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Trace formulae and singular values of resolvent power differences
of self-adjoint elliptic operators

Jussi Behrndt, Matthias Langer and Vladimir Lotoreichik

Abstract

In this note, self-adjoint realizations of second-order elliptic differential expressions with non-local
Robin boundary conditions on a domain Ω ⊂ R

n with smooth compact boundary are studied.
A Schatten–von Neumann-type estimate for the singular values of the difference of the mth
powers of the resolvents of two Robin realizations is obtained, and, for m > n/2 − 1, it is shown
that the resolvent power difference is a trace class operator. The estimates are slightly stronger
than the classical singular value estimates by Birman where one of the Robin realizations is
replaced by the Dirichlet operator. In both cases, trace formulae are proved, in which the trace
of the resolvent power differences in L2(Ω) is written in terms of the trace of derivatives of
Neumann-to-Dirichlet and Robin-to-Neumann maps on the boundary space L2(∂Ω).

1. Introduction

Let Ω ⊂ R
n be a bounded or unbounded domain with smooth compact boundary and let L

be a formally symmetric, second-order elliptic differential expression with variable coefficients
defined on Ω. As a simple example, one may consider L = −Δ or L = −Δ + V with some real
function V . Denote by AD the self-adjoint Dirichlet operator associated with L in L2(Ω) and
let A[β] be a self-adjoint realization of L in L2(Ω) with Robin boundary conditions of the form
βf |∂Ω = ∂f/∂ν|∂Ω for functions f ∈ domA[β]. Here β is a real-valued bounded function on ∂Ω;
in the special case β = 0, one obtains the Neumann operator AN associated with L.

Half a century ago, it was observed by Birman [9] in his fundamental paper that the difference
of the resolvents of AD and A[β] is a compact operator whose singular values sk satisfy sk =
O(k−2/(n−1)), k → ∞; that is,

(A[β] − λ)−1 − (AD − λ)−1 ∈ S(n−1)/2,∞, λ ∈ ρ(A[β]) ∩ ρ(AD), (1.1)

where Sp,∞ denotes the weak Schatten–von Neumann ideal of order p; for the latter, see
(2.1). The difference of higher powers of the resolvents of AD and A[β] leads to stronger decay
conditions of the form

(A[β] − λ)−m − (AD − λ)−m ∈ S(n−1)/2m,∞, λ ∈ ρ(A[β]) ∩ ρ(AD); (1.2)

see, for example, [9, 25–27, 32]. The estimate (1.1) for the decay of the singular values is
known to be sharp if β satisfies some smoothness assumption (see [10, 25–28]); the estimate
(1.2) is sharp for smooth β by Grubb [26, 27]. Observe that, for m > (n− 1)/2, the operator
in (1.2) belongs to the trace class ideal, and hence the wave operators for the scattering pair
{AD, A[β]} exist and are complete, and the absolutely continuous parts of AD and A[β] are
unitarily equivalent. A simple consequence of one of our main results in the present paper is
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the following representation for the trace of the operator in (1.2) (see Theorem 3.10):

tr
(
(A[β] − λ)−m − (AD − λ)−m

)
=

1
(m− 1)!

tr
(
dm−1

dλm−1

((
I −M(λ)β

)−1
M(λ)−1M ′(λ)

))
, (1.3)

where M(λ) is the Neumann-to-Dirichlet map (that is, the inverse of the Dirichlet-to-Neumann
map) associated with L; see also [7, Corollary 4.12] for m = 1. In the special case where A[β]

is the Neumann operator AN, that is, β = 0, the above formula simplifies to

tr
(
(AN − λ)−m − (AD − λ)−m

)
=

1
(m− 1)!

tr
(
dm−1

dλm−1

(
M(λ)−1M ′(λ)

))
, (1.4)

which is an analogue of [14, Théorème 2.2] and reduces to [2, Corollary 3.7] in the case m = 1.
We point out that the right-hand sides in (1.3) and (1.4) consist of traces of operators in the
boundary space L2(∂Ω), whereas the left-hand sides are traces of operators in L2(Ω). Some
related reductions for ratios of Fredholm perturbation determinants can be found in [20].
We also refer to [17] for other types of trace formulae for Schrödinger operators.

Recently, it was shown in [6] that if one considers two self-adjoint Robin realizations A[β1]

and A[β2] of L, then the estimate (1.1) can be improved to

(A[β1] − λ)−1 − (A[β2] − λ)−1 ∈ S(n−1)/3,∞, (1.5)

so that, roughly speaking, any two Robin realizations with bounded coefficients βj are closer
to each other than to the Dirichlet operator AD; see also [7] and the paper [28] by Grubb
where the estimate (1.5) was shown to be sharp under some smoothness conditions on the
functions β1 and β2. One of the main objectives of this note is to prove a counterpart of
(1.2) for higher powers of resolvents of A[β1] and A[β2]. For that we apply abstract boundary
triple techniques from the extension theory of symmetric operators and a variant of Krein’s
formula which provides a convenient factorization of the resolvent difference of two self-adjoint
realizations of L; see [4, 5, 7]; for related approaches see [12, 15, 18, 19, 24, 29, 32, 34, 35]
for related approaches. Our tools allow us to consider general non-local Robin-type realizations
of L of the form

A[B]f = Lf,
domA[B] =

{
f ∈ H3/2(Ω) : Lf ∈ L2(Ω), Bf |∂Ω =

∂f

∂ν

∣∣∣∣
∂Ω

}
,

(1.6)

where B is an arbitrary bounded self-adjoint operator in L2(∂Ω) and H3/2(Ω) denotes the
L2-based Sobolev space of order 3

2 . In the special case where B is the multiplication operator
with a bounded real-valued function β on ∂Ω, the differential operator in (1.6) coincides with
the usual corresponding Robin realization A[β] of L in L2(Ω). It is proved in Theorem 3.7 that,
for two self-adjoint realizations A[B1] and A[B2] as in (1.6), the difference of the mth powers of
the resolvents satisfies

(A[B1] − λ)−m − (A[B2] − λ)−m ∈ S(n−1)/(2m+1),∞, λ ∈ ρ(A[B1]) ∩ ρ(A[B2]),

and if, in addition, B1 −B2 belongs to some weak Schatten–von Neumann ideal, then the
estimate improves accordingly. Moreover, for m > n/2 − 1 the resolvent difference is a trace
class operator and for the trace we obtain

tr
(
(A[B1] − λ)−m − (A[B2] − λ)−m

)
=

1
(m− 1)!

tr
[
dm−1

dλm−1

((
I −B1M(λ)

)−1(B1 −B2)
(
I −M(λ)B2

)−1
M ′(λ)

)]
. (1.7)
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As in (1.3) and (1.4), the right-hand side in (1.7) consists of the trace of derivatives of Robin-
to-Neumann and Neumann-to-Dirichlet maps on the boundary ∂Ω, so that (1.7) can be viewed
as a reduction of the trace in L2(Ω) to the boundary space L2(∂Ω).

The paper is organized as follows. We first recall some necessary facts about singular values
and (weak) Schatten–von Neumann ideals in Subsection 2.1. In Subsection 2.2, the abstract
concept of quasi-boundary-triples, γ-fields and Weyl functions from [4] is briefly recalled.
Furthermore, we prove some preliminary results on the derivatives of the γ-field and Weyl
function, and we provide some Krein-type formulae for the resolvent differences of self-adjoint
extensions of a symmetric operator. Section 3 contains our main results on singular value
estimates and traces of resolvent power differences of Dirichlet, Neumann and non-local Robin
realizations of L. In Subsection 3.1, the elliptic differential expression is defined and a family
of self-adjoint Robin realizations is parametrized with the help of a quasi-boundary-triple. A
detailed analysis of the smoothing properties of the derivatives of the corresponding γ-field and
Weyl function together with Krein-type resolvent formulae and embeddings of Sobolev spaces
then leads to the estimates and trace formulae in Theorems 3.6, 3.7 and 3.10.

2. Schatten–von Neumann ideals and quasi-boundary-triples

This section starts with preliminary facts on singular values and (weak) Schatten–von Neumann
ideals. Furthermore, we review the concepts of quasi-boundary-triples, associated γ-fields and
Weyl functions, which are convenient abstract tools for the parametrization and spectral
analysis of self-adjoint realizations of elliptic differential expressions.

2.1. Singular values and Schatten–von Neumann ideals

Let H and K be Hilbert spaces. We denote by B(H,K) the space of bounded operators from
H to K and by S∞(H,K) the space of compact operators. Moreover, we set B(H) := B(H,H)
and S∞(H) := S∞(H,H).

The singular values (or s-numbers) sk(K), k = 1, 2, . . . , of a compact operator K ∈
S∞(H,K) are defined as the eigenvalues of the non-negative compact operator (K∗K)1/2 ∈
S∞(H), which are enumerated in non-increasing order and with multiplicities taken into
account. Note that the singular values of K and K∗ coincide: sk(K) = sk(K∗) for k = 1, 2, . . . ;
see, for example, [22, II.Section 2.2]. Recall that, for p > 0, the Schatten–von Neumann ideals
Sp(H,K) and weak Schatten–von Neumann ideals Sp,∞(H,K) are defined by

Sp(H,K) :=

{
K ∈ S∞(H,K) :

∞∑
k=1

(sk(K))p <∞
}
,

Sp,∞(H,K) := {K ∈ S∞(H,K) : sk(K) = O(k−1/p), k −→ ∞}.
(2.1)

If no confusion can arise, then the spaces H and K are suppressed and we write Sp and Sp,∞.
For 0 < p′ < p, the inclusions

Sp ⊂ Sp,∞ and Sp′,∞ ⊂ Sp (2.2)

hold; for s, t > 0, one has

S1/s · S1/t = S1/(s+t) and S1/s,∞ · S1/t,∞ = S1/(s+t),∞, (2.3)

where a product of operator ideals is defined as the set of all products. We refer the reader to
[22, III.Section 7 and III.Section 14] and [36, Chapter 2] for a detailed study of the classes Sp

and Sp,∞; see also [7, Lemma 2.3]. The ideal of nuclear or trace class operators S1 plays an
important role later on. The trace of a compact operator K ∈ S1(H) is defined as

trK :=
∞∑

k=1

λk(K),
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where λk(K) are the eigenvalues of K and the sum converges absolutely. It is well known (see,
for example, [22, III.Section 8]) that, for K1,K2 ∈ S1(H),

tr(K1 +K2) = trK1 + trK2 (2.4)

holds. Moreover, if K1 ∈ B(H,K) and K2 ∈ B(K,H) are such that K1K2 ∈ S1(K) and K2K1 ∈
S1(H), then

tr(K1K2) = tr(K2K1). (2.5)

The next useful lemma can be found in, for example, [6, 7] and is based on the asymptotics
of the eigenvalues of the Laplace–Beltrami operator. For a smooth compact manifold Σ, we
denote the usual L2-based Sobolev spaces by Hr(Σ), r � 0.

Lemma 2.1. Let Σ be an (n− 1)-dimensional compact C∞ manifold without boundary and
let K be a Hilbert space and let K ∈ B(K,Hr1(Σ)) with ranK ⊂ Hr2(Σ), where r2 > r1 � 0.
Then K is compact and its singular values sk(K) satisfy

sk(K) = O(k−(r2−r1)/(n−1)), k −→ ∞,

that is, K ∈ S(n−1)/(r2−r1),∞(K,Hr1(Σ)) and hence K ∈ Sp(K,Hr1(Σ)) for every p >
(n− 1)/(r2 − r1).

2.2. Quasi-boundary-triples and their Weyl functions

In this subsection, we recall the definitions and some important properties of quasi-boundary-
triples, corresponding γ-fields and associated Weyl functions; see [4, 5, 7] for more details.
Quasi-boundary-triples are particularly useful when dealing with elliptic boundary value
problems from an operator and extension-theoretic point of view.

Definition 2.2. Let A be a closed, densely defined, symmetric operator in a Hilbert space
(H, (·, ·)H). A triple {G,Γ0,Γ1} is called a quasi-boundary-triple for A∗ if (G, (·, ·)G) is a Hilbert
space and, for some linear operator T ⊂ A∗ with T = A∗, the following hold.

(i) Γ0,Γ1 : domT → G are linear mappings, and the mapping Γ :=
(
Γ0
Γ1

)
has dense range

in G × G;
(ii) A0 := T � ker Γ0 is a self-adjoint operator in H;
(iii) for all f, g ∈ domT, the abstract Green identity holds:

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G .

We remark that a quasi-boundary-triple for A∗ exists if and only if the deficiency indices
of A coincide. Moreover, in the case of finite deficiency indices a quasi-boundary-triple is
automatically an ordinary boundary triple; cf. [4, Proposition 3.3]. For the notion of (ordinary)
boundary triples and their properties, we refer to [13, 15, 16, 23, 30]. If {G,Γ0,Γ1} is a quasi-
boundary-triple for A∗, then A coincides with T � ker Γ and the operator A1 := T �ker Γ1 is
symmetric in H. We also mention that a quasi-boundary-triple with the additional property
ran Γ0 = G is a generalized boundary triple in the sense of [16]; see [4, Corollary 3.7(ii)].

Next we recall the definition of the γ-field and the Weyl function associated with the quasi-
boundary-triple {G,Γ0,Γ1} for A∗. Note that the decomposition

domT = domA0 +̇ ker(T − λ) = ker Γ0 +̇ ker(T − λ)
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holds for all λ ∈ ρ(A0), so that Γ0 � ker(T − λ) is invertible for all λ ∈ ρ(A0). The (operator-
valued) functions γ and M defined by

γ(λ) := (Γ0 � ker(T − λ))−1 and M(λ) := Γ1γ(λ), λ ∈ ρ(A0),

are called the γ-field and the Weyl function corresponding to the quasi-boundary-triple
{G,Γ0,Γ1}, respectively. These definitions coincide with the definitions of the γ-field and the
Weyl function in the case where {G,Γ0,Γ1} is an ordinary boundary triple; see [15]. Note that,
for each λ ∈ ρ(A0), the operator γ(λ) maps ran Γ0 ⊂ G into domT ⊂ H and M(λ) maps ran Γ0

into ran Γ1. Furthermore, as an immediate consequence of the definition of M(λ), we obtain

M(λ)Γ0fλ = Γ1fλ, fλ ∈ ker(T − λ), λ ∈ ρ(A0).

In the next proposition, we collect some properties of the γ-field and the Weyl function
associated with the quasi-boundary-triple {G,Γ0,Γ1} for A∗; most statements were proved
in [4].

Proposition 2.3. For all λ, μ ∈ ρ(A0), the following assertions hold.

(i) The mapping γ(λ) is a bounded, densely defined operator from G into H. The adjoint
of γ(λ̄) has the representation

γ(λ̄)∗ = Γ1(A0 − λ)−1 ∈ B(H,G).

(ii) The mapping M(λ) is a densely defined (and in general unbounded) operator in G that
satisfies M(λ) ⊂M(λ̄)∗ and

M(λ)h−M(μ̄)h = (λ− μ̄)γ(μ)∗γ(λ)h

for all h ∈ G0. If ran Γ0 = G, then M(λ) ∈ B(G) and M(λ) = M(λ̄)∗.
(iii) If A1 = T � ker Γ1 is a self-adjoint operator in H and λ ∈ ρ(A0) ∩ ρ(A1), then M(λ)

maps ran Γ0 bijectively onto ran Γ1 and

M(λ)−1γ(λ̄)∗ ∈ B(H,G).

Proof. Items (i), (ii) and the first part of (iii) follow from [4, Proposition 2.6(i)–(iii), (v) and
Corollary 3.7(ii)]. For the second part of (iii), note that {G,Γ1,−Γ0} is also a quasi-boundary-
triple if A1 is self-adjoint. It is easy to see that in this case the corresponding γ-field is γ̃(λ) =
γ(λ)M(λ)−1. Since ran(γ(λ̄)∗) ⊂ ran Γ1 by item (ii), the operator M(λ)−1γ(λ̄)∗ is defined on
H. Now the boundedness of γ̃(λ), which follows from (i), and the relation M(λ) ⊂M(λ̄)∗ imply
that M(λ)−1γ(λ̄)∗ is bounded.

In the following, we shall often use product rules for holomorphic operator-valued functions.
Let Hi, i = 1, . . . , 4, be Hilbert spaces, let U be a domain in C and let A : U → B(H3,H4),
B : U → B(H2,H3) and C : U → B(H1,H2) be holomorphic operator-valued functions. Then

dm

dλm

(
A(λ)B(λ)

)
=

∑
p+q=m
p,q�0

(
m

p

)
A(p)(λ)B(q)(λ), (2.6)

dm

dλm

(
A(λ)B(λ)C(λ)

)
=

∑
p+q+r=m

p,q,r�0

m!
p! q! r!

A(p)(λ)B(q)(λ)C(r)(λ), (2.7)

for λ ∈ U . If A(λ)−1 is invertible for every λ ∈ U , then relation (2.6) implies the following
formula for the derivative of the inverse:

d

dλ

(
A(λ)−1

)
= −A(λ)−1A′(λ)A(λ)−1. (2.8)
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In the next lemma, we consider higher derivatives of the γ-field and the Weyl function associated
with a quasi-boundary-triple {G,Γ0,Γ1}.

Lemma 2.4. For all λ ∈ ρ(A0) and all k ∈ N, the following hold.

(i)
dk

dλk
γ(λ̄)∗ = k!γ(λ̄)∗(A0 − λ)−k.

(ii)
dk

dλk
γ(λ) = k!(A0 − λ)−kγ(λ).

(iii)

dk

dλk
M(λ) =

dk−1

dλk−1

(
γ(λ̄)∗γ(λ)

)
= k!γ(λ̄)∗(A0 − λ)−(k−1)γ(λ).

Proof. (i) We prove the statement by induction. For k = 1, we have
d

dλ
γ(λ̄)∗ = lim

μ→λ

1
μ− λ

(γ(μ̄)∗ − γ(λ̄)∗)

= lim
μ→λ

1
μ− λ

Γ1

(
(A0 − μ)−1 − (A0 − λ)−1

)
= lim

μ→λ
Γ1(A0 − μ)−1(A0 − λ)−1 = lim

μ→λ
γ(μ̄)∗(A0 − λ)−1

= γ(λ̄)∗(A0 − λ)−1,

where we used Proposition 2.3(i). If we assume that the statement is true for k ∈ N, then
dk+1

dλk+1
γ(λ̄)∗ = k!

d

dλ
(γ(λ̄)∗(A0 − λ)−k)

= k!
[(

d

dλ
γ(λ̄)∗

)
(A0 − λ)−k + γ(λ̄)∗

d

dλ
(A0 − λ)−k

]

= k!
[
γ(λ̄)∗(A0 − λ)−1(A0 − λ)−k + γ(λ̄)∗k(A0 − λ)−k−1

]
= k! (1 + k)γ(λ̄)∗(A0 − λ)−(k+1),

which proves the statement in (i) by induction.
(ii) This assertion is obtained from (i) by taking adjoints.
(iii) It follows from Proposition 2.3(ii) that, for f ∈ domM(λ) = ran Γ0,

d

dλ
M(λ)f = lim

μ→λ

1
μ− λ

(M(μ) −M(λ))f = lim
μ→λ

γ(λ̄)∗γ(μ)f = γ(λ̄)∗γ(λ)f.

By taking closures, we obtain the claim for k = 1. For k � 2, we use (2.6) to get

dk

dλk
M(λ) =

dk−1

dλk−1
(γ(λ̄)∗γ(λ)) =

∑
p+q=k−1

p,q�0

(
k − 1
p

)(
dp

dλp
γ(λ̄)∗

)
dq

dλq
γ(λ)

=
∑

p+q=k−1
p,q�0

(
k − 1
p

)
p!γ(λ̄)∗(A0 − λ)−pq!(A0 − λ)−qγ(λ)

=
∑

p+q=k−1
p,q�0

(k − 1)!γ(λ̄)∗(A0 − λ)−(k−1)γ(λ) = k!γ(λ̄)∗(A0 − λ)−(k−1)γ(λ),

which completes the proof.
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The following theorem provides a Krein-type formula for the resolvent difference of A0 and
A1 if A1 is self-adjoint. The theorem follows from [4, Corollary 3.11(i)] with Θ = 0.

Theorem 2.5. Let A be a closed, densely defined, symmetric operator in a Hilbert space
H and let {G,Γ0,Γ1} be a quasi-boundary-triple for A∗ with A0 = T � ker Γ0, γ-field γ and
Weyl function M . Assume that A1 = T � ker Γ1 is self-adjoint in H. Then

(A0 − λ)−1 − (A1 − λ)−1 = γ(λ)M(λ)−1γ(λ̄)∗

holds for λ ∈ ρ(A1) ∩ ρ(A0).

Note that the operator M(λ)−1γ(λ̄)∗ in Theorem 2.5 is bounded by Proposition 2.3(iii).
In the following, we deal with extensions of A, which are restrictions of T corresponding to

some abstract boundary condition. For a linear operator B in G, we define

A[B]f := Tf, domA[B] := {f ∈ domT : BΓ1f = Γ0f}. (2.9)

In contrast to ordinary boundary triples, self-adjointness of the parameter B does not imply
self-adjointness of the corresponding extension A[B] in general. The next theorem provides a
useful sufficient condition for this and a variant of Krein’s formula, which will be used later; see
[5, Corollary 6.18 and Theorem 6.19] or [7, Corollary 3.11, Theorem 3.13 and Remark 3.14].

Theorem 2.6. Let A be a closed, densely defined, symmetric operator in a Hilbert space
H and let {G,Γ0,Γ1} be a quasi-boundary-triple for A∗ with A0 = T � ker Γ0, γ-field γ and
Weyl function M . Assume that ran Γ0 = G, that A1 = T � ker Γ1 is self-adjoint in H and that
M(λ0) ∈ S∞(G) for some λ0 ∈ ρ(A0).

If B is a bounded self-adjoint operator in G, then the corresponding extension A[B] is self-
adjoint in H and

(A[B] − λ)−1 − (A0 − λ)−1 = γ(λ)
(
I −BM(λ)

)−1
Bγ(λ̄)∗

= γ(λ)B
(
I −M(λ)B

)−1
γ(λ̄)∗

holds for λ ∈ ρ(A[B]) ∩ ρ(A0) with(
I −BM(λ)

)−1
,
(
I −M(λ)B

)−1 ∈ B(G).

3. Elliptic operators on domains with compact boundaries

In this section, we study self-adjoint realizations of second-order elliptic differential expressions
on a bounded or an exterior domain subject to Robin or more general non-local boundary
conditions. With the help of quasi-boundary-triple techniques, we express the resolvent power
differences of different self-adjoint realizations using Krein-type formulae. Using a detailed
analysis of the perturbation term together with smoothing properties of the derivatives of the
γ-fields and Weyl function, we then obtain singular value estimates and trace formulae.

3.1. Self-adjoint elliptic operators with non-local Robin boundary conditions

Let Ω ⊂ R
n, n � 2, be a bounded or unbounded domain with a compact C∞ boundary ∂Ω.

We denote by (·, ·) and (·, ·)∂Ω the inner products in the Hilbert spaces L2(Ω) and L2(∂Ω),
respectively. Throughout this section, we consider a formally symmetric, second-order elliptic
differential expression

(Lf)(x) := −
n∑

j,k=1

∂j(ajk∂kf)(x) + a(x)f(x), x ∈ Ω,
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with bounded, infinitely differentiable, real-valued coefficients ajk, a ∈ C∞(Ω) that satisfy
ajk(x) = akj(x) for all x ∈ Ω and j, k = 1, . . . , n. We assume that the first partial derivatives
of the coefficients ajk are bounded in Ω. Furthermore, L is assumed to be uniformly elliptic;
that is, the condition

n∑
j,k=1

ajk(x)ξjξk � C

n∑
k=1

ξ2k

holds for some C > 0, all ξ = (ξ1, . . . , ξn)T ∈ R
n and x ∈ Ω.

For a function f ∈ C∞(Ω), we denote the trace by f |∂Ω and the (oblique) Neumann trace
by

∂Lf |∂Ω :=
n∑

j,k=1

ajkνj∂kf |∂Ω,

with the normal vector field (ν1, ν2, . . . , νn)� pointing outwards from Ω. By continuity, the
trace and the Neumann trace can be extended to mappings from Hs(Ω) to Hs−1/2(∂Ω) for
s > 1

2 and Hs−3/2(∂Ω) for s > 3
2 , respectively.

Next we define a quasi-boundary-triple for the adjoint A∗ of the minimal operator

Af = Lf, domA = {f ∈ H2(Ω) : f |∂Ω = ∂Lf |∂Ω = 0}
associated with L in L2(Ω). Recall that A is a closed, densely defined, symmetric operator with
equal infinite deficiency indices and that

A∗f = Lf, domA∗ = {f ∈ L2(Ω) : Lf ∈ L2(Ω)}
is the maximal operator associated with L; see, for example, [1, 3]. As the operator T appearing
in the definition of a quasi-boundary-triple, we choose

Tf = Lf, domT = H
3/2
L (Ω) := {f ∈ H3/2(Ω): Lf ∈ L2(Ω)},

and we consider the boundary mappings

Γ0 : domT −→ L2(∂Ω), Γ0f := ∂Lf |∂Ω,

Γ1 : domT −→ L2(∂Ω), Γ1f := f |∂Ω.

Note that the trace and the Neumann trace can be extended to mappings from H
3/2
L (Ω) into

L2(∂Ω). With this choice of T and Γ0 and Γ1, we have the following proposition.

Proposition 3.1. The triple {L2(∂Ω),Γ0,Γ1} is a quasi-boundary-triple for A∗ with the
Neumann and Dirichlet operators as self-adjoint operators corresponding to the kernels of the
boundary mappings

AN := T � ker Γ0, domAN = {f ∈ H2(Ω): ∂Lf |∂Ω = 0},
AD := T � ker Γ1, domAD = {f ∈ H2(Ω): f |∂Ω = 0}. (3.1)

The ranges of the boundary mappings are

ran Γ0 = L2(∂Ω) and ran Γ1 = H1(∂Ω),

and the γ-field and Weyl function associated with {L2(∂Ω),Γ0,Γ1} are given by

γ(λ)ϕ = fλ and M(λ)ϕ = fλ|∂Ω, λ ∈ ρ(AN),

for ϕ ∈ L2(∂Ω), where fλ ∈ H
3/2
L (Ω) is the unique solution of the boundary value problem

Lu = λu, ∂Lu|∂Ω = ϕ.
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We remark that the quasi-boundary-triple {L2(∂Ω),Γ0,Γ1} in Proposition 3.1 is a general-
ized boundary triple in the sense of [16] since the boundary mapping Γ0 is surjective.

Proof. The proof of Proposition 3.1 proceeds in the same way as the proof of [7,
Theorem 4.2], except that here T is defined on the larger space H3/2

L (Ω). Therefore, we do not
repeat the arguments here, but provide only the main references that are necessary to translate
the proof of [7, Theorem 4.2] to the present situation. The self-adjointness of AD and AN is
ensured by Beals [3, Theorem 7.1(a)] and Browder [11, Theorem 5(iii)]. The trace theorem
from [31, Chapter 2, Section 7.3] and the corresponding Green identity (see, for example, [7,
Proof of Theorem 4.2]) yield the asserted properties of the ranges of the boundary mappings
Γ0 and Γ1 and the abstract Green identity in Definition 2.2. Hence, [4, Theorem 2.3] implies
that the triple {L2(∂Ω),Γ0,Γ1} in Proposition 3.1 is a quasi-boundary-triple for A∗; see [7,
Theorems 3.2, 4.2 and Proposition 4.3] for further details.

The space Hs
loc(Ω), s � 0 consists of all measurable functions f such that, for any bounded

open subset Ω′ ⊂ Ω, the condition f � Ω′ ∈ Hs(Ω′) holds. Since Ω is a bounded domain or an
exterior domain and ∂Ω is compact, any function in Hs

loc(Ω) is Hs-smooth up to the boundary
∂Ω. For f ∈ Hs

loc(Ω) ∩ L2(Ω), s � 0, our assumptions on the coefficients in the differential
expression L imply

(AD − λ)−1f ∈ Hs+2
loc (Ω) ∩ L2(Ω), λ ∈ ρ(AD),

(AN − λ)−1f ∈ Hs+2
loc (Ω) ∩ L2(Ω), λ ∈ ρ(AN).

(3.2)

These smoothing properties can be easily deduced from [33, Theorem 4.18], where they are
formulated and proved in the language of boundary value problems.

The operators γ(λ) and M(λ) are also called the Poisson operator and the Neumann-to-
Dirichlet map for the differential expression L − λ. From Proposition 2.3, various properties of
these operators can be deduced. In the next lemma, we collect smoothing properties of these
operators, which follow, basically, from Proposition 2.3 and the trace theorem for Sobolev
spaces on smooth domains and its generalizations given in [31, Chapter 2].

Lemma 3.2. Let {L2(∂Ω),Γ0,Γ1} be the quasi-boundary-triple from Proposition 3.1 with
γ-field γ and Weyl function M . Then, for all s � 0, the following statements hold.

(i) ran(γ(λ) � Hs(∂Ω)) ⊂ H
s+3/2
loc (Ω) ∩ L2(Ω) for all λ ∈ ρ(AN).

(ii) ran(γ(λ̄)∗ � Hs
loc(Ω) ∩ L2(Ω)) ⊂ Hs+3/2(∂Ω) for all λ ∈ ρ(AN).

(iii) ran(M(λ) � Hs(∂Ω)) ⊂ Hs+1(∂Ω) for all λ ∈ ρ(AN).
(iv) ran(M(λ) � Hs(∂Ω)) = Hs+1(∂Ω) for all λ ∈ ρ(AD) ∩ ρ(AN).

Proof. (i) It follows from the decomposition domT = domAN � ker(T − λ), λ ∈ ρ(AN),
and the properties of the Neumann trace [31, Chapter 2, Section 7.3] that the restriction of
the mapping Γ0 to

ker(T − λ) ∩Hs+3/2
loc (Ω)

is a bijection onto Hs(∂Ω), s � 0. Hence, by the definition of the γ-field, we obtain

ran(γ(λ) � Hs(∂Ω)) = ker(T − λ) ∩Hs+3/2
loc (Ω) ⊂ H

s+3/2
loc (Ω) ∩ L2(Ω).

(ii) According to Proposition 2.3(i) and the definition of Γ1, we have

γ(λ)∗ = Γ1(AN − λ)−1.
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Employing (3.2) and the properties of the Dirichlet trace [31, Chapter 2, Section 7.3],
we conclude that

ran(γ(λ̄)∗ � Hs
loc(Ω) ∩ L2(Ω)) ⊂ Hs+3/2(∂Ω)

holds for all s � 0.
Assertion (iii) follows from the definition of M(λ), item (i), the fact that Γ1 is the Dirichlet

trace operator and properties of the latter.
To verify (iv), let ψ ∈ Hs+1(∂Ω). Since λ ∈ ρ(AD), we have the decomposition domT =

domAD � ker(T − λ) and there exists a unique function fλ ∈ ker(T − λ) ∩Hs+3/2
loc (Ω) such

that fλ|∂Ω = ψ. Hence,

Γ0fλ = ϕ ∈ Hs(∂Ω) and M(λ)ϕ = ψ,

that is, Hs+1(∂Ω) ⊂ ran(M(λ) � Hs(∂Ω)), and (iii) implies the assertion.

In the next proposition, we list some weak Schatten–von Neumann ideal properties of the
derivatives of the γ-field and Weyl function, which follow from Lemma 2.4, elliptic regularity
and Lemma 2.1.

Proposition 3.3. Let {L2(∂Ω),Γ0,Γ1} be the quasi-boundary-triple from Proposition 3.1
with γ-field γ and Weyl function M . Then the following statements hold.

(i) For all λ ∈ ρ(AN) and k ∈ N0,

dk

dλk
γ(λ) ∈ S(n−1)/(2k+3/2),∞(L2(∂Ω), L2(Ω)),

dk

dλk
γ(λ̄)∗ ∈ S(n−1)/(2k+3/2),∞(L2(Ω), L2(∂Ω)).

(3.3)

(ii) For all λ ∈ ρ(AN) and k ∈ N0,

dk

dλk
M(λ) ∈ S(n−1)/(2k+1),∞(L2(∂Ω)).

Proof. (i) Let λ ∈ ρ(AN) and k ∈ N0. It follows from (3.2) that ran((AN − λ)−k) ⊂
H2k

loc(Ω) ∩ L2(Ω) and hence from Lemma 3.2(ii) that

ran(γ(λ̄)∗(AN − λ)−k) ⊂ H2k+3/2(∂Ω).

Thus, Lemma 2.1 with K = L2(Ω), Σ = ∂Ω, r1 = 0 and r2 = 2k + 3
2 implies

γ(λ̄)∗(AN − λ)−k ∈ S(n−1)/(2k+3/2),∞(L2(Ω), L2(∂Ω)). (3.4)

By taking the adjoint in (3.4) and replacing λ by λ̄, we obtain

(AN − λ)−kγ(λ) ∈ S(n−1)/(2k+3/2),∞(L2(∂Ω), L2(Ω)). (3.5)

Now from Lemma 2.4(i) and (ii) and (3.4) and (3.5), we obtain (3.3).
(ii) For k = 0, we observe that ranM(λ) ⊂ H1(∂Ω) by Lemma 3.2(iii). Therefore, Lemma 2.1

with K = L2(∂Ω), Σ = ∂Ω, r1 = 0 and r2 = 1 implies M(λ) ∈ Sn−1,∞(L2(∂Ω)). For k � 1, we
have

dk

dλk
M(λ) = k!γ(λ̄)∗(AN − λ)−(k−1)γ(λ),
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from Lemma 2.4(iii). Hence, (3.4) and (3.5) imply

dk

dλk
M(λ) ∈ S(n−1)/(2(k−1)+3/2),∞ · S(n−1)/(3/2),∞ = S(n−1)/(2k+1),∞,

where the last equality follows from (2.3).

As a consequence of Theorem 2.5, we obtain a factorization for the resolvent difference
of self-adjoint operators AN and AD.

Corollary 3.4. Let {L2(∂Ω),Γ0,Γ1} be the quasi-boundary-triple from Proposition 3.1
with γ-field γ and Weyl function M . Then

(AN − λ)−1 − (AD − λ)−1 = γ(λ)M(λ)−1γ(λ̄)∗

holds for λ ∈ ρ(AD) ∩ ρ(AN).

Next we define a family of realizations of L in L2(Ω) with general Robin-type boundary
conditions of the form

A[B]f := Lf, domA[B] := {f ∈ H
3/2
L (Ω): Bf |∂Ω = ∂Lf |∂Ω}, (3.6)

where B is a bounded self-adjoint operator in L2(∂Ω). In terms of the quasi-boundary-triple
in Proposition 3.1, the operator A[B] coincides with the one in (2.9), which is also equal to the
restriction

T � ker(BΓ1 − Γ0).

The following corollary is a consequence of Theorem 2.6 since ran Γ0 = L2(∂Ω), AD is self-
adjoint and M(λ) is compact for λ ∈ ρ(AN) by Proposition 3.3(ii).

Corollary 3.5. Let {L2(∂Ω),Γ0,Γ1} be the quasi-boundary-triple from Proposition 3.1
with γ-field γ and Weyl function M, and let B be a bounded self-adjoint operator in L2(∂Ω).
Then the corresponding operator A[B] in (3.6) is self-adjoint in L2(Ω) and

(A[B] − λ)−1 − (AN − λ)−1 = γ(λ)
(
I −BM(λ)

)−1
Bγ(λ̄)∗ (3.7)

= γ(λ)B
(
I −M(λ)B

)−1
γ(λ̄)∗ (3.8)

holds for λ ∈ ρ(A[B]) ∩ ρ(AN) with(
I −BM(λ)

)−1
,
(
I −M(λ)B

)−1 ∈ B (
L2(∂Ω)

)
. (3.9)

Note that the operators in (3.9) can be viewed as Robin-to-Neumann maps.

3.2. Operator ideal properties and traces of resolvent power differences

In this subsection, we prove the main results of this note: estimates for the singular values
of resolvent power differences of two self-adjoint realizations of the differential expression L
subject to Dirichlet, Neumann and non-local Robin boundary conditions.

The first theorem on the difference of the resolvent powers of the Dirichlet and Neumann
operators is partially known from [9, 26, 32], where the proof is based on variational
principles, pseudo-differential methods or a reduction to higher-order operators. Here, we give
an elementary, direct proof using our approach. In the case of first powers of the resolvents,
the trace formula in item Theorem 3.6(ii) is contained in [2, 7]. An equivalent formula can also
be found in [14], where it is used for the analysis of the Laplace–Beltrami operator on coupled
manifolds.
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Theorem 3.6. Let AD and AN be the self-adjoint Dirichlet and Neumann realizations of L
in (3.1), respectively, and let M be the Weyl function from Proposition 3.1. Then the following
statements hold.

(i) For all m ∈ N and λ ∈ ρ(AN) ∩ ρ(AD),

(AN − λ)−m − (AD − λ)−m ∈ S(n−1)/2m,∞(L2(Ω)). (3.10)

(ii) If m > (n− 1)/2, then the resolvent power difference in (3.10) is a trace class operator
and, for all λ ∈ ρ(AN) ∩ ρ(AD),

tr
(
(AN − λ)−m − (AD − λ)−m

)
=

1
(m− 1)!

tr
(
dm−1

dλm−1

(
M(λ)−1M ′(λ)

))
.

Proof. (i) The proof of the first item is carried out in two steps.
Step 1. Let us introduce the operator function

S(λ) := M(λ)−1γ(λ̄)∗, λ ∈ ρ(AN) ∩ ρ(AD).

Note that the product is well defined since ran(γ(λ̄)∗) ⊂ H1(∂Ω) = dom(M(λ)−1). Since AD

is self-adjoint, it follows from Proposition 2.3(iii) that S(λ) is a bounded operator from L2(Ω)
to L2(∂Ω) for λ ∈ ρ(AN) ∩ ρ(AD). We prove by induction the following smoothing property for
the derivatives of S:

u ∈ Hs
loc(Ω) ∩ L2(Ω) =⇒ S(k)(λ)u ∈ Hs+2k+1/2(∂Ω), s � 0, k ∈ N0. (3.11)

Since γ(λ̄)∗ maps Hs
loc(Ω) ∩ L2(Ω) into Hs+3/2(∂Ω) for s � 0 by Lemma 3.2(ii) and M(λ)−1

maps Hs+3/2(∂Ω) into Hs+1/2(∂Ω) by Lemma 3.2(iv), relation (3.11) is true for k = 0. Now let
l ∈ N0 and assume that (3.11) is true for every k = 0, 1, . . . , l. By (2.6), (2.8) and Lemma 2.4(i)
and (iii), we have

S′(λ)u =
d

dλ
(M(λ)−1)γ(λ̄)∗u+M(λ)−1 d

dλ
γ(λ̄)∗u

= −M(λ)−1M ′(λ)M(λ)−1γ(λ̄)∗u+M(λ)−1γ(λ̄)∗(AN − λ)−1u

= −M(λ)−1γ(λ̄)∗γ(λ)M(λ)−1γ(λ̄)∗u+ S(λ)(AN − λ)−1u

= S(λ)(AN − λ)−1u− S(λ)γ(λ)S(λ)u

for all u ∈ L2(Ω). Hence, with the help of (2.6), (2.7) and Lemma 2.4(ii), we obtain

S(l+1)(λ) =
dl

dλl

(
S(λ)(AN − λ)−1 − S(λ)γ(λ)S(λ)

)
=

∑
p+q=l
p,q�0

(
l

p

)
S(p)(λ)

dq

dλq
(AN − λ)−1

−
∑

p+q+r=l
p,q,r�0

l!
p! q! r!

S(p)(λ)γ(q)(λ)S(r)(λ)

=
∑

p+q=l
p,q�0

l!
p!
S(p)(λ)(AN − λ)−(q+1)

−
∑

p+q+r=l
p,q,r�0

l!
p! r!

S(p)(λ)(AN − λ)−qγ(λ)S(r)(λ). (3.12)
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By the induction hypothesis, the smoothing property (3.2) and Lemma 3.2(i), we have, for
s � 0 and p, q � 0, p+ q = l,

u ∈ Hs
loc(Ω) ∩ L2(Ω)

=⇒ (AN − λ)−(q+1)u ∈ Hs+2q+2
loc (Ω) ∩ L2(Ω)

=⇒ S(p)(λ)(AN − λ)−(q+1)u ∈ Hs+2q+2+2p+1/2(∂Ω) = Hs+2(l+1)+1/2(∂Ω),

and, for s � 0 and p, q, r � 0, p+ q + r = l,

u ∈ Hs
loc(Ω) ∩ L2(Ω)

=⇒ S(r)(λ)u ∈ Hs+2r+1/2(∂Ω)

=⇒ γ(λ)S(r)(λ)u ∈ H
s+2r+1/2+3/2
loc (Ω) ∩ L2(Ω)

=⇒ (AN − λ)−qγ(λ)S(r)(λ)u ∈ Hs+2r+2+2q
loc (Ω) ∩ L2(Ω)

=⇒ S(p)(λ)(AN − λ)−qγ(λ)S(r)(λ)u ∈ Hs+2r+2+2q+2p+1/2(∂Ω) = Hs+2(l+1)+1/2(∂Ω),

which, together with (3.12), shows (3.11) for k = l + 1 and hence, by induction, for all k ∈ N0.
Therefore, an application of Lemma 2.1 yields

S(k)(λ) ∈ S(n−1)/(2k+1/2),∞(L2(Ω), L2(∂Ω)), k ∈ N0, λ ∈ ρ(AN) ∩ ρ(AD). (3.13)

Step 2. Using Krein’s formula from Corollary 3.4 and (2.6), we can write, for m ∈ N and
λ ∈ ρ(AN) ∩ ρ(AD),

(AN − λ)−m − (AD − λ)−m =
1

(m− 1)!
· d

m−1

dλm−1

(
(AN − λ)−1 − (AD − λ)−1

)
=

1
(m− 1)!

· d
m−1

dλm−1
(γ(λ)S(λ))

=
1

(m− 1)!

∑
p+q=m−1

p,q�0

(
m− 1
p

)
γ(p)(λ)S(q)(λ). (3.14)

Since, by Proposition 3.3(i), (3.13) and (2.3),

γ(p)(λ)S(q)(λ) ∈ S n−1
2p+3/2 ,∞ · S n−1

2q+1/2 ,∞ = S n−1
2(p+q)+2 ,∞ = S n−1

(2m) ,∞, (3.15)

for p, q with p+ q = m− 1, we obtain (3.10).
(ii) If m > (n− 1)/2, then (n− 1)/2m < 1 and, by (2.2) and (3.15), each term in the sum

in (3.14) is a trace class operator and, by a similar argument, also S(q)(λ)γ(p)(λ). Hence, the
operator in (3.10) is a trace class operator, and we can apply the trace to (3.14) and use (2.4),
(2.5) and Lemma 2.4(iii) to obtain

(m− 1)! tr((AN − λ)−m − (AD − λ)−m)

= tr

⎛
⎜⎜⎝ ∑

p+q=m−1
p,q�0

(
m− 1
p

)
γ(p)(λ)S(q)(λ)

⎞
⎟⎟⎠
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=
∑

p+q=m−1
p,q�0

(
m− 1
p

)
tr(γ(p)(λ)S(q)(λ)) =

∑
p+q=m−1

p,q�0

(
m− 1
p

)
tr(S(q)(λ)γ(p)(λ))

= tr

⎛
⎜⎜⎝ ∑

p+q=m−1
p,q�0

(
m− 1
p

)
S(q)(λ)γ(p)(λ)

⎞
⎟⎟⎠ = tr

(
dm−1

dλm−1
(S(λ)γ(λ))

)

= tr
(
dm−1

dλm−1

(
M(λ)−1γ(λ̄)∗γ(λ)

))
= tr

(
dm−1

dλm−1

(
M(λ)−1M ′(λ)

))
,

which completes the proof.

In the following theorem, which contains the main result of this note, we prove weak
Schatten–von Neumann estimates for resolvent power differences of two self-adjoint realizations
A[B1] and A[B2] of L with Robin or more general non-local boundary conditions. In this
situation, the estimates are better than for the pair of Dirichlet and Neumann realizations
in Theorem 3.6. For the first powers of the resolvents, this has already been observed in [6,
7, 28]. In the special important case when the resolvent power difference is a trace class
operator, we express its trace as the trace of a certain operator acting on the boundary ∂Ω,
which is given in terms of the Weyl function and the operators B1 and B2 in the boundary
conditions; cf. [7, Corollary 4.12] for the case of first powers and [8, 21] for one-dimensional
Schrödinger operators and other finite-dimensional situations. We also mention that the special
case of classical Robin boundary conditions, where B1 and B2 are multiplication operators with
real-valued L∞ functions, is contained in the theorem.

Theorem 3.7. Let {L2(∂Ω),Γ0,Γ1} be the quasi-boundary-triple from Proposition 3.1
with Weyl function M and let AN be the self-adjoint Neumann operator in (3.1). Moreover,
let B1 and B2 be bounded self-adjoint operators in L2(∂Ω), define A[B1] and A[B2] as in (3.6)
and set

t :=

⎧⎨
⎩
n− 1
s

if B1 −B2 ∈ Ss,∞(L2(∂Ω)) for some s > 0,

0 otherwise.

Then the following statements hold.

(i) For all m ∈ N and λ ∈ ρ(A[B1]) ∩ ρ(A[B2]),

(A[B1] − λ)−m − (A[B2] − λ)−m ∈ S(n−1)/(2m+t+1),∞(L2(Ω)). (3.16)

(ii) If m > (n− t)/2 − 1, then the resolvent power difference in (3.16) is a trace class
operator and, for all λ ∈ ρ(A[B1]) ∩ ρ(A[B2]) ∩ ρ(AN),

tr
(
(A[B1] − λ)−m − (A[B2] − λ)−m

)
=

1
(m− 1)!

tr
(
dm−1

dλm−1

(
U(λ)M ′(λ)

))
, (3.17)

where U(λ) := (I −B1M(λ))−1(B1 −B2)(I −M(λ)B2)−1.

Proof. (i) In order to shorten notation and to avoid the distinction of several cases, we set

Ar :=

{
S(n−1)/r,∞(L2(∂Ω)) if r > 0,
B(L2(∂Ω)) if r = 0.

It follows from (2.3) and the fact that Sp,∞(L2(∂Ω)), p > 0 is an ideal in B(L2(∂Ω)) that

Ar1 · Ar2 = Ar1+r2 , r1, r2 � 0. (3.18)
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Moreover, the assumption on the difference of B1 and B2 yields

B1 −B2 ∈ At. (3.19)

The proof of item (i) is divided into three steps.
Step 1. Let B be a bounded self-adjoint operator in L2(∂Ω) and set

T (λ) := (I −BM(λ))−1, λ ∈ ρ(A[B]) ∩ ρ(AN),

where T (λ) ∈ B(L2(∂Ω)) by Corollary 3.5. We show

T (k)(λ) ∈ A2k+1, k ∈ N, (3.20)

by induction. Relation (2.8) implies

T ′(λ) = T (λ)BM ′(λ)T (λ), (3.21)

which is in A3 by Proposition 3.3(ii). Let l ∈ N and assume that (3.20) is true for every
k = 1, . . . , l, which implies in particular that

T (k)(λ) ∈ A2k, k = 0, . . . , l. (3.22)

Then

T (l+1)(λ) =
dl

dλl

(
T (λ)BM ′(λ)T (λ)

)
=

∑
p+q+r=l
p,q,r�0

l!
p! q! r!

T (p)(λ)BM (q+1)(λ)T (r)(λ),

by (3.21) and (2.7). Relation (3.22), the boundedness of B, Proposition 3.3(ii) and (3.18) imply

T (p)(λ)BM (q+1)(λ)T (r)(λ) ∈ A2p · A2(q+1)+1 · A2r = A2(l+1)+1,

since p+ q + r = l. This shows (3.20) for k = l + 1 and hence, by induction, for all k ∈ N. Since
T (λ) ∈ B(L2(∂Ω)), we have

T (k)(λ) ∈ A2k, k ∈ N0, λ ∈ ρ(AN), (3.23)

and by similar considerations also

dk

dλk

(
I −M(λ)B

)−1 ∈ A2k, k ∈ N0, λ ∈ ρ(AN). (3.24)

Step 2. With B1, B2 as in the statement of the theorem, set

T1(λ) := (I −B1M(λ))−1 and T2(λ) := (I −M(λ)B2)−1

for λ ∈ ρ(A[B1]) ∩ ρ(A[B2]) ∩ ρ(AN). We can write U(λ) = T1(λ)(B1 −B2)T2(λ) and hence

U (k)(λ) =
dk

dλk

(
T1(λ)(B1 −B2)T2(λ)

)
=

∑
p+q=k
p,q�0

(
k

p

)
T

(p)
1 (λ)(B1 −B2)T

(q)
2 (λ).

By (3.19), (3.23) and (3.24), each term in the sum satisfies

T
(p)
1 (λ)(B1 −B2)T

(q)
2 (λ) ∈ A2p · At · A2q = A2k+t,

and hence

U (k)(λ) ∈ A2k+t, k ∈ N0, λ ∈ ρ(AN). (3.25)
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Step 3. By applying (3.7) to A[B1] and (3.8) to A[B2] and taking the difference, we obtain
that, for λ ∈ ρ(A[B1]) ∩ ρ(A[B2]) ∩ ρ(AN),

(A[B1] − λ)−1 − (A[B2] − λ)−1

= γ(λ)
[(
I −B1M(λ)

)−1
B1 −B2

(
I −M(λ)B2

)−1
]
γ(λ̄)∗

= γ(λ)
[(
I −B1M(λ)

)−1
B1

(
I −M(λ)B2

)(
I −M(λ)B2

)−1

−(
I −B1M(λ)

)−1(
I −B1M(λ)

)
B2

(
I −M(λ)B2

)−1
]
γ(λ̄)∗

= γ(λ)
[(
I −B1M(λ)

)−1(B1 −B2)
(
I −M(λ)B2

)−1
]
γ(λ̄)∗ = γ(λ)U(λ)γ(λ̄)∗.

Taking derivatives we get, for m ∈ N,

(A[B1] − λ)−m − (A[B2] − λ)−m

=
1

(m− 1)!
· d

m−1

dλm−1

(
(A[B1] − λ)−1 − (A[B2] − λ)−1

)
=

1
(m− 1)!

· d
m−1

dλm−1

(
γ(λ)U(λ)γ(λ̄)∗

)
=

1
(m− 1)!

∑
p+q+r=m−1

p,q,r�0

(m− 1)!
p! q! r!

γ(p)(λ)U (q)(λ)
dr

dλr
γ(λ̄)∗. (3.26)

By Proposition 3.3(i) and (3.25), each term in the sum satisfies

γ(p)(λ)U (q)(λ)
dr

dλr
γ(λ̄)∗ ∈ S n−1

2p+3/2 ,∞ · S n−1
2q+t ,∞ · S n−1

2r+3/2 ,∞ = S n−1
2m+t+1 ,∞, (3.27)

which proves (3.16).
(ii) If m > (n− t)/2 − 1, then (n− 1)/(2m+ t+ 1) < 1 and, by (2.2) and (3.27), all terms

in the sum in (3.26) are trace class operators, and the same is true if we change the order in
the product in (3.27). Hence, we can apply the trace to the expression in (3.26) and use (2.4),
(2.5) and Lemma 2.4(iii) to obtain

(m− 1)! tr((A[B1] − λ)−m − (A[B2] − λ)−m)

= tr

⎛
⎜⎜⎝ ∑

p+q+r=m−1
p,q,r�0

(m− 1)!
p! q! r!

γ(p)(λ)U (q)(λ)
dr

dλr
γ(λ̄)∗

⎞
⎟⎟⎠

=
∑

p+q+r=m−1
p,q,r�0

(m− 1)!
p! q! r!

tr
(
γ(p)(λ)U (q)(λ)

dr

dλr
γ(λ̄)∗

)

=
∑

p+q+r=m−1
p,q,r�0

(m− 1)!
p! q! r!

tr
(
U (q)(λ)

(
dr

dλr
γ(λ̄)∗

)
γ(p)(λ)

)

= tr

⎛
⎜⎜⎝ ∑

p+q+r=m−1
p,q,r�0

(m− 1)!
p! q! r!

U (q)(λ)
(
dr

dλr
γ(λ̄)∗

)
γ(p)(λ)

⎞
⎟⎟⎠

= tr
(
dm−1

dλm−1

(
U(λ)γ(λ̄)∗γ(λ)

))
= tr

(
dm−1

dλm−1

(
U(λ)M ′(λ)

))
,

which shows (3.17).
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Remark 3.8. The statements of Theorem 3.7 remain true if A is an arbitrary closed
symmetric operator in a Hilbert space H and {G,Γ0,Γ1} is a quasi-boundary-triple for A∗

such that ran Γ0 = G and the statements of Proposition 3.3 are true with L2(Ω) and L2(∂Ω)
replaced by H and G, respectively.

As a special case of the last theorem, let us consider the situation when B1 = B and B2 = 0,
where B is a bounded self-adjoint operator in L2(∂Ω). This immediately leads to the following
corollary.

Corollary 3.9. Let {L2(∂Ω),Γ0,Γ1} be the quasi-boundary-triple from Proposition 3.1
with Weyl function M and let AN be the self-adjoint Neumann operator in (3.1). Moreover,
let B be a bounded self-adjoint operator in L2(∂Ω), define A[B] as in (3.6) and set

t :=

⎧⎨
⎩
n− 1
s

if B ∈ Ss,∞(L2(∂Ω)) for some s > 0,

0 otherwise.

Then the following statements hold.

(i) For all m ∈ N and λ ∈ ρ(A[B]) ∩ ρ(AN),

(A[B] − λ)−m − (AN − λ)−m ∈ S(n−1)/(2m+t+1),∞(L2(Ω)).

(ii) If m > (n− t)/2 − 1, then the resolvent power difference in (3.28) is a trace class
operator and, for all λ ∈ ρ(A[B]) ∩ ρ(AN),

tr
(
(A[B] − λ)−m − (AN − λ)−m

)
=

1
(m− 1)!

tr
(
dm−1

dλm−1

((
I −BM(λ)

)−1
BM ′(λ)

))
.

The following theorem, where we compare operators with non-local and Dirichlet boundary
conditions, is a consequence of Theorems 3.6 and 3.7.

Theorem 3.10. Let {L2(∂Ω),Γ0,Γ1} be the quasi-boundary-triple from Proposition 3.1
with Weyl function M and let AD be the self-adjoint Dirichlet operator in (3.1). Moreover, let
B be a bounded self-adjoint operator in L2(∂Ω) and define A[B] as in (3.6). Then the following
statements hold.

(i) For all m ∈ N and λ ∈ ρ(A[B]) ∩ ρ(AD),

(A[B] − λ)−m − (AD − λ)−m ∈ S(n−1)/2m,∞(L2(Ω)). (3.28)

(ii) If m > (n− 1)/2, then the resolvent power difference in (3.28) is a trace class operator
and, for all λ ∈ ρ(A[B]) ∩ ρ(AD) ∩ ρ(AN),

tr
(
(A[B] − λ)−m − (AD − λ)−m

)
=

1
(m− 1)!

tr
(
dm−1

dλm−1

(
V (λ)M ′(λ)

))
, (3.29)

where V (λ) := (I −M(λ)B)−1M(λ)−1.

Proof. (i) Let us fix λ ∈ ρ(A[B]) ∩ ρ(AD) ∩ ρ(AN). From Theorems 3.6(i) and 3.7(i), it
follows that

X1(λ) := (AN − λ)−m − (AD − λ)−m ∈ S(n−1)/2m,∞,
X2(λ) := (A[B] − λ)−m − (AN − λ)−m ∈ S(n−1)/(2m+1),∞ ⊂ S(n−1)/2m,∞,
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and thus

(A[B] − λ)−m − (AD − λ)−m = X1(λ) +X2(λ) ∈ S(n−1)/2m,∞.

By analyticity, we can extend this to all points λ in ρ(A[B]) ∩ ρ(AD).
(ii) If m > (n− 1)/2, then (n− 1)/2m < 1 and hence, by item (i) and (2.2), the operator in

(3.28) is a trace class operator. Using Theorem 3.6(ii) and Corollary 3.9(ii), we obtain

tr
(
(A[B] − λ)−m − (AD − λ)−m

)
= tr

(
X1(λ) +X2(λ)

)
=

1
(m− 1)!

tr
(
dm−1

dλm−1

[(
M(λ)−1 +

(
I −BM(λ)

)−1
B

)
M ′(λ)

])
.

Since

M(λ)−1 +
(
I −BM(λ)

)−1
B

=
(
I −BM(λ)

)−1 [(
I −BM(λ)

)
+BM(λ)

]
M(λ)−1 = V (λ),

this implies (3.29).

Note that, for B a multiplication operator by a bounded function β, the statement in (i) of
the previous theorem is exactly the estimate (1.2).
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