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The self-adjoint Schrödinger operator Aδ,α with a δ-interaction of constant strength α supported on a compact

smooth hypersurface C is viewed as a self-adjoint extension of a natural underlying symmetric operator S in

L2(Rn). The aim of this note is to construct a boundary triple for S∗ and a self-adjoint parameter Θδ,α in the

boundary space L2(C) such that Aδ,α corresponds to the boundary condition induced by Θδ,α. As a consequence,

the well-developed theory of boundary triples and their Weyl functions can be applied. This leads, in particular, to

a Krein-type resolvent formula and a description of the spectrum of Aδ,α in terms of the Weyl function and Θδ,α.
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1. Introduction

Boundary triples and their Weyl functions are efficient and frequently used tools in the
extension theory of symmetric operators and the spectral analysis of their self-adjoint extensions.
Roughly speaking, a boundary triple consists of two boundary mappings that satisfy an abstract
second Green’s identity and a maximality condition. With the help of a boundary triple, all
self-adjoint extensions of a symmetric operator can be parameterized via abstract boundary
conditions that involve a self-adjoint parameter in a boundary space. In addition, the spectral
properties of these self-adjoint extensions can be described with the help of the Weyl function
and the corresponding boundary parameters. We refer the reader to [1–5] and Section 2 for
more details on boundary triples and their Weyl functions.

The main objective of this note is to provide and discuss boundary triples and their
Weyl functions for self-adjoint Schrödinger operators in L2(Rn) with δ-interactions of strength
α ∈ R supported on a compact smooth hypersurface C that separates Rn into a smooth bounded
domain Ωi and an unbounded smooth exterior domain Ωe. In an informal way, such an operator
is often written in the form

Aδ,α = −∆− αδC, (1)
where δC denotes the δ-distribution supported on C. A precise definition of the self-adjoint
operator Aδ,α in terms of boundary or interface conditions is given at the beginning of Section 3
below; see also [6, 7] for an equivalent definition via quadratic forms. Schrödinger operators
with δ-interactions are frequently used in mathematical physics to model interactions of quantum
particles; we refer to the monographs [8] and [9], to the review article [10] and to [6, 11–25]
for a small selection of related papers on spectral analysis of such operators.
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Let Afree be the usual self-adjoint realization of −∆ in L2(Rn) and let Aδ,α be the
self-adjoint operator with δ-interaction on C in (1). We consider the densely defined, closed
symmetric operator S = Afree ∩Aδ,α in L2(Rn) and its adjoint S∗, and we construct a boundary
triple {L2(C),Γ0,Γ1} for S∗ and a self-adjoint parameter Θδ,α in L2(C) such that

Afree = S∗ � ker Γ0 and Aδ,α = S∗ � ker(Γ1 −Θδ,αΓ0).

Although it is clear from the general theory that such a boundary triple and a self-adjoint
parameter Θδ,α exist, its construction is not trivial. Our idea here is based on a coupling
of two boundary triples for elliptic PDEs which involve the Dirichlet-to-Neumann map as a
regularization (see [26–28]), the restriction of this coupling to a suitable intermediate extension,
and certain transforms of boundary triples and corresponding parameters. These efforts and
technical considerations are worthwhile for various reasons. In particular, if γ and M denote the
γ-field and Weyl function corresponding to the boundary triple {L2(C),Γ0,Γ1} (see Section 2
for more details), then it follows immediately from the general theory in [3,4] that the resolvent
difference of Afree and Aδ,α admits the representation

(Aδ,α − λ)−1 − (Afree − λ)−1 = γ(λ)
(
Θδ,α −M(λ)

)−1
γ(λ̄)∗

for all λ ∈ ρ(Aδ,α) and belongs to some operator ideal in L2(Rn) if and only if the resolvent
of Θδ,α belongs to the analogous operator ideal in L2(C); see Theorem 3.5. As a special case,
the Schatten–von Neumann properties of the resolvent difference of Afree and Aδ,α carry over to
the resolvent of Θδ,α, and vice versa. Moreover, the spectral properties of Aδ,α can be described
with the help of the perturbation term (Θδ,α −M(λ))−1. We mention that in the context of
the more general notion of quasi boundary triples and their Weyl functions from [29, 30] a
similar approach as in this note and closely related results can be found in [6,31]; we also refer
to [27, 28, 32–37] for other methods in extension theory of elliptic differential operators.

2. Boundary triples and Weyl functions

In this preparatory section, we recall the notion of boundary triples, associated γ-fields
and Weyl functions, and discuss some of their properties. For a more detailed exposition, we
refer the reader to [1–5, 38].

In the following, let H be a Hilbert space, let S be a densely defined, closed symmetric
operator in H, and let S∗ be the adjoint operator.

Definition 2.1. A triple {G,Γ0,Γ1} is called a boundary triple for S∗ if G is a Hilbert space
and Γ0,Γ1 : domS∗ → G are linear mappings that satisfy the abstract second Green’s identity

(S∗f, g)H − (f, S∗g)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

for all f, g ∈ domS∗, and the mapping Γ := (Γ0,Γ1)> : domS∗ → G × G is surjective.

Recall that a boundary triple {G,Γ0,Γ1} for S∗ exists if and only if the defect numbers
of S coincide or, equivalently, S admits self-adjoint extensions in H. Moreover, a boundary
triple is not unique (except in the trivial case S = S∗). The following special observation
will be used in Section 3: suppose that {G,Γ0,Γ1} is a boundary triple for S∗ and let G be a
bounded self-adjoint operator in G; then {G,Γ′0,Γ′1}, where(

Γ′0
Γ′1

)
=

(
I G
0 I

)(
Γ0

Γ1

)
, (2)

is also a boundary triple for S∗. Recall also that domS = ker Γ0 ∩ ker Γ1 and that the mapping

Θ 7→ AΘ := S∗ �
{
f ∈ domS∗ : Γf = (Γ0f,Γ1f)> ∈ Θ

}
(3)
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establishes a bijective correspondence between the closed linear subspaces (relations) in G × G
and the closed linear extensions AΘ ⊂ S∗ of S. In the case when Θ is (the graph of) an
operator, the closed extension AΘ in (3) is given by

AΘ = S∗ � ker(Γ1 −ΘΓ0). (4)

It is important to note that the identity (AΘ)∗ = AΘ∗ holds and hence AΘ in (3)–(4) is self-
adjoint in H if and only if Θ is self-adjoint in G. It follows, in particular, that the extension

A0 = S∗ � ker Γ0 (5)

is self-adjoint. This extension often plays the role of a fixed extension within the family of
self-adjoint extensions of S. We also mention that Θ in (3) is an unbounded operator if and
only if the extensions A0 and AΘ are disjoint but not transversal, that is,

S = AΘ ∩ A0 and AΘ +̂A0 ( S∗, (6)

where +̂ denotes the sum of subspaces. Note that this appears only in the case when G is
infinite-dimensional, that is, the defect numbers of S are both infinite.

The next theorem can be found in [39]. Very roughly speaking, it can be regarded as
converse to the above considerations. Here, the idea is to start with boundary mappings defined
on the domain of some operator T that satisfy the abstract second Green’s identity and some
additional conditions, and to conclude that T coincides with the adjoint of the restriction of T
to the intersection of the kernels of the boundary mappings. Theorem 2.2 will be used in the
proof of Lemma 3.1.

Theorem 2.2. Let T be a linear operator in H, let G be a Hilbert space and assume that
Γ0,Γ1 : domT → G are linear mappings that satisfy the following conditions:

(i) there exists a self-adjoint restriction A0 of T in H such that domA0 ⊂ ker Γ0;
(ii) ran(Γ0,Γ1)> = G × G;
(iii) for all f, g ∈ domT the abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

holds.

Then S := T � (ker Γ0 ∩ ker Γ1) is a densely defined, closed, symmetric operator in H such
that S∗ = T and {G,Γ0,Γ1} is a boundary triple for S∗ with the property A0 = S∗ � ker Γ0.

In the following, we assume that S is a densely defined, closed, symmetric operator in
H and that {G,Γ0,Γ1} is a boundary triple for S∗. Let A0 = S∗ � ker Γ0 be as in (5) and
observe that the following direct sum decomposition of domS∗ is valid:

domS∗ = domA0 +̇ ker(S∗ − λ) = ker Γ0 +̇ ker(S∗ − λ), λ ∈ ρ(A0).

It follows, in particular, that Γ0 � ker(S∗ − λ) is a bijective operator from ker(S∗ − λ) onto G.
The inverse is denoted by

γ(λ) =
(
Γ0 � ker(S∗ − λ)

)−1
, λ ∈ ρ(A0);

when viewed as a function λ 7→ γ(λ) on ρ(A0), we call γ the γ-field corresponding to the
boundary triple {G,Γ0,Γ1}. The Weyl function M associated with {G,Γ0,Γ1} is defined by

M(λ) = Γ1γ(λ) = Γ1

(
Γ0 � ker(S∗ − λ)

)−1
, λ ∈ ρ(A0).

It can be shown that the values M(λ) of the Weyl function M are bounded, everywhere defined
operators in G, that M is a holomorphic function on ρ(A0) with the properties M(λ) = M(λ̄)∗

and that ImM(λ) is uniformly positive for λ ∈ C+, i.e. M is an operator-valued Nevanlinna or
Riesz–Herglotz function that is uniformly strict; see [2].
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3. Schrödinger operators with δ-interactions on hypersurfaces

Let Ωi ⊂ Rn, n ≥ 2, be a bounded domain with C∞-smooth boundary C = ∂Ωi and
let Ωe = Rn \ Ωi be the corresponding exterior domain with the same C∞-smooth boundary
∂Ωe = C. In the following, fi|C and fe|C denote the traces of functions in Ωi and Ωe, respec-
tively; if fi|C = fe|C , we also set f |C := fi|C = fe|C . Moreover, ∂νifi|C and ∂νefe|C denote
the traces of their normal derivatives; here we agree that the normal vectors νi and νe point
outwards of the domains, so that, νi = −νe.

In the following, let α 6= 0 be a real constant and consider the Schrödinger operator with
a δ-interaction of strength α supported on C defined by

Aδ,αf = −∆f,

domAδ,α =

{
f =

(
fi
fe

)
∈ H2(Ωi)×H2(Ωe),

fi|C = fe|C,
αf |C = ∂νifi|C + ∂νefe|C

}
.

(7)

According to [6, Theorem 3.5 and Theorem 3.6] the operator Aδ,α is self-adjoint in L2(Rn) and
corresponds to the densely defined, closed sesquilinear form

aδ,α[f, g] =
(
∇f,∇g

)
(L2(Rn))n

− α(f |C, g|C)L2(C),

dom aδ,α = H1(Rn).

Observe that the normal derivatives of the functions in domAδ,α may have a jump at the
interface C or, more precisely, that f ∈ domAδ,α is contained in H2(Rn) if and only if
∂νifi|C = −∂νefe|C . We also recall that the essential spectrum of the operator Aδ,α is [0,∞)
and that the negative spectrum consists of a finite number of eigenvalues of finite multiplicity;
see [6, 7]. In the following, we fix some point η such that

η ∈ ρ(Aδ,α) ∩ (−∞, 0). (8)

In Proposition 3.3 below, we specify a boundary triple {L2(C),Γ0,Γ1} for the adjoint of
the densely defined, closed, symmetric operator

Sf = −∆f, domS =
{
f ∈ H2(Rn) : f |C = 0

}
, (9)

such that the free or unperturbed Schrödinger operator

Afreef = −∆f, domAfree = H2(Rn),

corresponds to the kernel of the first boundary mapping Γ0. Note that the operator Aδ,α in (7) is
a self-adjoint extension of S and that the defect numbers dim(ran(S ∓ i)⊥) are infinite. Hence,
the abstract considerations in Section 2 ensure that there exists a self-adjoint operator or relation
Θδ,α such that

Aδ,α = S∗ � ker(Γ1 −Θδ,αΓ0). (10)

The parameter Θδ,α and further properties of the operator Aδ,α will be discussed in Lemma 3.4
and Theorem 3.5 below.

Some further notations and preparatory results are required before Proposition 3.3 can
be stated and proved. Consider the densely defined, closed, symmetric operators

Sifi = −∆fi, domSi = H2
0 (Ωi),

and
Sefe = −∆fe, domSe = H2

0 (Ωe),

in L2(Ωi) and L2(Ωe), respectively. Their adjoints are given by the maximal operators

S∗i fi = −∆fi, domS∗i =
{
fi ∈ L2(Ωi) : −∆fi ∈ L2(Ωi)

}
,
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and

S∗efe = −∆fe, domS∗e =
{
fe ∈ L2(Ωe) : −∆fe ∈ L2(Ωe)

}
,

where the expressions −∆fi and −∆fe are understood in the sense of distributions. It is
important to note that H2(Ωi) and H2(Ωe) are proper subsets of the maximal domains domS∗i
and domS∗e , respectively, and that the symmetric operator S in (9) is an infinite-dimensional
extension of the orthogonal sum Si ⊕ Se, which is also a symmetric operator in L2(Rn) =
L2(Ωi) ⊕ L2(Ωe). Recall from [27, 40] that the trace maps admit continuous extensions to the
maximal domains (equipped with the graph norms):

domS∗i 3 fi 7→ fi|C ∈ H−1/2(C), domS∗i 3 fi 7→ ∂νifi|C ∈ H−3/2(C),

and

domS∗e 3 fe 7→ fe|C ∈ H−1/2(C), domS∗e 3 fe 7→ ∂νefe|C ∈ H−3/2(C).
Furthermore, consider the self-adjoint extensions ADi and ADe of Si and Se, respectively, corre-
sponding to Dirichlet boundary conditions on C:

ADi fi = −∆fi, domADi = H1
0 (Ωi) ∩H2(Ωi),

and

ADe fe = −∆fe, domADe = H1
0 (Ωe) ∩H2(Ωe).

Since ADi and ADe are both non-negative, it is clear that η in (8) belongs to ρ(ADi )∩ ρ(ADe ), and
hence, we have the direct sum decompositions

domS∗i = domADi +̇ ker(S∗i − η) =
(
H1

0 (Ωi) ∩H2(Ωi)
)

+̇ ker(S∗i − η) (11)

and

domS∗e = domADe +̇ ker(S∗e − η) =
(
H1

0 (Ωe) ∩H2(Ωe)
)

+̇ ker(S∗e − η). (12)

We agree to decompose functions fi ∈ domS∗i and fe ∈ domS∗e in the form

fi = fDi + f ηi and fe = fDe + f ηe , (13)

where fDi ∈ domADi , f ηi ∈ ker(S∗i − η), and fDe ∈ domADe , f ηe ∈ ker(S∗e − η).
In the following, we often make use of the operators

ι = (−∆C + I)
1
4 and ι−1 = (−∆C + I)−

1
4 ,

where ∆C denotes the Laplace–Beltrami operator on C. Both mappings ι and ι−1 are regarded
as isomorphisms

ι : Hs(C)→ Hs−1
2 (C) and ι−1 : H t(C)→ H t+

1
2 (C)

for s, t ∈ R, and also as operators that establish the duality

(ιϕ, ι−1ψ)L2(C) = 〈ϕ, ψ〉H1/2(C)×H−1/2(C)

for ϕ ∈ H1/2(C) and ψ ∈ H−1/2(C), when the spaces H1/2(C) and H−1/2(C) are equipped with
the corresponding norms. Note also that ι−1 can be viewed as a bounded self-adjoint operator
in L2(C) with ran ι−1 = H1/2(C) and that ι with domain dom ι = H1/2(C) is an unbounded
self-adjoint operator in L2(C) with 0 ∈ ρ(ι).

Now we have finally collected all necessary notation to state the first lemma.
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Lemma 3.1. Let S be the densely defined, closed, symmetric operator in (9). Then the adjoint
S∗ of S is given by

S∗f = −∆f,

domS∗ =

{
f =

(
fi
fe

)
∈ domS∗i × domS∗e , fi|C = fe|C

}
.

(14)

Further, let

Υ0f = ι−1f |C and Υ1f = −ι
(
∂νif

D
i |C + ∂νef

D
e |C
)

(15)

for f = (fi, fe)
> ∈ domS∗ and with fDi , f

D
e as in (13). Then {L2(C),Υ0,Υ1} is a boundary

triple for S∗ with the property ADi ⊕ ADe = S∗ � ker Υ0.

Proof. The assertions in Lemma 3.1 will be proved with the help of Theorem 2.2. To this end,
we set

Tf = −∆f,

domT =

{
f =

(
fi
fe

)
∈ domS∗i × domS∗e , fi|C = fe|C

}
,

and consider the boundary mappings Υ0,Υ1 : domT → L2(C) in (15). First of all, we note
that item (i) in Theorem 2.2 is satisfied with the self-adjoint operator A0 = ADi ⊕ ADe since
for any function f = (fi, fe)

> ∈ dom(ADi ⊕ ADe ) ⊂ H2(Ωi) × H2(Ωe) one has fi ∈ domS∗i ,
fe ∈ domS∗e , and fi|C = fe|C . In order to see that the mapping(

Υ0

Υ1

)
: domT → L2(C)× L2(C) (16)

is surjective, let ϕ, ψ ∈ L2(C). Since the Neumann trace map is surjective from H2(Ωi)∩H1
0 (Ωi)

onto H1/2(C) and from H2(Ωe) ∩ H1
0 (Ωe) onto H1/2(C), there exist fDi ∈ domADi and fDe ∈

domADe such that ∂νif
D
i |C = ∂νef

D
e |C = −1

2
ι−1ψ ∈ H1/2(C). Next, we choose f ηi ∈ ker(S∗i −η)

and f ηe ∈ ker(S∗e − η) such that f ηi |C = f ηe |C = ιϕ ∈ H−1/2(C), which is possible by the
surjectivity of the trace map from the maximal domain onto H−1/2(C); cf. [27, 40, 41]. Now, it
is easy to see that f = (fDi + f ηi , f

D
e + f ηe )> ∈ domT satisfies

Υ0f = ι−1f |C = ϕ and Υ1f = −ι
(
∂νif

D
i |C + ∂νef

D
e |C
)

= ψ,

and hence the map (16) is onto. Next, we verify that the abstract second Green’s identity

(Tf, g)L2(Rn) − (f, Tg)L2(Rn) = (Υ1f,Υ0g)L2(C) − (Υ0f,Υ1g)L2(C), f, g ∈ domT, (17)

holds. For this, it is useful to recall that Green’s identity for fi = fDi + f ηi and gi = gDi + gηi
yields

(S∗i fi, gi)L2(Ωi)−(fi, S
∗
i gi)L2(Ωi)

=
〈
fi|C, ∂νigDi |C

〉
H−1/2(C)×H1/2(C) −

〈
∂νif

D
i |C, gi|C

〉
H1/2(C)×H−1/2(C),

(18)

and for fe = fDe + f ηe and ge = gDe + gηe in the analogous form

(S∗efe, ge)L2(Ωe)−(fe, S
∗
ege)L2(Ωe)

=
〈
fe|C, ∂νegDe |C

〉
H−1/2(C)×H1/2(C) −

〈
∂νef

D
e |C, ge|C

〉
H1/2(C)×H−1/2(C).

(19)
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Since T is a restriction of the orthogonal sum S∗i ⊕ S∗e and fi|C = fe|C , gi|C = ge|C for
f, g ∈ domT , we conclude from (18) and (19) that

(Tf, g)L2(Rn) − (f, Tg)L2(Rn)

= (S∗i fi, gi)L2(Ωi) − (fi, S
∗
i gi)L2(Ωi) + (S∗efe, ge)L2(Ωe) − (fe, S

∗
ege)L2(Ωe)

=
〈
fi|C, ∂νigDi |C

〉
H−1/2(C)×H1/2(C) −

〈
∂νif

D
i |C, gi|C

〉
H1/2(C)×H−1/2(C)

+
〈
fe|C, ∂νegDe |C

〉
H−1/2(C)×H1/2(C) −

〈
∂νef

D
e |C, ge|C

〉
H1/2(C)×H−1/2(C)

=
〈
f |C, ∂νigDi |C + ∂νeg

D
e |C
〉
H−1/2(C)×H1/2(C) −

〈
∂νif

D
i |C + ∂νef

D
e |C, g|C

〉
H1/2(C)×H−1/2(C)

=
(
ι−1f |C, ι(∂νigDi |C + ∂νeg

D
e |C)

)
L2(C) −

(
ι(∂νif

D
i |C + ∂νef

D
e |C), ι−1g|C

)
L2(C)

=
(
−ι(∂νifDi |C + ∂νef

D
e |C), ι−1g|C

)
L2(C) −

(
ι−1f |C,−ι(∂νigDi |C + ∂νeg

D
e |C)

)
L2(C)

= (Υ1f,Υ0g)L2(C) − (Υ0f,Υ1g)L2(C)

holds. Thus, (17) is shown and item (iii) in Theorem 2.2 is satisfied. Hence, Theorem 2.2
implies that the symmetric operator

Ŝ := T �
(
ker Υ0 ∩ ker Υ1) (20)

is densely defined, closed and its adjoint coincides with T . We show that Ŝ coincides with the
symmetric operator S in (9). Note first that Theorem 2.2 also implies that

ADi ⊕ ADe = T � ker Υ0. (21)

Both operators, S and Ŝ, are restrictions of the operator in (21). We now let f = (fi, fe)
> ∈

dom(ADi ⊕ ADe ) = ker Υ0. For such f , we have

f ∈ ker Υ1 ⇐⇒ ∂νifi|C + ∂νefe|C = 0 ⇐⇒ f ∈ H2(Rn) ⇐⇒ f ∈ domS.

Thus, Ŝ = S. Now, the remaining statements in Lemma 3.1 follow immediately from Theo-
rem 2.2. �

Next, we specify the Weyl function N and the γ-field ζ corresponding to the boundary
triple {L2(C),Υ0,Υ1} in Lemma 3.1. It is clear from the definition of Υ0 that the γ-field acts
as follows:

ζ(λ) : L2(C)→ L2(Rn), ϕ 7→ fλ, λ ∈ ρ(ADi ) ∩ ρ(ADe ) = C \ [0,∞),

where fλ = (fi,λ, fe,λ)
> ∈ H2(Ωi)×H2(Ωe) satisfies −∆fi,λ = λfi,λ, −∆fe,λ = λfe,λ and

fi,λ|C = fe,λ|C = ιϕ.

In order to specify the Weyl function N , we recall the definition of the Dirichlet-to-Neumann
maps Di(λ) and De(λ) associated with the Laplacians on Ωi and Ωe, respectively. Note first
that for ϕ, ψ ∈ H−1/2(C) and λ ∈ ρ(ADi ) and µ ∈ ρ(ADe ) the boundary value problems

−∆fi = λfi, fi|C = ϕ and −∆fe = µfe, fe|C = ψ

admit unique solutions fi,λ ∈ domS∗i and fe,µ ∈ domS∗e . Hence, the operators

Di,−1/2(λ)fi,λ|C = ∂νifi,λ|C, domDi,−1/2(λ) = H−1/2(C), (22)

and

De,−1/2(µ)fe,µ|C = ∂νefe,λ|C, domDe,−1/2(µ) = H−1/2(C), (23)
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are well defined, and map H−1/2(C) into H−3/2(C). We have used the index −1/2 in the
definition of the Dirichlet-to-Neumann maps in (22) and (23) to indicate that their domain is
H−1/2(C). For the following, it is important that the restrictions

Di(λ)fi,λ|C = ∂νifi,λ|C, domDi(λ) = H1(C),
and

De(µ)fe,µ|C = ∂νefe,µ|C, domDe(µ) = H1(C),
of Di,−1/2(λ) and De,−1/2(µ) to H1(C) are densely defined, closed, unbounded operators in
L2(C) that satisfy

Di(λ)∗ = Di(λ̄) and De(µ)∗ = De(µ̄)

for all λ ∈ ρ(ADi ) and for all µ ∈ ρ(ADe ), respectively. For λ ∈ ρ(ADi )∩ ρ(ADe ) = C \ [0,∞), it
is convenient to introduce the operators

E−1/2(λ) := Di,−1/2(λ) +De,−1/2(λ) and E(λ) := Di(λ) +De(λ). (24)

Furthermore, the restrictions of Di,−1/2(λ) and De,−1/2(µ) to H3/2(C) will be used. These
restrictions are denoted by Di,3/2(λ) and De,3/2(µ), respectively; they map H3/2(C) into H1/2(C),
and as above the index 3/2 is used to indicate that their domain is H3/2(C).

Lemma 3.2. Let S be the symmetric operator in (9), let {L2(C),Υ0,Υ1} be the boundary triple
for S∗ in Lemma 3.1 and fix η as in (8). For λ ∈ ρ(ADi ) ∩ ρ(ADe ) = C \ [0,∞) the operators
E−1/2(λ) in (24) have the property

ran
(
E−1/2(λ)− E−1/2(η)

)
⊂ H1/2(C) (25)

and the Weyl function corresponding to the boundary triple {L2(C),Υ0,Υ1} is given by

N(λ) = −ι
(
E−1/2(λ)− E−1/2(η)

)
ι, λ ∈ C \ [0,∞).

Proof. Let λ ∈ ρ(ADi ) ∩ ρ(ADe ) and let fλ = (fi,λ, fe,λ) ∈ ker(S∗ − λ). Then fi,λ|C = fe,λ|C and
according to (11)–(13) we have

fi,λ = fDi,λ + f ηi,λ and fe,λ = fDe,λ + f ηe,λ,

where fDi,λ ∈ domADi , f ηi,λ ∈ ker(S∗i − η), fDe,λ ∈ domADe and f ηe,λ ∈ ker(S∗e − η). Hence, it
follows with the help of fi,λ|C = f ηi,λ|C and fe,λ|C = f ηe,λ|C , and the definition of the Dirichlet-
to-Neumann maps that(

E−1/2(λ)− E−1/2(η)
)
ιΥ0fλ

=
(
Di,−1/2(λ)−Di,−1/2(η) +De,−1/2(λ)−De,−1/2(η)

)
fλ|C

= Di,−1/2(λ)fi,λ|C −Di,−1/2(η)f ηi,λ|C +De,−1/2(λ)fe,λ|C −De,−1/2(η)f ηe,λ|C
= ∂νifi,λ|C − ∂νif

η
i,λ|C + ∂νefe,λ|C − ∂νef

η
e,λ|C

= ∂νi
(
fi,λ − f ηi,λ

)
|C + ∂νe

(
fe,λ − f ηe,λ

)
|C

= ∂νif
D
i,λ|C + ∂νef

D
e,λ|C

(26)

and hence

−ι
(
E−1/2(λ)− E−1/2(η)

)
ιΥ0fλ = −ι

(
∂νif

D
i,λ|C + ∂νef

D
e,λ|C

)
= Υ1fλ.

Also, the inclusion (25) follows from (26) since fDi,λ ∈ H2(Ωi) and fDe,λ ∈ H2(Ωe), and hence,
∂νif

D
i,λ|C + ∂νef

D
e,λ|C ∈ H1/2(C) in (26), and for any

ϕ ∈ dom E−1/2(λ) = dom E−1/2(η) = H−1/2(C),
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there exists fλ = (fi,λ, fe,λ)
> ∈ ker(S∗ − λ) and fη = (fi,η, fe,η) ∈ ker(S∗ − η) such that

fi,λ|C = fe,λ|C = ϕ = fi,η|C = fe,η|C.
�

In the following proposition, we provide a boundary triple for S∗ such that the operator
Afree corresponds to the first boundary mapping. For this, we modify the boundary triple in
Lemma 3.1 in a suitable manner.

Proposition 3.3. Let S be the densely defined, closed, symmetric operator in (9) with adjoint
S∗ in (14), and let E(η) = ιE(η)ι. Then, E(η)−1 is a bounded self-adjoint operator in L2(C)
and {L2(C),Γ0,Γ1}, where

Γ0f = ι−1f |C + E(η)−1ι
(
∂νif

D
i |C + ∂νef

D
e |C
)

and Γ1f = −ι
(
∂νif

D
i |C + ∂νef

D
e |C
)
, (27)

is a boundary triple for S∗ with the property Afree = S∗ � ker Γ0. For λ ∈ C \ [0,∞) the Weyl
function corresponding to {L2(C),Γ0,Γ1} is given by

M(λ) = −ι
(
E−1/2(λ)− E−1/2(η)

)
ι
(
I + E(η)−1ι

(
E−1/2(λ)− E−1/2(η)

)
ι
)
.

Proof. First, we show that E(η)−1 = ι−1E(η)−1ι−1 is a bounded self-adjoint operator in L2(C).
Observe that E(η) = Di(η) + De(η) is injective. In fact, we assume that E(η)ϕ = 0 for some
ϕ ∈ H1(C), ϕ 6= 0. Then, there exists fη = (f ηi , f

η
e )> ∈ ker(S∗ − η) such that fη|C = ϕ and

hence
0 = E(η)ϕ = E(η)fη|C = Di(η)f ηi |C +De(η)f ηe |C = ∂νif

η
i |C + ∂νef

η
e |C. (28)

Together with f ηi |C = f ηe |C , this implies that fη ∈ domAfree and hence ker(Afree − η) 6= {0}.
This is impossible, as η < 0. Thus E(η) is injective. It follows from [6, Proposition 3.2 (iii)]
that E(η) is surjective. Hence, E(η)−1 is a bounded self-adjoint operator in L2(C). Since ι−1

is also a bounded self-adjoint operator in L2(C), it is clear that E(η)−1 = ι−1E(η)−1ι−1 is a
bounded self-adjoint operator in L2(C).

Now, let {L2(C),Υ0,Υ1} be the boundary triple in Lemma 3.1. Note that the boundary
mappings Γ0 and Γ1 in (27) satisfy:(

Γ0

Γ1

)
=

(
I −E(η)−1

0 I

)(
Υ0

Υ1

)
.

Hence, it follows that {L2(C),Γ0,Γ1} is a boundary triple for S∗; see (2) in Section 2. Again,
we let N denote the Weyl function corresponding to the boundary triple {L2(C),Υ0,Υ1}. It is
not difficult to see that the Weyl function corresponding to {L2(C),Γ0,Γ1} is given by

M(λ) = N(λ)
(
I − E(η)−1N(λ)

)−1
, λ ∈ C \ [0,∞).

Hence, the form of the Weyl function M follows from Lemma 3.2.
It remains to be shown that Afree = S∗ � ker Γ0 holds. Assume that for some f ∈ domS∗

we have
ι−1f |C + E(η)−1ι

(
∂νif

D
i |C + ∂νef

D
e |C
)

= 0. (29)

As ker E−1/2(η) = {0} (this can be seen as in (28)), this is equivalent to

E−1/2(η)f |C +
(
∂νif

D
i |C + ∂νef

D
e |C
)

= 0.

Furthermore, since

E−1/2(η)f |C = Di,−1/2(η)f ηi |C +De,−1/2(η)f ηe |C = ∂νif
η
i |C + ∂νef

η
e |C

holds for f decomposed as in (13), we conclude that (29) is equivalent to

∂νif
η
i |C + ∂νef

η
e |C + ∂νif

D
i |C + ∂νef

D
e |C = 0,
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which in turn is equivalent to

∂νifi|C + ∂νefe|C = 0.

Therefore, f ∈ ker Γ0 if and only if f ∈ domAfree. �

Our next goal is to identify the self-adjoint parameter Θδ,α such that (10) holds with the
boundary triple in Proposition 3.3.

Lemma 3.4. Let S be the densely defined, closed, symmetric operator in (9) with adjoint S∗

in (14), and let {L2(C),Γ0,Γ1} be the boundary triple in Proposition 3.3. Then

Θδ,α = ι
(
Di,3/2(η) +De,3/2(η)− α

)
ι
(
I − E(η)−1ι

(
Di,3/2(η) +De,3/2(η)− α

)
ι
)−1

is an unbounded self-adjoint operator in L2(C) such that the Schrödinger operator Aδ,α in (7)
corresponds to Θδ,α, that is,

Aδ,α = S∗ � ker(Γ1 −Θδ,αΓ0). (30)

Proof. We make use of the fact that the boundary triple {L2(C),Υ0,Υ1} in Lemma 3.1 and the
boundary triple {L2(C),Γ0,Γ1} in Proposition 3.3 are related via

Γ0 = Υ0 − E(η)−1Υ1 and Γ1 = Υ1, (31)

and we also make use of the operator

Λδ,α = ι
(
Di,3/2(η) +De,3/2(η)− α

)
ι, dom Λδ,α = H2(C). (32)

Our first task is to show that

Aδ,α = S∗ � ker(Υ1 − Λδ,αΥ0) (33)

holds. In fact, f ∈ ker(Υ1 − Λδ,αΥ0) if and only if f ∈ domS∗ and

ι
(
Di,3/2(η) +De,3/2(η)− α

)
f |C = −ι

(
∂νif

D
i |C + ∂νef

D
e |C
)
,

where f |C ∈ domDi,3/2(η) = domDe,3/2(η) = H3/2(C), together with elliptic regularity, also
implies that f = (fi, fe)

> with fi ∈ H2(Ωi) and fe ∈ H2(Ωe). With f decomposed as in (13)
we have (

Di,3/2(η) +De,3/2(η)− α
)
f |C = ∂νif

η
i |C + ∂νef

η
e |C − αf |C.

Therefore, f ∈ ker(Υ1 − Λδ,αΥ0) if and only if f = (fi, fe)
> ∈ domS∗ with fi ∈ H2(Ωi) and

fe ∈ H2(Ωe) and

∂νif
η
i |C + ∂νef

η
e |C − αf |C = −

(
∂νif

D
i |C + ∂νef

D
e |C
)
,

and the latter can be rewritten in the form

∂νifi|C + ∂νefe|C = αf |C.

We have shown (33), and as Aδ,α is a self-adjoint operator in L2(Rn), it follows that Λδ,α in
(32) is an unbounded self-adjoint operator in L2(C).

Next, we consider the operator

Θδ,α = Λδ,α

(
I − E(η)−1Λδ,α

)−1
(34)

on its natural domain; note that ker(I − E(η)−1Λδ,α) = {0} as otherwise E(η)ϕ = Λδ,αϕ
for some non-trivial ϕ ∈ H2(C), which is a contradiction to α 6= 0. Now, we assume that



300 J. Behrndt, M. Langer and V. Lotoreichik

f ∈ ker(Γ1 −Θδ,αΓ0). Then, (31) and (34) yield

Υ1f − Λδ,αΥ0f = Γ1f − Λδ,α

(
Γ0 + E(η)−1Υ1

)
f

= Γ1f − Λδ,α

(
Γ0 + E(η)−1Γ1

)
f

= Γ1f − Λδ,α

(
Γ0 + E(η)−1Θδ,αΓ0

)
f

= Γ1f − Λδ,α

(
I + E(η)−1Λδ,α

(
I − E(η)−1Λδ,α

)−1)
Γ0f

= Γ1f − Λδ,α

(
I − E(η)−1Λδ,α

)−1
Γ0f

= Γ1f −Θδ,αΓ0f

= 0,

and hence f ∈ ker(Υ1 − Λδ,αΥ0). The converse inclusion is shown in the same way and
therefore

ker(Γ1 −Θδ,αΓ0) = ker(Υ1 − Λδ,αΥ0)

and thus the extensions

S∗ � ker(Γ1 −Θδ,αΓ0) and S∗ � ker(Υ1 − Λδ,αΥ0),

coincide. Therefore, (33) implies (30). Since Aδ,α is self-adjoint in L2(Rn), it also follows from
(30) that Θδ,α is self-adjoint in L2(C). Moreover, as S in (9) coincides with the intersection of
Afree and Aδ,α, that is, Afree and Aδ,α are disjoint, and since Afree and Aδ,α are not transversal,
one concludes that Θδ,α is an unbounded operator in L2(C); cf. (6). �

We are now able to obtain some immediate and important consequences from the pre-
vious considerations, well-known results for boundary triples and Weyl functions [3, 4] and the
resolvent estimates in [6, 42].

Theorem 3.5. Let S be the densely defined, closed, symmetric operator in (9) with adjoint S∗

in (14), let {L2(C),Γ0,Γ1} be the boundary triple in Proposition 3.3 with

Afree = S∗ � ker Γ0,

and let γ and M be the γ-field and Weyl function corresponding to {L2(C),Γ0,Γ1}. Further-
more, let Θδ,α be as in Lemma 3.4 so that

Aδ,α = S∗ � ker(Γ1 −Θδ,αΓ0).

Then, the following assertions hold for all λ /∈ [0,∞):

(i) λ ∈ σp(Aδ,α) if and only if 0 ∈ σp(Θδ,α −M(λ));
(ii) λ ∈ ρ(Aδ,α) if and only if 0 ∈ ρ(Θδ,α −M(λ));
(iii) for all λ ∈ ρ(Aδ,α) the resolvent formula

(Aδ,α − λ)−1 − (Afree − λ)−1 = γ(λ)
(
Θδ,α −M(λ)

)−1
γ(λ̄)∗

is valid, and the resolvent difference of Aδ,α and Afree belongs to the Schatten–von
Neumann ideal Sp(L

2(Rn)) for all p > n−1
3

;
(iv) for all ξ ∈ ρ(Θδ,α) the operator (Θδ,α − ξ)−1 belongs to the Schatten–von Neumann

ideal Sp(L
2(C)) for all p > n−1

3
.
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