to be
closed. Instead of the minimal operator L0 we now make use of the restric-
tions

LK = L|{x∈dom(L)|Kx=0} and LG = L|{x∈dom(L)|Gx=0}

of the operator L.
The following two propositions can be deduced from Proposition 4.6 to-

gether with abstract results on special subclasses of boundary relations in [7,
Sect. 5], and the results can also be proved directly. Since these results are
not used further in this paper we leave the proofs to the reader.

Proposition 4.8. Let the bond space B = F ×E with its power product be
as in (4.1) – (4.3), let D in (4.4) be a Tellegen structure, and assume that the
operators LK and LG are densely defined. Then the following claims hold:

1. LK ⊂ −L∗
K and LG ⊂ −L∗

G.

2. If the closure LK of the operator LK satisfies LK = −L∗
K and ran(K) =

Y , then D is a Dirac structure on B.

3. If LG = −L∗
G and ran(G) = U , then D is a Dirac structure on B.

We now finish this section with a partial converse to Proposition 4.8.

Proposition 4.9. Let the bond space B = F ×E with its power product be
as in (4.1) – (4.3), let D in (4.4) be a Dirac structure on B, and assume that
L is a closed operator. Then we have that

LK = −L∗
K and LG = −L∗

G.

In particular, LK and LG are closed.
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5. Composition of boundary colligation Dirac structures

In Section 4 we studied Dirac structures associated with strong colliga-
tions and in this section we study the composition of two of these Dirac
structures. When we study this composition it is good to recall what the
meaning of the different operators in a colligation are.

From our examples in the introduction, we see that Ξ is normally an
operator acting on functions defined on some spatial domain Ω. In this
situation, the action of L results in another function defined on the same
spatial domain Ω, whereas G and K are maps to functions defined on the
boundary of Ω.

In this section, we assume that the composition is made only via a part
of the boundary ∂ of Ω, as depicted in Figure 3. Thus, Example 3.9 is not
covered by the theory in this section. In the figure, the domain on which
DA is defined is ΩA with boundary ∂A

b ∪ ∂c, while the domain, on which DB

is defined, is ΩB with boundary ∂B
b ∪ ∂c. The composition DA ◦ DB is then

defined on ΩA ∪ ΩB ∪ ∂c with boundary ∂A
b ∪ ∂B

b .

∂A
b

∂B
b

∂c

ΩB

ΩA

Figure 3: Composition of Dirac structures from the perspective of the associated bound-
aries

Let j ∈ {A, B}, let U j , Xj, and Y j be Hilbert spaces and assume that U j

and Y j split into U j = U j
b ⊕Uc and Y j = Y j

b ⊕Yc. Let Gj, Lj , and Kj be linear
operators with common domain dom (Ξj) dense in Xj that map into U j , Xj ,
and Y j, respectively. Split Gj and Kj according to the decomposition of U j

and Y j into

Gj =

[
Gj

b

Gj
c

]
and Kj =

[
Kj

b

Kj
c

]
, (5.1)
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respectively. Furthermore, assume that there exist unitary operators

rUj ,Y j =

[
rUj

b
,Y j

b
0

0 rUc,Yc

]
:

[
U j

b

Uc

]
→

[
Y j

b

Yc

]
, j = A, B.

Thus we obtain the colligations

Ξj =




Gj
b

Gj
c

Lj

Kj
b

Kj
c




, j = A, B (5.2)

defined on the dense subspaces dom (Ξj) of Xj .
This leads naturally to the following set-up for split Dirac structures, see

Definition 3.1 and formula (4.4): Let

E j =
[

Xj

Uj
b

]
, F j =

[
Xj

Y j
b

]
, E2 = Uc, F2 = Yc, j = A, B,

let Bj := F j ⊕ F2 × E j ⊕ E2, and define the subspace Dj ⊂ Bj by

Dj =




Lj

Kj
b

Kj
c

I

Gj
b

Gj
c




dom (Ξj), j = A, B. (5.3)

Following Definition 3.2, we have that the composition of Tellegen or
Dirac structures DA and DB is done via fA

2 = −fB
2 and eA

2 = eB
2 . Hence if

DA and DB in (5.3) are Tellegen structures this becomes

KA
c xA + KB

c xB = 0 and GA
c xA = GB

c xB (5.4)

for xA ∈ dom (ΞA) and xB ∈ dom (ΞB). Let us now introduce the subspace

dom (ΞAB) =

{[
xA

xB

]
| xj ∈ dom (Ξj) and (5.4) holds

}
(5.5)
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of XA ⊕ XB, the operators

GAB =

[
GA

b 0
0 GB

b

]
: dom (ΞAB) → UA

b ⊕ UB
b ,

LAB =

[
LA 0
0 LB

]
: dom (ΞAB) → XA ⊕ XB,

KAB =

[
KA

b 0
0 KB

b

]
: dom (ΞAB) → Y A

b ⊕ Y B
b

and the colligation ΞAB =

[
GAB

LAB

KAB

]
.

Proposition 5.1. If the colligations ΞA and ΞB are strong, then the col-
ligation ΞAB is strong. Furthermore, if DA and DB in (5.3) are Tellegen
structures, then

DA ◦ DB =




LAB

KAB

I
GAB


 dom (ΞAB) (5.6)

is a Tellegen structure associated with the colligation ΞAB, on the bond space[
XA ⊕ XB

Y A
b ⊕ Y B

b

]
×

[
XA ⊕ XB

UA
b ⊕ UB

b

]
, with power product given by

rE,F =




IXA 0 0 0
0 IXB 0 0
0 0 −rUA

b
,Y A

b
0

0 0 0 −rUB
b

,Y B
b


 . (5.7)

Proof. By Proposition 3.3 we know that DA ◦DB is a Tellegen structure and
with the help of Definition 3.2 one easily verifies that DA ◦ DB is given by
(5.6).

We check that LAB is closed. Let xn := (xA
n , xB

n ) ∈ dom (ΞAB) be a
converging sequence in XA ⊕ XB such that LABxn converges to some z :=
(zA, zB). By the definition of LAB it is clear that LAxA

n and LBxB
n are both

converging sequences. Since LA and LB are (by assumption) closed operators,
we conclude that

xA := lim
n→∞

xA
n ∈ dom (ΞA), xB := lim

n→∞
xB

n ∈ dom (ΞB), (5.8)
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and
zA = lim

n→∞
LAxA

n and zB = lim
n→∞

LBxB
n . (5.9)

Thus if we can show that (zA, zB) ∈ dom (ΞAB), then we have shown that
LAB is a closed operator. Since the colligation ΞA is strong, we conclude
from Lemma 4.5 of [20] that the operators KA and GA in (5.1) are bounded
with respect to the graph norm of LA. Combining this with (5.8) and (5.9),
we find limn KA

c xA
n = KA

c xA and limn GA
c xA

n = GA
c xA. Similarly, we obtain

that limn KB
c xB

n = KB
c xB and limn GB

c xB
n = GB

c xB. In particular, since
(xA

n , xB
n ) ∈ dom (ΞAB) this implies that

KA
c xA + KB

c xB = lim
n→∞

(
KA

c xA
n + KB

c xB
n

)
= 0,

GA
c xA − GB

c xB = lim
n→∞

(
GA

c xA
n − GB

c xB
n

)
= 0.

Thus x = (xA, xB) ∈ dom (ΞAB) and LABx = z, i.e. LAB is closed.
The closedness of ΞAB follows from the closedness of LAB, the bounded-

ness of GAB and KAB with respect to the graph norm, and Lemma 4.5 of
[20].

Based on Theorem 4.3 and Propositions 4.5 and 5.1 we show that DA◦DB

is a Dirac structure if DA and DB are Dirac structures.

Theorem 5.2. Assume that the colligations ΞA and ΞB defined by (5.2) are
strong and that DA and DB in (5.3) are Dirac structures. Then DA ◦ DB

in (5.6) is a Dirac structure with (5.7), which is associated with the strong
colligation ΞAB.

Proof. By Propositions 5.1 and 4.2 we conclude that the first item of Theorem
4.3 holds.

It follows from Theorem 4.3 and Proposition 4.5 that the operators
[

GA

KA

]

and
[

GB

KB

]
are surjective. Now it is easy to see that

[
GAB

KAB

]
is surjective and

hence item 3 of Theorem 4.3 is satisfied.
It remains to show that the minimal operator

LAB
0 = LAB|nh

xA

xB

i

∈dom (LAB)|GAB
h

xA

xB

i

=0, KAB
h

xA

xB

i

=0
o

of the colligation ΞAB is densely defined and has the property (LAB
0 )∗ =

−LAB. Therefore we recall the minimal operators of ΞA and ΞB

LA
0 = LA|{xA∈dom (LA) |KAxA=0, GAxA=0},

LB
0 = LB|{xB∈dom (LB) |KBxB=0, GBxB=0}.
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If we restrict the operator LAB
0 to dom (LA

0 )⊕dom (LB
0 ), then we obtain that

[
LA

0 0
0 LB

0

]
⊂ LAB

0 .

Since LA
0 and LB

0 are densely defined, we see that this implies that LAB
0 is

densely defined. Furthermore, this relation implies that

(
LAB

0

)∗ ⊂
[ (

LA
0

)∗
0

0
(
LB

0

)∗
]

=

[
−LA 0

0 −LB

]
, (5.10)

where we have used Theorem 4.3 for LA and LB. In particular, we have that

dom
((

LAB
0

)∗) ⊂ dom (ΞA) ⊕ dom (ΞB). (5.11)

Let us verify the inclusion (LAB
0 )∗ ⊂ −LAB. For

[
x̃1

x̃2

]
∈ dom

((
LAB

0

)∗)
and

[ x1
x2

] ∈ dom (LAB
0 ), we find by (5.10) that

0 =

〈
LAB

0

[
x1

x2

]
,

[
x̃1

x̃2

]〉

XA⊕XB

+

〈[
x1

x2

]
,

[
LA 0
0 LB

] [
x̃1

x̃2

]〉

XA⊕XB

.

Combining (4.5) and Lemma 2.5 for LA and LB, we find that

0 =

〈
LAB

0

[
x1

x2

]
,

[
x̃1

x̃2

]〉

XA⊕XB

+

〈[
x1

x2

]
,

[
LA 0
0 LB

] [
x̃1

x̃2

]〉

XA⊕XB

=

〈[
LA 0
0 LB

] [
x1

x2

]
,

[
x̃1

x̃2

]〉

XA⊕XB

+

〈[
x1

x2

]
,

[
LA 0
0 LB

] [
x̃1

x̃2

]〉

XA⊕XB

=

〈
rUA,Y A

[
GA

b

GA
c

]
x1,

[
KA

b

KA
c

]
x̃1

〉

Y A

+

〈[
KA

b

KA
c

]
x1, rUA,Y A

[
GA

b

GA
c

]
x̃1

〉

Y A

+

〈
rUB ,Y B

[
GB

b

GB
c

]
x2,

[
KB

b

KB
c

]
x̃2

〉

Y B

+

〈[
KB

b

KB
c

]
x2, rUB ,Y B

[
GB

b

GB
c

]
x̃2

〉

Y B

=
〈
rUc,Yc

GA
c x1, K

A
c x̃1

〉
Yc

+
〈
KA

c x1, rUc,Yc
GA

c x̃1

〉
Yc

+
〈
rUc,Yc

GB
c x2, K

B
c x̃2

〉
Yc

+
〈
KB

c x2, rUc,Yc
GB

c x̃2

〉
Yc

,
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where we have used that [ x1
x2

] ∈ dom (LAB
0 ). Using the composition rela-

tions (5.4), we find that for
[

x̃1

x̃2

]
∈ dom (

(
LAB

0

)∗
) and [ x1

x2
] ∈ dom (LAB

0 ) the
relation

0 =
〈
rUc,Yc

GA
c x1, K

A
c x̃1 + KB

c x̃2

〉
Yc

+
〈
rYc,Uc

KA
c x1, G

A
c x̃1 − GB

c x̃2

〉
Yc

(5.12)

holds. Since the operators
[

GA

KA

]
and

[
GB

KB

]
are surjective, it follows that[

GA
c

KA
c

]
restricted to dom (LAB

0 ) is surjective. Combining this with (5.12), we

conclude
KA

c x̃1 + KB
c x̃2 = 0 and GA

c x̃1 = GB
c x̃2,

and hence
[
x̃1

x̃2

]
∈ dom (ΞAB) = dom (LAB) and LAB

[
x̃1

x̃2

]
= −(LAB

0 )∗
[
x̃1

x̃2

]
.

Therefore (LAB
0 )∗ ⊂ −LAB . If

[
x̃1

x̃2

]
∈ dom (LAB), then we can read the above

equation backwards, and we find that
[

x̃1

x̃2

]
∈ dom (

(
LAB

0

)∗
). In other words,

the domains are the same. By equation (5.10) we see that item 2 of Theorem
4.3 holds and therefore DA ◦ DB is a Dirac structure.

Theorem 5.2 also follows from [8, Thm 2.10(iv)] with the appropriate
identifications.
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