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1. Introduction

The main objective of this paper is to apply and to extend results from [9] and
[10] on scattering matrices and spectral shift functions for pairs of selfadjoint or
maximal dissipative extensions of a symmetric operator A with finite deficiency
indices in a Hilbert space H.

Let us first briefly recall some basic concepts. For a pair of selfadjoint op-
erators H and H0 in H the wave operators W±(H, H0) of the scattering system
{H, H0} are defined by

W±(H, H0) = s − lim
t→±∞

eiHte−iH0tPac(H0),

where P ac(H0) is the projection onto the absolutely continuous subspace of the
unperturbed operator H0. If for instance the resolvent difference

(H − z)−1 − (H0 − z)−1 ∈ S1, z ∈ ρ(H) ∩ ρ(H0) (1.1)

is a trace class operator, then it is well known that the wave operators W±(H, H0)
exist and are isometric in H, see, e.g. [53]. The scattering operator S(H, H0) of the
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scattering system {H, H0} is defined by

S(H, H0) = W+(H, H0)
∗W−(H, H0).

S(H, H0) commutes with H0 and is unitary on the absolutely continuous subspace
of H0. Therefore S(H, H0) is unitarily equivalent to a multiplication operator
induced by a family S(H, H0; λ) of unitary operators in the spectral representation
of H0. This family is usually called the scattering matrix of the scattering system
{H, H0} and is one of the most important quantities in the analysis of scattering
processes.

Another important object in scattering and perturbation theory is the so-
called spectral shift function introduced by M.G. Krein in [33]. For the case
dom (H) = dom (H0) and V = H −H0 ∈ S1 a spectral shift function ξ of the pair
{H, H0} was defined with the help of the perturbation determinant

DH/H0
(z) := det

(
(H − z)(H0 − z)−1

)
. (1.2)

Since lim|ℑm (z)|→∞ DH/H0
(z) = 1 a branch of z 7→ ln(DH/H0

(z)) in the upper
half plane C+ is fixed by the condition ln(DH/H0

(z)) → 0 as ℑm(z) → ∞ and the
spectral shift function is then defined by

ξ(λ) =
1

π
ℑm

(
ln
(
DH/H0

(λ + i0)
))

=
1

π
lim
ε→0

ℑm
(
ln
(
DH/H0

(λ + iε)
))

. (1.3)

M.G. Krein proved that ξ ∈ L1(R, dλ), ‖ξ‖L1
≤ ‖V ‖1, and that the trace formula

tr
(
(H − z)−1 − (H0 − z)−1

)
= −

∫

R

ξ(λ)

(λ − z)2
dλ (1.4)

holds for all z ∈ ρ(H) ∩ ρ(H0). It turns out that the scattering matrix and the
spectral shift function of the pair {H, H0} are related via the Birman-Krein for-
mula:

det
(
S(H, H0; λ)

)
= exp

(
−2πiξ(λ)

)
for a.e. λ ∈ R. (1.5)

The trace formula and the Birman-Krein formula can be extended to the case that
only the resolvent difference (1.1) of H and H0 is trace class. Namely, then there
exists a real measurable function ξ ∈ L1(R, (1+λ2)−1dλ) such that (1.4) and (1.5)
hold. However, in this situation it is not immediately clear how the perturbation
determinant in (1.3) has to be replaced.

In Section 2 we propose a possible solution of this problem for pairs of self-
adjoint extensions A0 and AΘ of a densely defined symmetric operator A with
finite deficiency indices. Observe that here the resolvent difference is even a finite
rank operator. In order to describe the pair {AΘ, A0} and a corresponding spectral
shift function we use the notion of boundary triplets and associated Weyl functions.
More precisely, we choose a boundary triplet Π = {H, Γ0, Γ1} for A∗ and a selfad-
joint parameter Θ in H such that A0 = A∗ ↾ ker(Γ0) and AΘ = A∗ ↾ ker(Γ1−ΘΓ0)
holds. If M(·) is the Weyl function associated with this boundary triplet it is shown
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in Theorem 2.4 (see also [9] and [34] for special cases) that a spectral shift function
ξ(·) of the pair {AΘ, A0} can be chosen as

ξΘ(λ) =
1

π
ℑm

(
tr
(
log(M(λ + i0) − Θ)

))

=
1

π
ℑm

(
ln
(
det(M(λ + i0) − Θ)

))
+ 2k, k ∈ Z.

(1.6)

By comparing (1.6) with (1.3) it is clear that det
(
M(z)−Θ

)
plays a similar role as

the perturbation determinant (1.2) for additive perturbations. Moreover, a simple
proof of the Birman-Krein formula (1.5) in this situation is obtained in Section 2.5
by using the representation

SΘ(λ) = IHM(λ)
+ 2i

√
ℑm(M(λ))

(
Θ − M(λ)

)−1√ℑm(M(λ)) (1.7)

of the scattering matrix SΘ(·) = S(AΘ, A0; ·) of the scattering system {AΘ, A0}
from [9], cf. also the work [7] by V.M. Adamyan and B.S. Pavlov.

These results are generalized to maximal dissipative extensions in Sec-
tion 3. Let again A be a symmetric operator in H with finite deficiency and let
Π = {H, Γ0, Γ1} be a boundary triplet for A∗. If D is a dissipative matrix in H,
ℑm(D) ≤ 0, then AD = A∗ ↾ ker(Γ1 − DΓ0) is a maximal dissipative extension
of A. For the scattering system {AD, A0} the wave operators W±(AD, A0), the
scattering operator S(AD, A0) and the scattering matrix S(AD, A0; λ) can be de-
fined similarly as in the selfadjoint case. It turns out that the representation (1.7)
extends to the dissipative case. More precisely, the Hilbert space L2(R,Hλ, dλ),
Hλ := ran (ℑm(M(λ + i0)), performs a spectral representation of the absolutely
part Aac

0 of A0 and the scattering matrix SD(·) := S(AD, A0; ·) of the scattering
system {AD, A0} admits the representation

SD(λ) = IHM(λ)
+ 2i

√
ℑm(M(λ))

(
D − M(λ)

)−1√ℑm(M(λ)),

cf. [10, Theorem 3.8]. With the help of a minimal selfadjoint dilation K̃ of AD in
the Hilbert space H ⊕ L2(R,HD), HD := ran (ℑm(D)), we verify that there is a
spectral shift function ηD of the pair {AD, A0} such that the trace formula

tr
(
(AD − z)−1 − (A0 − z)−1

)
= −

∫

R

ηD(λ)

(λ − z)2
dλ, z ∈ C+,

holds and this spectral shift function ηD(·) admits the representation

ηD(λ) =
1

π
ℑm

(
tr
(
log(M(λ + i0) − D)

))

=
1

π
ℑm

(
ln
(
det(M(λ + i0) − D)

))
+ 2k, k ∈ Z,

cf. Theorem 3.3. In Section 3.4 we show that the Birman-Krein formula holds in
the modified form

det(SD(λ)) = det(WAD
(λ − i0))) exp

(
−2πiηD(λ)

)
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for a.e. λ ∈ R, where z 7→ WAD
(z), z ∈ C−, is the characteristic function of the

maximal dissipative operator AD. Since by [1, 2, 3, 4] the limit WAD
(λ − i0)∗

can be regarded as the scattering matrix SLP (·) of an appropriate Lax-Phillips
scattering system one gets finally the representation

det(SD(λ)) = det(SLP (λ))) exp
(
−2πiηD(λ)

)
(1.8)

for a.e. λ ∈ R. The results correspond to similar results for additive dissipative
perturbations, [5, 42, 43, 44, 49, 50, 51].

In Section 4 so-called open quantum system with finite rank coupling are
investigated. Here we follow the lines of [10]. From the mathematical point of view
these open quantum systems are closely related to the Krein-Naimark formula for
generalized resolvents and the Štrauss family of extensions of a symmetric operator.
Recall that the Krein-Naimark formula establishes a one-to-one correspondence

between the generalized resolvents z 7→ PH(L̃−z)−1 ↾ H of the symmetric operator

A, that is, the compressed resolvents of selfadjoint extensions L̃ of A in bigger
Hilbert spaces, and the class of Nevanlinna families τ (·) via

PH(L̃ − z)−1 ↾ H = (A0 − z)−1 − γ(z)(τ (z) + M(z))−1γ(z̄)∗.

Here ΠA = {H, Γ0, Γ1} is a boundary triplet for A∗ and γ and M are the corre-
sponding γ-field and Weyl function, respectively. It can be shown that the gener-
alized resolvent coincides pointwise with the resolvent of the Štrauss extension

A−τ(z) := A∗ ↾ ker
(
Γ1 + τ (z)Γ0

)
,

i.e., PH(L̃ − z)−1 ↾ H = (A−τ(z) − z)−1 holds, and that for z ∈ C+ each extension
A−τ(z) of A is maximal dissipative in H.

Under additional assumptions τ (·) can be realized as the Weyl function cor-
responding to a densely defined closed simple symmetric operator T with finite de-
ficiency indices in some Hilbert space G and a boundary triplet ΠT = {H, Υ0, Υ1}
for T ∗. Then the selfadjoint (exit space) extension L̃ of A can be recovered as a
coupling of the operators A and T corresponding to a coupling of the boundary
triplets ΠA and ΠT (see [17] and formula (4.6) below). We prove in Theorem 4.2

that for such systems there exists a spectral shift function ξ̃(·) given by

ξ̃(λ) =
1

π
ℑm

(
tr
(
log(M(λ + i0) + τ (λ + i0))

))

and that the modified trace formula

tr
(
(A−τ(z) − z)−1 − (A0 − z)−1

)
+

tr
(
(T−M(z) − z)−1 − (T0 − z)−1

)
= −

∫

R

1

(λ − z)2
ξ̃(λ) dλ

holds for all z ∈ C \ R.



Trace formulae for dissipative and coupled scattering systems 5

Let T0 = T ∗ ↾ ker(Υ0) be the selfadjoint extension of T in G corresponding
to the boundary mapping Υ0. With the help of the channel wave operators

W±(L̃, A0) = s − lim
t→±∞

eiteLe−itA0P ac(A0)

W±(L̃, T0) = s − lim
t→±∞

eiteLe−itT0P ac(T0)

one then defines the channel scattering operators

SH := W+(L̃, A0)
∗W−(L̃, A0) and SG := W+(L̃, T0)

∗W−(L̃, T0).

The corresponding channel scattering matrices SH(λ) and SG(λ) are studied in
Section 4.3. Here we express these scattering matrices in terms of the functions
M and τ in the spectral representations L2(R, dλ,HM(λ)) and L2(R, dλ,Hτ(λ)) of
Aac

0 and T ac
0 , respectively, and finally, with the help of these representations the

modified Birman-Krein formula

det(SH(λ)) = det(SG(λ)) exp
(
−2πiξ̃(λ)

)

is proved in Theorem 4.6.

2. Self-adjoint extensions and scattering

In this section we consider scattering systems consisting of two selfadjoint exten-
sions of a densely defined symmetric operator with equal finite deficiency indices
in a separable Hilbert space. We generalize a result on the representation of the
spectral shift function of such a scattering system from [9] and we give a short
proof of the Birman-Krein formula in this setting.

2.1. Boundary triplets and closed extensions

Let A be a densely defined closed symmetric operator with equal deficiency indices
n±(A) = dimker(A∗ ∓ i) ≤ ∞ in the separable Hilbert space H. We use a concept
of a boundary triplet for A∗ in order to describe of the closed extensions AΘ ⊂ A∗

of A in H, see [30] and also [20, 22].

Definition 2.1. A triplet Π = {H, Γ0, Γ1} is called a boundary triplet for the ad-
joint operator A∗ if H is a Hilbert space and Γ0, Γ1 : dom (A∗) → H are linear
mappings such that

(i) the abstract second Green’s identity,

(A∗f, g) − (f, A∗g) = (Γ1f, Γ0g) − (Γ0f, Γ1g),

holds for all f, g ∈ dom (A∗) and
(ii) the mapping Γ := (Γ0, Γ1)

⊤ : dom (A∗) −→ H×H is surjective.

We refer to [20] and [22] for a detailed study of boundary triplets and recall
only some important facts. First of all a boundary triplet Π = {H, Γ0, Γ1} for
A∗ exists since the deficiency indices n±(A) of A are assumed to be equal. Then
n±(A) = dimH holds. We note that a boundary triplet for A∗ is not unique.
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Namely, if Π′ = {G′, Γ′
0, Γ

′
1} is another boundary triplet for A∗, then there exists a

boundedly invertible operator W = (Wij)
2
i,j=1 ∈ [G ⊕G,G′⊕G′] with the property

W ∗
(

0 −iIG′

iIG′ 0

)
W =

(
0 −iIG

iIG 0

)
,

such that (
Γ′

0

Γ′
1

)
=

(
W11 W12

W21 W22

)(
Γ0

Γ1

)

holds. Here and in the following we write [K,K] for the set of bounded everywhere
defined linear operators acting from a Hilbert space K into a Hilbert space K. For
brevity we write [K] if K = K.

An operator A′ is called a proper extension of A if A′ is closed and satisfies
A ⊆ A′ ⊆ A∗. In order to describe the set of proper extensions of A with the help

of a boundary triplet Π = {H, Γ0, Γ1} for A∗ we have to consider the set C̃(H) of
closed linear relations in H, that is, the set of closed linear subspaces of H × H.
Linear operators in H are identified with their graphs, so that the set C(H) of

closed linear operators is viewed as a subset of C̃(H). For the usual definitions of
the linear operations with linear relations, the inverse, the resolvent set and the

spectrum we refer to [23]. Recall that the adjoint relation Θ∗ ∈ C̃(H) of a linear
relation Θ in H is defined as

Θ∗ :=

{(
k

k′

)
: (h′, k) = (h, k′) for all

(
h

h′

)
∈ Θ

}
(2.1)

and Θ is said to be symmetric (selfadjoint) if Θ ⊆ Θ∗ (resp. Θ = Θ∗). Note that
definition (2.1) extends the definition of the adjoint operator. A linear relation Θ
is called dissipative if ℑm(g′, g) ≤ 0 holds for all

( g
g′

)
∈ Θ and Θ is said to be

maximal dissipative if Θ is dissipative and each dissipative extension of Θ coincides
with Θ itself. In this case the upper half plane C+ = {λ ∈ C : ℑm λ > 0} belongs
to the resolvent set ρ(Θ). Furthermore, a linear relation Θ is called accumulative
(maximal accumulative) if −Θ is dissipative (resp. maximal dissipative). For a
maximal accumulative relation Θ we have C− = {λ ∈ C : ℑm λ < 0} ⊂ ρ(Θ).

With a boundary triplet Π = {H, Γ0, Γ1} for A∗ one associates two selfadjoint
extensions of A defined by

A0 := A∗ ↾ ker(Γ0) and A1 := A∗ ↾ ker(Γ1).

A description of all proper extensions of A is given in the next proposition. Note
also that the selfadjointness of A0 and A1 is a consequence of Proposition 2.2 (ii).

Proposition 2.2. Let A be a densely defined closed symmetric operator in H and
let Π = {H, Γ0, Γ1} be a boundary triplet for A∗. Then the mapping

Θ 7→ AΘ := Γ−1Θ =
{
f ∈ dom (A∗) : Γf = (Γ0f, Γ1f)⊤ ∈ Θ

}
(2.2)

establishes a bijective correspondence between the set C̃(H) and the set of proper

extensions of A. Moreover, for Θ ∈ C̃(H) the following assertions hold.
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(i) (AΘ)∗ = AΘ∗ .
(ii) AΘ is symmetric (selfadjoint) if and only if Θ is symmetric (resp. selfadjoint).
(iii) AΘ is dissipative (maximal dissipative) if and only if Θ is dissipative (resp.

maximal dissipative).
(iv) AΘ is accumulative (maximal accumulative) if and only if Θ is accumulative

(resp. maximal accumulative).
(v) AΘ is disjoint with A0, that is dom (AΘ) ∩ dom (A0) = dom (A), if and only

if Θ ∈ C(H). In this case the extension AΘ in (2.2) is given by

AΘ = A∗ ↾ ker
(
Γ1 − ΘΓ0

)
. (2.3)

We note that (2.3) holds also for linear relations Θ if the expression Γ1−ΘΓ0

is interpreted in the sense of linear relations.
In the following we shall often be concerned with simple symmetric operators.

Recall that a symmetric operator is said to be simple if there is no nontrivial sub-
space which reduces it to a selfadjoint operator. By [32] each symmetric operator

A in H can be written as the direct orthogonal sum Â⊕As of a simple symmetric

operator Â in the Hilbert space

Ĥ = clospan
{
ker(A∗ − λ) : λ ∈ C\R

}

and a selfadjoint operator As in H ⊖ Ĥ. Here clospan{·} denotes the closed linear

span of a set. Obviously A is simple if and only if Ĥ coincides with H.

2.2. Weyl functions and resolvents of extensions

Let, as in Section 2.1, A be a densely defined closed symmetric operator in H with
equal deficiency indices. If λ ∈ C is a point of regular type of A, i.e. (A − λ)−1 is
bounded, we denote the defect subspace of A by Nλ = ker(A∗ − λ). The following
definition can be found in [19, 20, 22].

Definition 2.3. Let Π = {H, Γ0, Γ1} be a boundary triplet for the operator A∗ and
let A0 = A∗ ↾ ker(Γ0). The operator-valued functions γ(·) : ρ(A0) → [H, H] and
M(·) : ρ(A0) → [H] defined by

γ(λ) :=
(
Γ0 ↾ Nλ

)−1
and M(λ) := Γ1γ(λ), λ ∈ ρ(A0), (2.4)

are called the γ-field and the Weyl function, respectively, corresponding to the
boundary triplet Π = {H, Γ0, Γ1}.

It follows from the identity dom (A∗) = ker(Γ0) +̇Nλ, λ ∈ ρ(A0), where as
above A0 = A∗ ↾ ker(Γ0), that the γ-field γ(·) in (2.4) is well defined. It is easily
seen that both γ(·) and M(·) are holomorphic on ρ(A0) and the relations

γ(µ) =
(
I + (µ − λ)(A0 − µ)−1

)
γ(λ), λ, µ ∈ ρ(A0), (2.5)

and

M(λ) − M(µ)∗ = (λ − µ̄)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0), (2.6)

are valid (see [20]). The identity (2.6) yields that M(·) is a Nevanlinna function,
that is, M(·) is holomorphic on C\R and takes values in [H], M(λ) = M(λ)∗ for
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all λ ∈ C\R and ℑm(M(λ)) is a nonnegative operator for all λ in the upper half
plane C+. Moreover, it follows that 0 ∈ ρ(ℑm(M(λ))) holds. It is important to
note that if the operator A is simple, then the Weyl function M(·) determines the
pair {A, A0} uniquely up to unitary equivalence, cf. [19, 20].

In the case that the deficiency indices n+(A) = n−(A) are finite the Weyl
function M corresponding to the boundary triplet Π = {H, Γ0, Γ1} is a matrix-
valued Nevanlinna function in the finite dimensional space H. From [24, 25] one
gets the existence of the (strong) limit

M(λ + i0) = lim
ǫ→+0

M(λ + iǫ)

from the upper half plane for a.e. λ ∈ R.
Let now Π = {H, Γ0, Γ1} be a boundary triplet for A∗ with γ-field γ(·)

and Weyl function M(·). The spectrum and the resolvent set of a proper (not
necessarily selfadjoint) extension of A can be described with the help of the Weyl

function. If AΘ ⊆ A∗ is the extension corresponding to Θ ∈ C̃(H) via (2.2), then a
point λ ∈ ρ(A0) belongs to ρ(AΘ) (σi(A0), i = p, c, r) if and only if 0 ∈ ρ(Θ−M(λ))
(resp. 0 ∈ σi(Θ − M(λ)), i = p, c, r). Moreover, for λ ∈ ρ(A0) ∩ ρ(AΘ) the well-
known resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ̄)∗ (2.7)

holds. Formula (2.7) is a generalization of the known Krein formula for canonical
resolvents. We emphasize that it is valid for any proper extension of A with a
non-empty resolvent set. It is worth to note that the Weyl function can also be
used to investigate the absolutely continuous and singular continuous spectrum of
proper extensions of A, cf. [14].

2.3. Spectral shift function and trace formula

M.G. Krein’s spectral shift function introduced in [33] is an important tool in the
spectral and perturbation theory of selfadjoint operators, in particular scattering
theory. A detailed review on the spectral shift function can be found in, e.g. [12, 13].
Furthermore we mention [26, 27, 28] as some recent papers on the spectral shift
function and its various applications.

Recall that for any pair of selfadjoint operators H1, H0 in a separable Hilbert
space H such that the resolvents differ by a trace class operator,

(H1 − λ)−1 − (H0 − λ)−1 ∈ S1(H), (2.8)

for some (and hence for all) λ ∈ ρ(H1)∩ ρ(H0), there exists a real valued function
ξ(·) ∈ L1

loc(R) satisfying the conditions

tr
(
(H1 − λ)−1 − (H0 − λ)−1

)
= −

∫

R

1

(t − λ)2
ξ(t) dt, (2.9)

λ ∈ ρ(H1) ∩ ρ(H0), and
∫

R

1

1 + t2
ξ(t) dt < ∞, (2.10)
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cf. [12, 13, 33]. Such a function ξ is called a spectral shift function of the pair
{H1, H0}. We emphasize that ξ is not unique, since simultaneously with ξ a func-
tion ξ + c, c ∈ R, also satisfies both conditions (2.9) and (2.10). Note that the
converse also holds, namely, any two spectral shift functions for a pair of selfad-
joint operators {H1, H0} satisfying (2.8) differ by a real constant. We remark that
(2.9) is a special case of the general formula

tr (φ(H1) − φ(H0)) =

∫

R

φ′(t) ξ(t) dt, (2.11)

which is valid for a wide class of smooth functions, cf. [47] for a large class of such
functions φ(·).

In Theorem 2.4 below we find a representation for the spectral shift function
ξΘ of a pair of selfadjoint operators AΘ and A0 which are both assumed to be
extensions of a densely defined closed simple symmetric operator A with equal
finite deficiency indices. For that purpose we use the definition

log(T ) := −i

∫ ∞

0

(
(T + it)−1 − (1 + it)−1IH

)
dt (2.12)

for an operator T in a finite dimensional Hilbert space H satisfying ℑm(T ) ≥ 0
and 0 6∈ σ(T ), see, e.g. [26, 48]. A straightforward calculation shows that the
relation

det(T ) = exp
(
tr
(
log(T )

))
(2.13)

holds. Observe that

tr
(
log(T )

)
= log

(
det(T )

)
+ 2kπi (2.14)

holds for some k ∈ Z. In [9, Theorem 4.1] it was shown that if Π = {H, Γ0, Γ1} is
a boundary triplet for A∗ with A0 = A∗ ↾ ker(Γ0) and AΘ = A∗ ↾ ker(Γ1 − ΘΓ0)
is a selfadjoint extension of A which corresponds to a selfadjoint matrix Θ in H,
then the limit limǫ→+0 log (M(λ + iǫ) − Θ) exist for a.e. λ ∈ R and

ξΘ(λ) :=
1

π
ℑm

(
tr
(
log(M(λ + i0) − Θ)

))
(2.15)

defines a spectral shift function for the pair {AΘ, A0}. We emphasize that Θ was
assumed to be a matrix in [9], so that ξΘ in (2.15) is a spectral shift function
only for special pairs {AΘ, A0}. Theorem 2.4 below extends the result from [9]
to the case of a selfadjoint relation Θ and hence to arbitrary pairs of selfadjoint
extensions {AΘ, A0} of A.

To this end we first recall that any selfadjoint relation Θ in H can be written
in the form

Θ = Θop ⊕ Θ∞ (2.16)
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with respect to the decomposition H = Hop ⊕ H∞, where Θop is a selfadjoint

operator in Hop := dom Θ and Θ∞ is a pure relation in H∞ := (domΘ)⊥, that is,

Θ∞ =

{(
0
h′

)
: h′ ∈ H∞

}
. (2.17)

Since in the following considerations the space H is finite dimensional we have
Hop = domΘ = dom Θop and Θop is a selfadjoint matrix. If M(·) is the Weyl
function corresponding to a boundary triplet Π = {H, Γ0, Γ1}, then

Mop(λ) := PopM(λ)ιop , (2.18)

is a [Hop ]-valued Nevanlinna function. Here Pop is the orthogonal projection from
H onto Hop and ιop denotes the canonical embedding of Hop in H. One verifies
that

(
Θ − M(λ)

)−1
= ιop

(
Θop − Mop(λ)

)−1
Pop (2.19)

holds for all λ ∈ C+. The following result generalizes [9, Theorem 4.1], see also
[34] for a special case.

Theorem 2.4. Let A be a densely defined closed simple symmetric operator in the
separable Hilbert space H with equal finite deficiency indices, let Π = {H, Γ0, Γ1}
be a boundary triplet for A∗ and let M(·) be the corresponding Weyl function.

Furthermore, let A0 = A∗ ↾ ker(Γ0) and let AΘ = A∗ ↾ Γ−1Θ, Θ ∈ C̃(H), be a
selfadjoint extension of A in H. Then the limit

lim
ǫ→+0

log
(
Mop(λ + iǫ) − Θop

)

exists for a.e. λ ∈ R and the function

ξΘ(λ) :=
1

π
ℑm

(
tr
(
log(Mop(λ + i0) − Θop)

))
(2.20)

is a spectral shift function for the pair {AΘ, A0} with 0 ≤ ξΘ(λ) ≤ dimHop .

Proof. Since λ 7→ Mop(λ) − Θop is a Nevanlinna function with values in [Hop ]
and 0 ∈ ρ(ℑm(Mop(λ))) for all λ ∈ C+, it follows that log(Mop(λ) − Θop) is
well-defined for all λ ∈ C+ by (2.12). According to [26, Lemma 2.8] the function
λ 7→ log(Mop(λ)−Θop), λ ∈ C+, is a [Hop ]-valued Nevanlinna function such that

0 ≤ ℑm
(
log(Mop(λ) − Θop)

)
≤ πIHop

holds for all λ ∈ C+. Hence the limit limǫ→+0 log(Mop(λ + iǫ) − Θop) exists for
a.e. λ ∈ R (see [24, 25] and Section 2.2) and λ 7→ tr(log(Mop(λ) − Θop)), λ ∈ C+,
is a scalar Nevanlinna function with the property

0 ≤ ℑm
(
tr(log(Mop(λ) − Θop))

)
≤ π dimHop , λ ∈ C+,

that is, the function ξΘ in (2.20) satisfies 0 ≤ ξΘ(λ) ≤ dimHop for a.e. λ ∈ R.
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In order to show that (2.9) holds with H1, H0 and ξ replaced by AΘ, A0 and
ξΘ, respectively, we note that the relation

d

dλ
tr
(
log(Mop(λ) − Θop)

)
= tr

(
(Mop (λ) − Θop )−1 d

dλ
Mop (λ)

)
(2.21)

is true for all λ ∈ C+. This can be shown in the same way as in the proof of [9,
Theorem 4.1]. ¿From (2.6) we find

γ(µ̄)∗γ(λ) =
M(λ) − M(µ̄)∗

λ − µ
, λ, µ ∈ C\R, λ 6= µ, (2.22)

and passing in (2.22) to the limit µ → λ one gets

γ(λ̄)∗γ(λ) =
d

dλ
M(λ). (2.23)

Making use of formula (2.7) for the canonical resolvents this implies

tr
(
(AΘ − λ)−1 − (A0 − λ)−1

)
= −tr

(
(M(λ) − Θ)−1γ(λ̄)∗γ(λ)

)

= −tr

(
(M(λ) − Θ)−1 d

dλ
M(λ)

)
(2.24)

for all λ ∈ C+. With respect to the decomposition H = Hop ⊕H∞ the operator

(
M(λ) − Θ

)−1 d

dλ
M(λ) = ιHop

(
Mop (λ) − Θop

)−1
Pop

d

dλ
M(λ)

is a 2 × 2 block matrix where the entries in the lower row are zero matrices and
the upper left corner is given by

(Mop (λ) − Θop )−1 d

dλ
Mop (λ).

Therefore (2.24) becomes

tr
(
(AΘ − λ)−1 − (A0 − λ)−1

)
= −tr

(
(Mop (λ) − Θop )−1 d

dλ
Mop (λ)

)
,

= − d

dλ
tr
(
log(Mop(λ) − Θop)

)
,

(2.25)

where we have use (2.21).
Further, by [26, Theorem 2.10] there exists a [Hop ]-valued measurable func-

tion t 7→ ΞΘop
(t), t ∈ R, such that ΞΘop

(t) = ΞΘop
(t)∗ and 0 ≤ ΞΘop

(t) ≤ IHop

for a.e. λ ∈ R and the representation

log(Mop(λ) − Θop) = C +

∫

R

ΞΘop
(t)
(
(t − λ)−1 − t(1 + t2)−1

)
dt, λ ∈ C+,

holds with some bounded selfadjoint operator C. Hence

tr
(
log(Mop(λ) − Θop)

)
= tr(C) +

∫

R

tr
(
ΞΘop

(t)
) (

(t − λ)−1 − t(1 + t2)−1
)

dt
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for λ ∈ C+ and we conclude from

ξΘ(λ) = lim
ǫ→+0

1

π
ℑm

(
tr(log(Mop(λ + iǫ) − Θop))

)

= lim
ǫ→+0

1

π

∫

R

tr
(
ΞΘop

(t)
)
ǫ
(
(t − λ)2 + ǫ2

)−1
dt

that ξΘ(λ) = tr(ΞΘop
(λ)) is true for a.e. λ ∈ R. Therefore we have

d

dλ
tr
(
log(Mop(λ) − Θop)

)
=

∫

R

(t − λ)−2ξΘ(t) dt

and together with (2.25) we immediately get the trace formula

tr
(
(AΘ − λ)−1 − (A0 − λ)−1

)
= −

∫

R

1

(t − λ)2
ξΘ(t) dt.

The integrability condition (2.10) holds because of [26, Theorem 2.10]. This com-
pletes the proof of Theorem 2.4. �

2.4. A representation of the scattering matrix

Let again A be a densely defined closed simple symmetric operator in the separable
Hilbert space H with equal finite deficiency indices and let Π = {H, Γ0, Γ1} be a
boundary triplet for A∗ with A0 = A∗ ↾ ker(Γ0). Let Θ be a selfadjoint relation in
H and let AΘ = A∗ ↾ Γ−1Θ be the corresponding selfadjoint extension of A in H.
Since dimH is finite by (2.7)

dim
(
ran

(
(AΘ − λ)−1 − (A0 − λ)−1

))
< ∞, λ ∈ ρ(AΘ) ∩ ρ(A0),

and therefore the pair {AΘ, A0} forms a so-called complete scattering system, that
is, the wave operators

W±(AΘ, A0) := s- lim
t→±∞

eitAΘe−itA0P ac(A0),

exist and their ranges coincide with the absolutely continuous subspace Hac(AΘ)
of AΘ, cf. [8, 31, 52, 53]. P ac(A0) denotes the orthogonal projection onto the
absolutely continuous subspace Hac(A0) of A0. The scattering operator SΘ of the
scattering system {AΘ, A0} is then defined by

SΘ := W+(AΘ, A0)
∗W−(AΘ, A0).

If we regard the scattering operator as an operator in Hac(A0), then SΘ is unitary,
commutes with the absolutely continuous part

Aac
0 := A0 ↾ dom (A0) ∩ H

ac(A0)

of A0 and it follows that SΘ is unitarily equivalent to a multiplication operator
induced by a family {SΘ(λ)}λ∈R of unitary operators in a spectral representation
of Aac

0 , see e.g. [8, Proposition 9.57]. This family is called the scattering matrix of
the scattering system {AΘ, A0}.

We recall a representation theorem for the scattering matrix {SΘ(λ)}λ∈R in
terms of the Weyl function M(·) of the boundary triplet Π = {H, Γ0, Γ1} from
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[9]. For this we consider the Hilbert space L2(R, dλ,H), where dλ is the Lebesgue
measure on R. Further, we set

HM(λ) := ran
(
ℑm(M(λ))

)
, M(λ) := M(λ + i0), (2.26)

which defines subspaces of H for a.e. λ ∈ R. By PM(λ) we denote the orthogo-
nal projection from H onto HM(λ). The family {PM(λ)}λ∈R is measurable. Hence

{PM(λ)}λ∈R induces a multiplication operator PM on L2(R, dλ,H) defined by

(PMf)(λ) = PM(λ)f(λ), f ∈ L2(R, dλ,H), (2.27)

which is an orthogonal projection. The subspace ran (PM ) is denoted by
L2(R, dλ,HM(λ)) in the following. We remark that L2(R, dλ,HM(λ)) can be re-
garded as the direct integral of the Hilbert spaces HM(λ), that is,

L2(R, dλ,HM(λ)) =

∫ ⊕
HM(λ) dλ.

The following theorem was proved in [9].

Theorem 2.5. Let A be a densely defined closed simple symmetric operator with
equal finite deficiency indices in the separable Hilbert space H and let Π =
{H, Γ0, Γ1} be a boundary triplet for A∗ with corresponding Weyl function M(·).
Furthermore, let A0 = A∗ ↾ ker(Γ0) and let AΘ = A∗ ↾ Γ−1Θ, Θ ∈ C̃(H), be a
selfadjoint extension of A in H. Then the following holds:

(i) Aac
0 is unitarily equivalent to the multiplication operator with the free variable

in the Hilbert space L2(R, dλ,HM(λ)).

(ii) In the spectral representation L2(R, dλ,HM(λ)) of Aac
0 the scattering matrix

{SΘ(λ)}λ∈R of the scattering system {AΘ, A0} admits the representation

SΘ(λ) = IHM(λ)
+ 2i

√
ℑm(M(λ))

(
Θ − M(λ)

)−1√ℑm(M(λ)) (2.28)

for a.e. λ ∈ R, where M(λ) = M(λ + i0).

In the next corollary we find a slightly more convenient representation of the
scattering matrix {SΘ(λ)}λ∈R of the scattering system {AΘ, A0} for the case that
Θ is a selfadjoint relation which is decomposed in the form Θ = Θop ⊕ Θ∞ with
respect to H = Hop ⊕ H∞, cf. (2.16) and (2.17). If M(·) is the Weyl function
corresponding to the boundary triplet Π = {H, Γ0, Γ1}, then the function

λ 7→ Mop (λ) = Pop M(λ)ιop

from (2.18) is a [Hop ]-valued Nevanlinna function, and the subspaces

HMop (λ) := ran
(
ℑm(Mop (λ + i0))

)

of HM(λ) are defined as in (2.26).
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Corollary 2.6. Let the assumptions be as in Theorem 2.5, let HMop (λ) be as above
and H∞

M(λ) := HM(λ)⊖HMop(λ). Then there exists a family V (λ) : HM(λ) → HM(λ)

of unitary operators such that the representation

SΘ(λ) = V (λ)
{
IH∞

M(λ)
⊕ SΘop

(λ)
}

V (λ)∗ (2.29)

holds with

SΘop
(λ) = IHMop(λ)

+ 2i

√
ℑm(Mop(λ))

(
Θop − Mop(λ)

)−1
√
ℑm(Mop(λ)) (2.30)

for a.e. λ ∈ R.

Proof. Using (2.28) and (2.19) we find the representation

SΘ(λ) = IHM(λ)
+ 2i

√
ℑm(M(λ)) ιop

(
Θop − Mop(λ)

)−1
Pop

√
ℑm(M(λ)) (2.31)

for a.e. λ ∈ R. From the polar decomposition of
√
ℑm(M(λ)) ιop we obtain a

family of isometric mappings Vop (λ) from HMop (λ) onto

ran
(√

ℑm(M(λ)) ιop
)
⊂ HM(λ)

defined by

Vop (λ)
√
ℑm(Mop (λ)) :=

√
ℑm(M(λ)) ιop .

Hence we find

SΘ(λ) = IHM(λ)
+ 2iVop(λ)

√
ℑm(Mop(λ))

×
(
Θop − Mop(λ)

)−1
√
ℑm(Mop(λ))Vop(λ)∗

for a.e. λ ∈ R. Since the Hilbert space HM(λ) is finite dimensional there is an
isometry V∞(λ) acting from H∞

M(λ) = HM(λ) ⊖ HMop(λ) into HM(λ) such that

V (λ) := V∞(λ) ⊕ Vop(λ) defines a unitary operator on HM(λ). This immediately
yields (2.29). �

2.5. Birman-Krein formula

An important relation between the spectral shift function and the scattering ma-
trix for a pair of selfadjoint operators for the case of a trace class perturbation
was found in [11] by Birman and Krein. Subsequently, this relation was called
the Birman-Krein formula. Under the assumption that AΘ and A0 are selfad-
joint extensions of a densely defined symmetric operator A with finite deficiency
indices and AΘ corresponds to a selfadjoint matrix Θ via a boundary triplet
Π = {H, Γ0, Γ1} for A∗ a simple proof for the Birman-Krein formula

det(SΘ(λ)) = exp
(
−2πiξΘ(λ)

)

was given in [9]. Here ξΘ(·) is the spectral shift function of the pair {AΘ, A0}
defined by (2.15) and the scattering matrix {SΘ(λ)}λ∈R is given by (2.28).
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The following theorem generalizes [9, Theorem 4.1] to the case of a selfadjoint
relation Θ (instead of a matrix), so that the Birman-Krein formula is verified for
all pairs of selfadjoint extensions of the underlying symmetric operator.

Theorem 2.7. Let A be a densely defined closed simple symmetric operator in the
separable Hilbert space H with equal finite deficiency indices, let Π = {H, Γ0, Γ1}
be a boundary triplet for A∗ and let M(·) be the corresponding Weyl function.

Furthermore, let A0 = A∗ ↾ ker(Γ0) and let AΘ = A∗ ↾ Γ−1Θ, Θ ∈ C̃(H), be a
selfadjoint extension of A in H. Then the spectral shift function ξΘ(·) in (2.20)
and the scattering matrix {SΘ(λ)}λ∈R of the pair {AΘ, A0} are related via

det
(
SΘ(λ)

)
= exp

(
−2πiξΘ(λ)

)
(2.32)

for a.e. λ ∈ R.

Proof. To verify the Birman-Krein formula we note that by (2.13)

exp
(
−2iℑm

(
tr(log(Mop(λ) − Θop))

))

= exp
(
−tr(log(Mop(λ) − Θop))

)
exp
(
tr(log(Mop(λ) − Θop))

)

=
det(Mop(λ) − Θop)

det(Mop(λ) − Θop)
=

det(Mop(λ)∗ − Θop)

det(Mop(λ) − Θop)

holds for all λ ∈ C+. Hence we find

exp
(
−2πiξΘ(λ)

)
=

det
(
Mop(λ + i0)∗ − Θop

)

det
(
Mop(λ + i0) − Θop

) (2.33)

for a.e. λ ∈ R, where Mop(λ + i0) := limǫ→+0 Mop(λ + iǫ) exists for a.e. λ ∈ R. It
follows from the representation of the scattering matrix in Corollary 2.6 and the
identity det(I + AB) = det(I + BA) that

det SΘ(λ)

= det
(
IHop

+ 2i
(
ℑm(Mop(λ + i0))

)(
Θop − Mop(λ + i0)

)−1
)

= det
(
IHop

+
(
Mop(λ + i0) − Mop(λ + i0)∗

)(
Θop − Mop(λ + i0)

)−1
)

= det
((

Mop(λ + i0)∗ − Θop

)
·
(
Mop(λ + i0) − Θop

)−1
)

=
det
(
Mop(λ + i0)∗ − Θop

)

det
(
Mop(λ + i0) − Θop

)

holds for a.e. λ ∈ R. Comparing this with (2.33) we obtain (2.32). �

3. Dissipative scattering systems

In this section we investigate scattering systems consisting of a maximal dissipative
and a selfadjoint operator, which are both extensions of a common symmetric
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operator with equal finite deficiency indices. We shall explicitly construct a so-
called dilation of the maximal dissipative operator and we calculate the spectral
shift function of the dissipative scattering system with the help of this dilation. It
will be shown that the scattering matrix of the dissipative scattering system and
this spectral shift function are connected via a modified Birman-Krein formula.

3.1. Selfadjoint dilations of maximal dissipative operators

Let A be a densely defined closed simple symmetric operator in the separable
Hilbert space H with equal finite deficiency indices n+(A) = n−(A) = n < ∞, let
Π = {H, Γ0, Γ1}, A0 = A∗ ↾ ker(Γ0), be a boundary triplet for A∗ and let D ∈ [H]
be a dissipative n × n-matrix, i.e. ℑm(D) ≤ 0. Then by Proposition 2.2 (iii) the
closed extension

AD = A∗ ↾ ker(Γ1 − DΓ0)

of A corresponding to Θ = D via (2.2) is maximal dissipative, that is, AD is
dissipative and maximal in the sense that each dissipative extension of AD in H

coincides with AD. Observe that C+ belongs to ρ(AD). For λ ∈ ρ(AD)∩ρ(A0) the
resolvent of the extension AD is given by

(AD − λ)−1 = (A0 − λ)−1 + γ(λ)
(
D − M(λ)

)−1
γ(λ̄)∗, (3.1)

cf. (2.7). With respect to the decomposition

D = ℜe (D) + iℑm(D)

we decompose H into the orthogonal sum of the finite dimensional subspaces
ker(ℑm(D)) and HD := ran (ℑm(D)),

H = ker(ℑm(D)) ⊕HD, (3.2)

and denote by PD the orthogonal projection from H onto HD and by ιD the
canonical embedding of HD into H. Since ℑm(D) ≤ 0 the selfadjoint matrix

−PDℑm(D) ιD ∈ [HD]

is strictly positive and therefore (see, e.g. [18, 22]) the function

λ 7→
{
−iPDℑm(D)ιD, λ ∈ C+,

iPDℑm(D) ιD, λ ∈ C−,
(3.3)

can be realized as the Weyl function corresponding to a boundary triplet of a
symmetric operator.

Here the symmetric operator and boundary triplet can be made more explicit,
cf. [10, Lemma 3.1]. In fact, let G be the symmetric first order differential operator
in the Hilbert space L2(R,HD) defined by

(Gg)(x) = −ig′(x), dom (G) =
{
g ∈ W 1

2 (R,HD) : g(0) = 0
}
. (3.4)
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Then G is simple, n±(G) = dimHD and the adjoint operator G∗g = −ig′ is defined
on

dom (G∗) = W 1
2 (R−,HD) ⊕ W 1

2 (R+,HD).

Moreover, the triplet ΠG = {HD, Υ0, Υ1}, where

Υ0g :=
1√
2

(
−PDℑm(D) ιD

)− 1
2
(
g(0+) − g(0−)

)
,

Υ1g :=
i√
2

(
−PDℑm(D) ιD

) 1
2
(
g(0+) + g(0−)

)
,

(3.5)

g ∈ dom (G∗), is a boundary triplet for G∗ and the extension G0 := G∗ ↾ ker(Υ0)
of G is the usual selfadjoint first order differential operator in L2(R,HD) with
domain dom (G0) = W 1

2 (R,HD) and σ(G0) = R. It is not difficult to see that the
defect subspaces of G are given by

ker(G∗ − λ) =

{
span {x 7→ eiλxχR+

(x)ξ : ξ ∈ HD}, λ ∈ C+,

span {x 7→ eiλxχR−
(x)ξ : ξ ∈ HD}, λ ∈ C−,

and therefore it follows that the Weyl function τ (·) corresponding to the boundary
triplet ΠG = {HD, Υ0, Υ1} is given by

τ (λ) =

{
−iPDℑm(D) ιD, λ ∈ C+,

iPDℑm(D) ιD, λ ∈ C−.
(3.6)

Let A be the densely defined closed simple symmetric operator in H from
above and let G be the first order differential operator in (3.4). Clearly

K :=

(
A 0
0 G

)

is a densely defined closed simple symmetric operator in the separable Hilbert
space

K := H ⊕ L2(R,HD)

with equal finite deficiency indices n±(K) = n±(A) + n±(G) = n + dimHD < ∞
and the adjoint is

K∗ =

(
A∗ 0
0 G∗

)
.

The elements in dom (K∗) = dom (A∗)⊕dom(G∗) will be written in the form f⊕g,

f ∈ dom (A∗), g ∈ dom (G∗). It is straightforward to check that Π̃ = {H̃, Γ̃0, Γ̃1},
where H̃ := H⊕HD,

Γ̃0(f ⊕ g) :=

(
Γ0f

Υ0g

)
and Γ̃1(f ⊕ g) :=

(
Γ1f −ℜe (D)Γ0f

Υ1g

)
, (3.7)

f ⊕ g ∈ dom (K∗), is a boundary triplet for K∗. If γ(·), ν(·) and M(·), τ (·) are
the γ-fields and Weyl functions of the boundary triplets Π = {H, Γ0, Γ1} and
ΠG = {HD, Υ0, Υ1}, respectively, then one easily verifies that the Weyl function



18 J. Behrndt, M.M. Malamud and H. Neidhardt

M̃(·) and γ-field γ̃(·) corresponding to the boundary triplet Π̃ = {H̃, Γ̃0, Γ̃1} are
given by

M̃(λ) =

(
M(λ) −ℜe (D) 0

0 τ (λ)

)
, λ ∈ C\R, (3.8)

and

γ̃(λ) =

(
γ(λ) 0

0 ν(λ)

)
, λ ∈ C\R, (3.9)

respectively. Observe that

K0 := K∗ ↾ ker(Γ̃0) =

(
A0 0
0 G0

)
(3.10)

holds. With respect to the decomposition

H̃ = ker(ℑm(D)) ⊕HD ⊕HD

of H̃ (cf. (3.2)) we define the linear relation Θ̃ in H̃ by

Θ̃ :=

{(
(u, v, v)⊤

(0,−w, w)⊤

)
: u ∈ ker(ℑm(D), v, w ∈ HD

}
. (3.11)

We leave it to the reader to check that Θ̃ is selfadjoint. Hence by Proposition 2.2
the operator

K̃ : = KeΘ = K∗ ↾ Γ̃−1Θ̃

=
{

f ⊕ g ∈ dom (A∗) ⊕ dom (G∗) :
(
Γ̃0(f ⊕ g), Γ̃1(f ⊕ g)

)⊤ ∈ Θ̃
}

is a selfadjoint extension of the symmetric operator K in K = H⊕L2(R,HD). The
following theorem was proved in [10], see also [45, 46] for a special case involving
Sturm-Liouville operators with dissipative boundary conditions.

Theorem 3.1. Let A, Π = {H, Γ0, Γ1} and AD = A∗ ↾ker(Γ1 − DΓ0) be as above.
Furthermore, let G and ΠG = {HD, Υ0, Υ1} be given by (3.4) and (3.5), respec-

tively, and let K = A ⊕ G. Then the selfadjoint extension K̃ of K has the form

K̃ = K∗ ↾



f ⊕ g ∈ dom (K∗) :

PDΓ0f − Υ0g = 0,

(I − PD)(Γ1 −ℜe (D)Γ0)f = 0,

PD(Γ1 −ℜe (D)Γ0)f + Υ1g = 0



 (3.12)

and K̃ is a minimal selfadjoint dilation of the maximal dissipative operator AD,
that is, for all λ ∈ C+

PH

(
K̃ − λ

)−1
↾H= (AD − λ)−1

holds and the minimality condition K = clospan{(K̃ − λ)−1H : λ ∈ C\R} is

satisfied. Moreover σ(K̃) = R.

We note that also in the case where the parameter D is not a dissipative
matrix but a maximal dissipative relation in H a minimal selfadjoint dilation of
AD can be constructed in a similar way as in Theorem 3.1, see [10, Remark 3.3]
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3.2. Spectral shift function and trace formula

In order to calculate the spectral shift function of the pair {K̃, K0} from (3.10) and

(3.12) we write the selfadjoint relation Θ̃ from (3.11) in the form Θ̃ = Θ̃op ⊕ Θ̃∞,
where

Θ̃op :=

{(
(u, v, v)⊤

(0, 0, 0)⊤

)
: u ∈ ker(ℑm(D)), v ∈ HD

}
(3.13)

is the zero operator in the space

H̃op :=








u

v

v


 : u ∈ ker(ℑm(D)), v ∈ HD



 (3.14)

and

Θ̃∞ :=

{(
(0, 0, 0)⊤

(0,−w, w)⊤

)
: w ∈ HD

}
(3.15)

is the purely multivalued relation in the space

H̃∞ = H̃ ⊖ H̃op =








0
−w

w


 : w ∈ HD



 . (3.16)

The orthogonal projection from H̃ onto H̃op will be denoted by P̃op and the

canonical embedding of H̃op in H̃ is denoted by ι̃op . As an immediate consequence
of Theorem 2.4 we find the following representation of a spectral shift function for

the pair {K̃, K0}.
Corollary 3.2. Let A and G be the symmetric operators from Section 3.1 and let

K = A ⊕ G. Furthermore, let Π̃ = {H̃, Γ̃0, Γ̃1} be the boundary triplet for K∗

from (3.7) with Weyl function M̃(·) given by (3.8) and define the [H̃op ]-valued
Nevanlinna function by

M̃op (λ) := P̃op M̃(λ) ι̃op .

Then the limit limǫ→+0 M̃op (λ + iǫ) exists for a.e. λ ∈ R and the function

ξeΘ(λ) :=
1

π
ℑm

(
tr
(
log(M̃op(λ + i0)

))
(3.17)

is a spectral shift function for the pair {K̃, K0} with 0 ≤ ξeΘ(λ) ≤ dim H̃op = n.

Observe that the spectral shift function in (3.17) satisfies the trace formula

tr
(
(K̃ − λ)−1 − (K0 − λ)−1

)
= −

∫

R

1

(t − λ)2
ξeΘ(t) dt (3.18)

for λ ∈ C\R. In the following theorem we calculate the spectral shift function of

{K̃, K0} in a more explicit form up to a constant 2k, k ∈ Z. We mention that
the spectral shift function in (3.19) below can be regarded as the spectral shift
function of the dissipative scattering system {AD, A0}, cf. [40, 41, 42].
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Theorem 3.3. Let A and G be the symmetric operators from Section 3.1 and let
Π = {H, Γ0, Γ1} be a boundary triplet for A∗ with corresponding Weyl function
M(·). Let D ∈ [H] be a dissipative n×n-matrix and let AD = A∗ ↾ ker(Γ1 −DΓ0)
be the corresponding maximal dissipative extension of A. Furthermore, let K0 be

as in (3.10) and let K̃ be the minimal selfadjoint dilation of AD from (3.12).

Then the spectral shift function ξeΘ(·) of the pair {K̃, K0} admits the repre-
sentation ξeΘ(·) = ηD(·) + 2k for some k ∈ Z, where

ηD(λ) :=
1

π
ℑm

(
tr
(
log(M(λ + i0) − D)

))
(3.19)

for a.e. λ ∈ R, and the modified trace formulas

tr
(
(AD − λ)−1 − (A0 − λ)−1

)
= −

∫

R

1

(t − λ)2
ηD(t) dt, λ ∈ C+, (3.20)

and

tr
(
(A∗

D − λ)−1 − (A0 − λ)−1
)

= −
∫

R

1

(t − λ)2
ηD(t) dt, λ ∈ C−, (3.21)

are valid.

Proof. With the help of the operator

V : H −→ H, x 7→
(

(I − PD)x
1√
2
PDx

)

and the unitary operator

Ṽ : H −→ H̃op , x 7→




(I − PD)x
1√
2
PDx

1√
2
PDx




one easily verifies that

Ṽ ∗M̃op(λ)Ṽ = V

(
M(λ) −ℜe (D) +

(
0 0
0 τ (λ)

))
V

= V (M(λ) − D)V

(3.22)

holds for all λ ∈ C+. Using this relation and the definition of log(·) in (2.12) we
get

tr
(
log
(
M̃op(λ)

))
= tr

(
log
(
Ṽ ∗M̃op(λ)Ṽ

))
= tr

(
log
(
V (M(λ) − D)V

))

and therefore (2.14) (see also [29]) implies

d

dλ
tr
(
log
(
M̃op(λ)

))
=

d

dλ
log
(
det
(
V (M(λ) − D)V

))

=
d

dλ
log
(
det(M(λ) − D)

)
+

d

dλ
log
(
detV 2

)
=

d

dλ
tr
(
log(M(λ) − D)

)
.

Hence tr(log(M̃op(·))) and tr(log(M(·) − D)) differ by a constant. ¿From

exp
(
tr
(
log
(
M̃op(λ)

)))
= exp

(
tr
(
log(M(λ) − D)

))
det V 2
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we conclude that there exists k ∈ Z such that

ℑm
(
tr
(
log
(
M̃op(λ)

)))
= ℑm

(
tr
(
log(M(λ) − D)

))
+ 2kπ

holds. Hence it follows that the spectral shift function ξeΘ of the pair {K̃, K0} in
(3.17) and the function ηD(·) in (3.19) differ by 2k for some k ∈ Z.

Next we verify that the trace formulas (3.20) and (3.21) hold. From (2.7) we
obtain

tr
(
(K̃ − λ)−1 − (K0 − λ)−1

)
= tr

(
γ̃(λ)

(
Θ̃ − M̃(λ)

)−1
γ̃(λ̄)∗

)

= tr
((

Θ̃ − M̃(λ)
)−1

γ̃(λ̄)∗γ̃(λ)
) (3.23)

for λ ∈ C\R. As in (2.23) and (2.24) we find

tr
(
(K̃ − λ)−1 − (K0 − λ)−1

)
= tr

((
Θ̃ − M̃(λ)

)−1 d

dλ
M̃(λ)

)
. (3.24)

With the same argument as in the proof of Theorem 2.4 we then conclude

tr
(
(K̃ − λ)−1 − (K0 − λ)−1

)
= tr

((
Θ̃op − M̃op(λ)

)−1 d

dλ
M̃op(λ)

)
. (3.25)

Since Θ̃op = 0 and Ṽ is unitary it follows from (3.22) that

(
Θ̃op − M̃op(λ)

)−1
= −M̃op(λ)−1 = −Ṽ V −1

(
M(λ) − D

)−1
V −1Ṽ ∗

and

d

dλ
M̃op(λ) = Ṽ V

d

dλ
M(λ)V Ṽ ∗ (3.26)

holds. This together with (3.25) implies

tr
(
(K̃ − λ)−1 − (K0 − λ)−1

)
= tr

(
−(M(λ) − D)−1 d

dλ
M(λ)

)

for all λ ∈ C+ and with (2.23) we get

tr
(
(K̃ − λ)−1 − (K0 − λ)−1

)
= tr

(
γ(λ)(D − M(λ))−1γ(λ̄)∗

)

as in (2.24). Using (3.1) we obtain

tr
(
(K̃ − λ)−1 − (K0 − λ)−1

)
= tr

(
(AD − λ)−1 − (A0 − λ)−1

)
(3.27)

for λ ∈ C+. Taking into account (3.18) we prove (3.20) and (3.21) follows by taking
adjoints. �
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3.3. Scattering matrices of dissipative and Lax-Phillips scattering systems

In this section we recall some results from [10] on the interpretation of the diagonal

entries of the scattering matrix of {K̃, K0} as scattering matrices of a dissipative
and a Lax-Phillips scattering system. For this, let again A and G be the symmetric
operators from Section 3.1 and let Π = {H, Γ0, Γ1} be a boundary triplet for A∗

with Weyl function M(·). Let D ∈ [H] be a dissipative n × n-matrix and let
AD = A∗ ↾ ker(Γ1 − DΓ0) be the corresponding maximal dissipative extension of

A. Furthermore, let Π̃ = {H̃, Γ̃0, Γ̃1} be the boundary triplet for K∗ = A∗ ⊕ G∗

from (3.7) with Weyl function M̃(·) given by (3.8), let Θ̃ be as in (3.11) and let K̃

be the minimal selfadjoint dilation of AD given by (3.12). It follows immediately

from Theorem 2.5 that the scattering matrix {S̃(λ)}λ∈R of the complete scattering

system {K̃, K0} is given by

S̃(λ) = I eHfM(λ)
+ 2i

√
ℑm(M̃(λ))

(
Θ̃ − M̃(λ)

)−1
√
ℑm(M̃(λ))

in the spectral representation L2(R, dλ,HfM(λ)
) of Kac

0 . Here the spaces

H̃fM(λ)
:= ran

(
ℑm(M̃(λ + i0))

)

for a.e. λ ∈ R are defined in analogy to (2.26). This representation can be made
more explicit, cf. [10, Theorem 3.6].

Theorem 3.4. Let A, Π = {H, Γ0, Γ1}, M(·) and AD be as above, let K0 = A0⊕G0

and let K̃ be the minimal selfadjoint dilation of AD from Theorem 3.1. Then the
following holds:

(i) Kac
0 = Aac

0 ⊕G0 is unitarily equivalent to the multiplication operator with the
free variable in L2(R, dλ,HM(λ) ⊕HD).

(ii) In L2(R, dλ,HM(λ) ⊕ HD) the scattering matrix {S̃(λ)}λ∈R of the complete

scattering system {K̃, K0} is given by

S̃(λ) =

(
IHM(λ)

0
0 IHD

)
+ 2i

(
T̃11(λ) T̃12(λ)

T̃21(λ) T̃22(λ)

)
∈ [HM(λ) ⊕HD],

for a.e. λ ∈ R, where

T̃11(λ) =
√
ℑm(M(λ))

(
D − M(λ)

)−1√ℑm(M(λ)),

T̃12(λ) =
√
ℑm(M(λ))

(
D − M(λ)

)−1√−ℑm(D),

T̃21(λ) =
√
−ℑm(D)

(
D − M(λ)

)−1√ℑm(M(λ)),

T̃22(λ) =
√
−ℑm(D)

(
D − M(λ)

)−1√−ℑm(D)

and M(λ) = M(λ + i0).
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Observe that the scattering matrix {S̃(λ)}λ∈R of the scattering system

{K̃, K0} depends only on the dissipative matrix D and the Weyl function M(·)
of the boundary triplet Π = {H, Γ0, Γ1} for A∗, i.e., {S̃(λ)}λ∈R is completely
determined by objects corresponding to the operators A, A0 and AD in H.

In the following we will focus on the so-called dissipative scattering system
{AD, A0} and we refer the reader to [15, 16, 36, 37, 38, 39, 40, 41, 42] for a
detailed investigation of such scattering systems. We recall that the wave operators
W±(AD, A0) of the dissipative scattering system {AD, A0} are defined by

W+(AD, A0) = s- lim
t→+∞

eitA∗

De−itA0P ac(A0)

and

W−(AD, A0) = s- lim
t→+∞

e−itADeitA0P ac(A0).

The scattering operator

SD := W+(AD, A0)
∗W−(AD, A0)

of the dissipative scattering system {AD, A0} will be regarded as an operator
in Hac(A0). Then SD is a contraction which in general is not unitary. Since SD

and Aac
0 commute it follows that SD is unitarily equivalent to a multiplication

operator induced by a family {SD(λ)}λ∈R of contractive operators in a spectral
representation of Aac

0 .
With the help of Theorem 3.4 we obtain a representation of the scattering

matrix of the dissipative scattering system {AD, A0} in terms of the Weyl function
M(·) of Π = {H, Γ0, Γ1} in the following corollary, cf. [10, Corollary 3.8].

Corollary 3.5. Let A, Π = {H, Γ0, Γ1}, A0 = A∗ ↾ ker(Γ0) and M(·) be as above
and let AD = A∗ ↾ ker(Γ1 − DΓ0), D ∈ [H], be maximal dissipative. Then the
following holds:

(i) Aac
0 is unitarily equivalent to the multiplication operator with the free variable

in L2(R, dλ,HM(λ)).
(ii) The scattering matrix {SD(λ)} of the dissipative scattering system {AD, A0}

is given by the left upper corner of the scattering matrix {S̃(λ)} in Theo-
rem 3.4, i.e.

SD(λ) = IHM(λ)
+ 2i

√
ℑm(M(λ))

(
D − M(λ)

)−1√ℑm(M(λ))

for all a.e. λ ∈ R, where M(λ) = M(λ + i0).

In the following we are going to interpret the right lower corner of the scat-

tering matrix {S̃(λ)} of {K̃, K0} as the scattering matrix corresponding to a Lax-
Phillips scattering system, see e.g. [8, 35] for further details. To this end we de-
compose the space L2(R,HD) into the orthogonal sum of the subspaces

D− := L2(R−,HD) and D+ := L2(R+,HD). (3.28)
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Then clearly

K = H ⊕ L2(R,HD) = H ⊕D− ⊕D+

and we agree to denote the elements in K in the form f ⊕g−⊕g+, f ∈ H, g± ∈ D±
and g = g− ⊕ g+ ∈ L2(R,HD). By J+ and J− we denote the operators

J+ : L2(R,HD) → K, g 7→ 0 ⊕ 0 ⊕ g+,

and

J− : L2(R,HD) → K, g 7→ 0 ⊕ g− ⊕ 0,

respectively. Observe that J+ + J− is the embedding of L2(R,HD) into K. The
subspaces D+ and D− are so-called outgoing and incoming subspaces for the self-

adjoint dilation K̃ in K, that is, one has

e−it eKD± ⊆ D±, t ∈ R±, and
⋂

t∈R

e−it eKD± = {0}.

If, in addition, σ(A0) is singular, then
⋃

t∈R

e−it eKD+ =
⋃

t∈R

e−it eKD− = K
ac(K̃) (3.29)

holds. Hence {K̃,D−,D+} is a Lax-Phillips scattering system and, in particular,
the Lax-Phillips wave operators

Ω± := s- lim
t→±∞

eit eKJ±e−itG0 : L2(R,HD) → K (3.30)

exist, cf. [8]. Since s-limt→±∞ J∓e−itG0 = 0 the restrictions of the wave operators

W±(K̃, K0) of the scattering system {K̃, K0} onto L2(R,HD) coincide with the
Lax-Phillips wave operators Ω±,

W±(K̃, K0)ιL2 = s- lim
t→±∞

eit eK(J+ + J−)e−itG0 = Ω±.

Here ιL2 is the canonical embedding of L2(R,HD) into K. Hence the Lax-Phillips
scattering operator SLP := Ω∗

+Ω− admits the representation

SLP = PL2S(K̃, K0) ιL2

where S(K̃, K0) = W+(K̃, K0)
∗W−(K̃, K0) is the scattering operator of the

scattering system {K̃, K0} and PL2 is the orthogonal projection from K onto
L2(R,HD). Hence the Lax-Phillips scattering operator SLP is a contraction in
L2(R,HD) and commutes with the selfadjoint differential operator G0. There-
fore SLP is unitarily equivalent to a multiplication operator induced by a family
{SLP (λ)}λ∈R of contractive operators in L2(R,HD); this family is called the Lax-
Phillips scattering matrix.

The above considerations together with Theorem 3.4 immediately imply the
following corollary on the representation of the Lax-Phillips scattering matrix, cf.
[10, Corollary 3.10].
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Corollary 3.6. Let {K̃,D−,D+} be the Lax-Phillips scattering system considered
above and let A, Π = {H, Γ0, Γ1}, AD, M(·) and G0 be as in the beginning of this
section. Then the following holds:

(i) G0 = Gac
0 is unitarily equivalent to the multiplication operator with the free

variable in L2(R,HD) = L2(R, dλ,HD).
(ii) In L2(R, dλ,HD) the Lax-Phillips scattering matrix {SLP (λ)}λ∈R admits the

representation

SLP (λ) = IHD
+ 2i

√
−ℑm(D)

(
D − M(λ)

)−1√−ℑm(D) (3.31)

for a.e. λ ∈ R, where M(λ) = M(λ + i0).

Let again AD be the maximal dissipative extension of A corresponding to
the maximal dissipative matrix D ∈ [H] and let HD = ran (ℑm(D)). By [21] the
characteristic function WAD

(·) of the AD is given by

WAD
: C− → [HD]

µ 7→ IHD
− 2i

√
−ℑm(D)

(
D∗ − M(µ)

)−1√−ℑm(D).
(3.32)

It determines a completely non-selfadjoint part of AD uniquely up to unitary
equivalence.

Comparing (3.31) and (3.32) we obtain the famous relation between the Lax-
Phillips scattering matrix and the characteristic function discovered originally by
Adamyan and Arov in [1, 2, 3, 4], cf. [10, Corollary 3.11] for another proof and
further development.

Corollary 3.7. Let the assumption be as in Corollary 3.6. Then the Lax-Phillips
scattering matrix {SLP (λ)}λ∈R and the characteristic function WAD

(·) of the max-
imal dissipative operator AD are related by

SLP (λ) = WAD
(λ − i0)∗

for a.e λ ∈ R.

3.4. A modified Birman-Krein formula for dissipative scattering systems

Let {K̃, K0} be the complete scattering system from the previous subsections and

let {S̃(λ)}λ∈R be the corresponding scattering matrix. If ξeΘ(·) is the spectral shift
function in (3.17), then the Birman-Krein formula

det(SeΘ(λ)) = exp
(
−2πiξeΘ(λ)

)
(3.33)

holds for a.e. λ ∈ R, see Theorem 2.7. In the next theorem we prove a variant of
the Birman-Krein formula for dissipative scattering systems.

Theorem 3.8. Let A and G be the symmetric operators from Section 3.1 and let
Π = {H, Γ0, Γ1} be a boundary triplet for A∗ with Weyl function M(·). Let D ∈ [H]
be dissipative and let AD = A∗ ↾ ker(Γ1 −DΓ0) be the corresponding maximal dis-
sipative extension of A Then the spectral shift function ηD(·) of the pair {AD, A0}
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given by (3.19) and the scattering matrices {SD(λ)}λ∈R and {SLP (λ)}λ∈R from
Corollary 3.5 and Corollary 3.6 are related via

det(SD(λ)) = det(SLP (λ)) exp
(
−2πiηD(λ)

)
(3.34)

and

det(SLP (λ)) = det(SD(λ)) exp
(
−2πiηD(λ)

)
(3.35)

for a.e. λ ∈ R.

Proof. Let K̃ be the minimal selfadjoint dilation of AD from (3.12) corresponding

to the selfadjoint parameter Θ̃ in (3.11) via the boundary triplet Π̃ = {H̃, Γ̃0, Γ̃1}.
Taking into account Corollary 2.6 it follows that the scattering matrix {S̃(λ)}λ∈R

of the scattering system {K̃, K0} satisfies

det(S̃(λ)) = det(S̃eΘop
(λ)), (3.36)

where Θ̃op is the operator part of Θ̃ from (3.13) and

S̃eΘop
(λ) = I eHfMop(λ)

+ 2i

√
ℑm(M̃op(λ))

(
Θ̃op − M̃op(λ)

)−1
√
ℑm(M̃op(λ))

for a.e. λ ∈ R. Making use of Θ̃op = 0 (see (3.13)) and formula (3.22) we obtain

det
(
S̃eΘop

(λ)
)

= det
(
I eHfMop(λ)

+ 2iℑm
(
M̃op(λ)

)(
Θ̃op − M̃op(λ)

)−1
)

= det
(
IH − 2iℑm(M(λ) − D)(M(λ) − D)−1

)

=
det(M(λ)∗ − D∗)

det(M(λ) − D)
.

Hence

det(M(λ)∗ − D)

det(M(λ)∗ − D∗)
det
(
S̃eΘop

(λ)
)

=
det(M(λ)∗ − D)

det(M(λ) − D)
.

Obviously we have

det(M(λ)∗ − D)

det(M(λ)∗ − D∗)
= det

(
IH − 2iℑm(D)(M(λ)∗ − D∗)−1

)

and since

det
(
IH − 2iℑm(D)(M(λ)∗ − D∗)−1

)

= det
(
IH − 2i

√
−ℑm(D)(D∗ − M(λ)∗)−1

√
−ℑm(D)

)

= det(SLP (λ))

we get

det(M(λ)∗ − D)

det(M(λ)∗ − D∗)
det
(
S̃eΘop

(λ)
)

= det(SLP (λ)) det
(
S̃eΘop

(λ)
)
.
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Similarly, we find

det(M(λ)∗ − D)

det(M(λ) − D)

= det
(
IH + 2i

√
ℑm(M(λ)(D − M(λ))−1

√
ℑm(M(λ)

)

= det(SD(λ)),

so that the relation

det(SLP (λ)) det
(
S̃eΘop

(λ)
)

= det(SD(λ))

holds for a.e. λ ∈ R. Hence the Birman-Krein formula

det
(
S̃(λ)

)
= exp

(
−2πiξeΘ(λ)

)
,

which connects the scattering matrix of {K̃, K0} and the spectral shift function
ξeΘ(·) in (3.17), Theorem 3.3 and (3.36) immediately imply (3.34) and (3.35) for
a.e. λ ∈ R. �

4. Coupled scattering systems

In the following we investigate so-called coupled scattering systems in a similar
form as in [10], where, roughly speaking, the fixed dissipative scattering system in
the previous section is replaced by a family of dissipative scattering systems which
can be regarded as an open quantum system. These maximal dissipative operators
form a Štraus family of extensions of a symmetric operator and their resolvents
coincide pointwise with the resolvent of a certain selfadjoint operator in a bigger
Hilbert space. The spectral shift functions of the dissipative scattering systems are
explored and a variant of the Birman-Krein formula is proved.

4.1. Štraus family and coupling of symmetric operators

Let A be a densely defined closed simple symmetric operator with equal finite de-
ficiency indices n±(A) in the separable Hilbert space H and let ΠA = {H, Γ0, Γ1}
be a boundary triplet for A∗ with γ-field γ(·) and Weyl function M(·). Further-
more, let T be a densely defined closed simple symmetric operator with equal
finite deficiency indices n±(T ) = n±(A) in the separable Hilbert space G and let
ΠT = {H, Υ0, Υ1} be a boundary triplet of T ∗ with γ-field ν(·) and Weyl function
τ (·).

Observe that −τ (λ) ∈ [H] is a dissipative matrix for each λ ∈ C+ and
therefore by Proposition 2.2

A−τ(λ) := A∗ ↾ ker
(
Γ1 + τ (λ)Γ0

)
, λ ∈ C+, (4.1)

is a family of maximal dissipative extensions of A in H. This family is called the
Štraus family of A associated with τ . Since the limit τ (λ) := τ (λ + i0) exists for
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a.e. λ ∈ R the Štraus family admits an extension to the real axis for a.e. λ ∈ R.
Analogously the Štraus family

T−M(λ) := T ∗ ↾ ker
(
Υ1 + M(λ)Υ0

)
, λ ∈ C+, (4.2)

of T associated with M consists of maximal dissipative extensions of T in G and
admits an extension to the real axis for a.e. λ ∈ R. Sometimes it is convenient to
define the Štraus family also on C−, in this case the extensions A−τ(λ) and T−M(λ)

are maximal accumulative for λ ∈ C−, cf. Proposition 2.2.
In a similar way as in Section 3.1 we consider the densely defined closed

simple symmetric operator

L :=

(
A 0
0 T

)

with equal finite deficiency indices n±(L) = 2n±(A) = 2n±(T ) in the separable

Hilbert space L = H ⊕ G. Then obviously ΠL = {H̃, Γ̃0, Γ̃1}, where H̃ := H⊕H

Γ̃0(f ⊕ g) :=

(
Γ0f

Υ0g

)
and Γ̃1(f ⊕ g) :=

(
Γ1f

Υ1g

)
, (4.3)

f ∈ dom (A∗), g ∈ dom (T ∗), is a boundary triplet for the adjoint

L∗ =

(
A∗ 0
0 T ∗

)
.

The γ-field γ̃(·) and Weyl function M̃(·) corresponding to the boundary triplet

ΠL = {H̃, Γ̃0, Γ̃1} are given by

γ̃(λ) =

(
γ(λ) 0

0 ν(λ)

)
and M̃(λ) =

(
M(λ) 0

0 τ (λ)

)
, λ ∈ C\R,

cf. (3.8) and (3.9). In the sequel we investigate the scattering system consisting of
the selfadjoint operator

L0 := L∗ ↾ ker(Γ̃0) =

(
A0 0
0 G0

)
, (4.4)

where A0 = A∗ ↾ ker(Γ0) and T0 = T ∗ ↾ ker(Υ0), and the selfadjoint operator

L̃ = L∗ ↾ Γ̃−1Θ which corresponds to the selfadjoint relation

Θ :=

{(
(v, v)⊤

(w,−w)⊤

)
: v, w ∈ H

}
(4.5)

in H̃. The selfadjoint extension L̃ of L is sometimes called a coupling of the sub-

systems {H, A} and {G, T}, cf. [17]. In the following theorem L̃ and its connection
to the Štraus family in (4.1) is made explicit, cf. [10, 17].

Theorem 4.1. Let A, ΠA = {H, Γ0, Γ1}, M(·), T , ΠT = {H, Υ0, Υ1}, τ (·) and L

be as above. Then the selfadjoint extension L̃ of L in L is given by

L̃ = L∗ ↾

{
f ⊕ g ∈ dom (L∗) :

Γ0f − Υ0g = 0
Γ1f + Υ1g = 0

}
(4.6)
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and satisfies

PH

(
L̃ − λ)−1 ↾H=

(
A−τ(λ) − λ

)−1
and PG

(
L̃ − λ)−1 ↾G=

(
T−M(λ) − λ

)−1

for all λ ∈ C\R. Moreover, the following minimality conditions hold:

L = clospan
{(

L̃ − λ
)−1

H : λ ∈ C\R
}

= clospan
{(

L̃ − λ
)−1

K : λ ∈ C\R
}
.

4.2. Spectral shift function and trace formula for a coupled scattering system

Next we calculate the spectral shift function of the complete scattering system

{L̃, L0}. By Theorem 2.4 a spectral shift function ξ̃Θ(·) is given by

ξ̃Θ(λ) =
1

π
ℑm

(
tr
(
log(M̃op(λ + i0) − Θop)

))
(4.7)

for a.e. λ ∈ R, where

Θop :=

{(
(v, v)⊤

(0, 0)⊤

)
: v ∈ H

}
(4.8)

is the operator part of Θ in the space

H̃op :=

{(
v

v

)
: v ∈ H

}
⊂ H̃ (4.9)

and M̃op (·) = P̃op M̃(·)ι̃op denotes compression of the Weyl function M̃(·) in H̃
onto H̃op . Observe that Θop = 0 so that the spectral shift function ξ̃Θ(·) in (4.7)
has the form

ξ̃Θ(λ) =
1

π
ℑm

(
tr
(
log(M̃op(λ + i0))

))
(4.10)

for a.e. λ ∈ R. Furthermore, the trace formula

tr
(
(L̃ − λ)−1 − (L0 − λ)−1

)
= −

∫

R

1

(t − λ)2
ξ̃Θ(t) dt (4.11)

holds for all λ ∈ C\R.

Theorem 4.2. Let A, ΠA = {H, Γ0, Γ1}, M(·) and T , ΠT = {H, Υ0, Υ1}, τ (·) be

as in the beginning of Section 4.1. Then the spectral shift function ξ̃Θ(·) of the pair

{L̃, L0} admits the representation

ξ̃Θ(λ) =
1

π
ℑm

(
tr
(
log(M(λ + i0) + τ (λ + i0))

))
+ 2k (4.12)

for some k ∈ Z and a.e. λ ∈ R. Moreover, the modified trace formula

tr
(
(A−τ(λ) − λ)−1 − (A0 − λ)−1

)
+

tr
(
(T−M(λ) − λ)−1 − (T0 − λ)−1

)
= −

∫

R

1

(t − λ)2
ξ̃Θ(t) dt

(4.13)

holds for all λ ∈ C\R.
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Proof. With the help of the unitary operator

Ṽ : H −→ H̃op , x 7→ 1√
2

(
x

x

)
, (4.14)

we obtain

Ṽ ∗M̃op(λ)Ṽ =
1

2
(M(λ) + τ (λ)) . (4.15)

We conclude in the same way as in the proof of Theorem 3.3 that the functions

tr(log(M̃op (·))) and tr(log(M(·) + τ (·))) differ by a constant and

exp
(
tr
(
log(M̃op (λ))

))
= exp

(
tr
(
log(M(λ) + τ (λ))

))
det 1

2IH

implies that there exists k ∈ Z such that

ℑm
(
tr
(
log(M̃op (λ))

))
= ℑm

(
tr
(
log(M(λ) + τ (λ))

))
+ 2kπ

holds. This together with (4.10) implies (4.12).
In order to verify the trace formula (4.13) note that by (2.7) we have

(L̃ − λ)−1 − (L0 − λ)−1 = γ̃(λ)
(
Θ̃ − M̃(λ)

)−1
γ̃(λ̄)∗ (4.16)

for all λ ∈ ρ(L̃) ∩ ρ(L0). Taking into account (2.19) we get

(L̃ − λ)−1 − (L0 − λ)−1 = −γ̃(λ)ι̃op
(
M̃op(λ)

)−1
P̃opγ̃(λ̄)∗ (4.17)

and by using
(
M̃op (λ)

)−1
= 2Ṽ

(
(M(λ) + τ (λ)

)−1
Ṽ ∗,

cf. (4.15), we obtain

(L̃ − λ)−1 − (L0 − λ)−1 = −2γ̃(λ)ι̃op Ṽ
(
M(λ) + τ (λ)

)−1
Ṽ ∗P̃op γ̃(λ̄)∗ (4.18)

which yields

tr
(
(L̃ − λ)−1 − (L0 − λ)−1

)
= −2tr

((
M(λ) + τ (λ)

)−1
Ṽ ∗P̃op γ̃(λ̄)∗γ̃(λ)ι̃op Ṽ

)

(4.19)

for all λ ∈ ρ(L̃) ∩ ρ(L0). As in (2.6) we find

P̃op γ̃(λ̄)∗γ̃(λ)ι̃op = P̃op
d

dλ
M̃(λ)ι̃op =

d

dλ
M̃op (λ) (4.20)

and with the help of (4.15) we conclude

Ṽ ∗P̃op γ̃(λ̄)∗γ̃(λ)ι̃op Ṽ =
1

2

(
d

dλ
M(λ) +

d

dλ
τ (λ)

)
. (4.21)

Hence

tr
(
(L̃ − λ)−1 − (L0 − λ)−1

)

= −tr

((
M(λ) + τ (λ)

)−1
(

d

dλ
M(λ) +

d

dλ
τ (λ)

))
.
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Using again (2.6) we find

tr
(
(L̃ − λ)−1 − (L0 − λ)−1

)

= −tr
(
γ(λ)(M(λ) + τ (λ))−1γ(λ̄)∗

)
− tr

(
ν(λ)(M(λ) + τ (λ))−1ν(λ̄)∗

)
.

By (2.7) the resolvents of the Štraus family of A associated with τ and the Štraus
family of T associated with M are given by

(
A−τ(λ) − λ

)−1 − (A0 − λ)−1 = −γ(λ)
(
M(λ) + τ (λ)

)−1
γ(λ̄)∗ (4.22)

and
(
T−M(λ) − λ

)−1 − (T0 − λ)−1 = −ν(λ)
(
M(λ) + τ (λ)

)−1
ν(λ̄)∗, (4.23)

respectively. Taking into account (4.22), (4.23) and (4.11) we prove (4.13). �

Let us consider the the spectral shift function η−τ(µ)(·) of the dissipative scattering
system {A−τ(µ), A0} for those µ ∈ R for which the limit τ (µ) := τ (µ + i0) exists.
By Theorem 3.3 the function η−τ(µ)(·) admits the representation

η−τ(µ)(λ) =
1

π
ℑm

(
tr
(
log(M(λ + i0) + τ (µ))

))
(4.24)

for a.e. λ ∈ R. Moreover, we have

tr
(
(A−τ(µ) − λ)−1 − (A0 − λ)−1

)
= −

∫

R

1

(t − λ)2
η−τ(µ)(t) dt

for all λ ∈ C+, cf. Theorem 3.3. Similarly, we introduce the spectral shift function
η−M(µ)(·) of the dissipative scattering system {T−M(µ), T0} for those µ ∈ R for
which the limit M(µ) = M(µ + i0) exists. It follows that

η−M(µ)(λ) =
1

π
ℑm

(
tr
(
log(M(µ) + τ (λ + i0))

))
(4.25)

holds for a.e. λ ∈ R and

tr
(
(T−M(µ) − λ)−1 − (T0 − λ)−1

)
= −

∫

R

1

(t − λ)2
η−M(µ)(t) dt

is valid for λ ∈ C+. Hence we get immediately the following corollary.

Corollary 4.3. Let the assumptions be as in Theorem 4.2, let L0, L̃ be as in (4.4),
(4.6) and let η−τ(µ)(·) and η−M(µ)(·) be the spectral shift functions in (4.24) and

(4.25), respectively. Then the spectral shift function ξ̃Θ(·) of the pair {L̃, L0} admits
the representation

ξ̃Θ(λ) = η−τ(λ)(λ) + 2k = η−M(λ)(λ) + 2l (4.26)

for a.e. λ ∈ R and some k, l ∈ Z.
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4.3. Scattering matrices of coupled systems

We investigate the scattering matrix of the scattering system {L̃, L0}, where L̃

and L0 are the selfadjoint operators in L = H ⊕ G from (4.6) and (4.4), respec-

tively. By Theorem 2.5 the scattering matrix {S̃Θ(λ)}λ∈R of {L̃, L0} admits the
representation

S̃Θ(λ) = I eHfM(λ)
+ 2i

√
ℑm(M̃(λ))

(
Θ − M̃(λ)

)−1
√
ℑm(M̃(λ)). (4.27)

Here M̃(·) is the Weyl function of the boundary triplet ΠL = {H̃, Γ̃0, Γ̃1} from
(4.3) and

H̃fM(λ)
:= ran

(
ℑm

(
M̃(λ + i0)

))

for a.e. λ ∈ R. In [10] the scattering matrix of {L̃, L0} was expressed in terms of
the Weyl functions M(·) and τ (·) of the boundary triplets ΠA = {H, Γ0, Γ1} and

ΠT = {H, Υ0, Υ1}, respectively. The following representation for {S̃Θ(λ)}λ∈R can
be deduced from Corollary 2.6.

Theorem 4.4. Let A, ΠA = {H, Γ0, Γ1}, M(·) and T , ΠT = {H, Υ0, Υ1}, τ (·) be
as above. Then the following holds:

(i) Lac
0 = Aac

0 ⊕ T ac
0 is unitarily equivalent to the multiplication operator with

the free variable in L2(R, dλ,HM(λ) ⊕Hτ(λ)).

(ii) In L2(R, dλ,HM(λ)⊕Hτ(λ)) the scattering matrix {S̃Θ(λ)}λ∈R of the complete

scattering system {L̃, L0} is given by

S̃Θ(λ) = IHM(λ)⊕Hτ(λ)
− 2i

(
T̃11(λ) T̃12(λ)

T̃21(λ) T̃22(λ)

)
∈ [HM(λ) ⊕Hτ(λ)], (4.28)

for a.e. λ ∈ R where

T̃11(λ) =
√
ℑm(M(λ))

(
M(λ) + τ (λ)

)−1√ℑm(M(λ)),

T̃12(λ) =
√
ℑm(M(λ))

(
M(λ) + τ (λ)

)−1√ℑm(τ (λ)),

T̃21(λ) =
√
ℑm(τ (λ))

(
M(λ) + τ (λ)

)−1√ℑm(M(λ)),

T̃22(λ) =
√
ℑm(τ (λ))

(
M(λ) + τ (λ)

)−1√ℑm(τ (λ))

and M(λ) = M(λ + i0), τ (λ) = τ (λ + i0).

Let JH : H −→ L and JG : G −→ L the natural embedding operators of the
subspaces H and G into L, respectively. The wave operators

W±(L̃, A0) := s- lim
t→±∞

eiteLJHe−itA0P ac(A0) (4.29)

and

W±(L̃, T0) := s- lim
t→±∞

eiteLJGe−itT0P ac(T0) (4.30)
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are called the channel wave operators or partial wave operators. The channel scat-
tering operators SH and SG are defined by

SH := W+(L̃, A0)
∗W−(L̃, A0) and SG := W+(L̃, T0)

∗W−(L̃, T0). (4.31)

The channel scattering operators SH and SG are contractions in Hac(A0) and
Gac(T0) and commute with A0 and T0, respectively. Hence, there are measurable
families of contractions

{SH(λ)}λ∈R and {SG(λ)}λ∈R (4.32)

such that the multiplication operators induced by these families in the spectral rep-
resentations L2(R, dλ,HM(λ)) and L2(R, dλ,Hτ(λ)) of Aac

0 and T ac
0 , respectively,

are unitarily equivalent to the channel scattering operators SH and SG. The mul-
tiplication operators in (4.32) are called channel scattering matrices.

Corollary 4.5. Let A, ΠA = {H, Γ0, Γ1}, M(·) and T , ΠT = {H, Υ0, Υ1}, τ (λ) be
as above. Then the following holds:

(i) Aac
0 and T ac

0 are unitarily equivalent to the multiplication operators with the
free variable in L2(R, dλ,HM(λ) and L2(R, dλ,Hτ(λ)), respectively.

(ii) In L2(R, dλ,HM(λ)) and L2(R, dλ,Hτ(λ)) the channel scattering matrices
{SH(λ)}λ∈R and {SG(λ)}λ∈R are given by

SH(λ) = IHM(λ)
− 2i

√
ℑm(M(λ))

(
M(λ) + τ (λ)

)−1√ℑm(M(λ))

and

SG(λ) = IHτ(λ)
− 2i

√
ℑm(τ (λ))

(
M(λ) + τ (λ)

)−1√ℑm(τ (λ))

for a.e. λ ∈ R.

4.4. A modified Birman-Krein formula for coupled scattering systems

In a similar way as in Section 3.4 we prove a variant of the Birman-Krein formula

for the coupled scattering system {L̃, L0}, where L̃ and L0 are as in (4.6) and

(4.4), respectively. First of all it is clear that the scattering matrix {S̃Θ(λ)}λ∈R

of {L̃, L0} and the spectral shift function ξ̃Θ(·) from (4.10) are connected via the
usual Birman-Krein formula

det
(
S̃Θ(λ)

)
= exp

(
−2πiξ̃Θ(λ)

)
(4.33)

for a.e. λ ∈ R, cf. Theorem 2.7. With the help of the channel scattering matrices
from (4.32) and Corollary 4.5 we find the following modified Birman-Krein formula.

Theorem 4.6. Let A and T be as in Section 4.1 and let {L̃, L0} be the complete

scattering system from above. Then the spectral shift function ξ̃Θ(·) of the pair

{L̃, L0} in (4.10) is related with the channel scattering matrices {SH(λ)}λ∈R and
{SG(λ)}λ∈R in (4.32) via

det(SH(λ)) = det(SG(λ)) exp
(
−2πiξ̃Θ(λ)

)
(4.34)
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and

det(SG(λ)) = det(SH(λ)) exp
(
−2πiξ̃Θ(λ)

)
(4.35)

for a.e. λ ∈ R.

Proof. Let {S̃Θ(λ)}λ∈R be the scattering matrix of {L̃, L0} from (4.27). Making
use of Corollary 2.6 we obtain

det
(
S̃Θ(λ)

)
= det

(
S̃Θop

(λ)
)

(4.36)

where Θop = 0 ∈ [H̃op ] is the operator part of Θ in H̃op , cf. (4.8), (4.9), and

S̃Θop
(λ) is given by

S̃Θop
(λ) = IHfMop(λ)

− 2i

√
ℑm(M̃op(λ))

(
M̃op(λ)

)−1
√

ℑm(M̃op(λ)) (4.37)

for a.e. λ ∈ R. Here M̃op (·) = P̃op M̃(·)ι̃op is the compression of the Weyl function

corresponding to the boundary triplet ΠL = {H̃, Γ̃0, Γ̃1} onto the space H̃op . Let

Ṽ be as in (4.14). Then we have

M̃op (λ) =
1

2
Ṽ (M(λ) + τ (λ))Ṽ ∗ and M̃op (λ)−1 = 2Ṽ (M(λ) + τ (λ))−1Ṽ ∗,

cf. (4.15), and therefore we get

det
(
S̃Θop

(λ)
)

= det
(
IH − 2iℑm

(
M(λ) + τ (λ)

)(
M(λ) + τ (λ)

)−1)
.

This yields

det
(
S̃Θop

(λ)
)

=
det(M(λ) + τ (λ))

det(M(λ) + τ (λ))
(4.38)

for a.e. λ ∈ R and hence

det(M(λ) + τ (λ)∗)

det(M(λ) + τ (λ))
det
(
S̃Θop

(λ)
)

=
det(M(λ)∗ + τ (λ))

det(M(λ) + τ (λ))
(4.39)

for a.e. λ ∈ R. On the other hand, as a consequence of Corollary 4.5 we obtain

det(SH(λ)) =
det(M(λ)∗ + τ (λ))

det(M(λ) + τ (λ))
(4.40)

and

det(SG(λ)) =
det(M(λ) + τ (λ)∗)

det(M(λ) + τ (λ))
(4.41)

for a.e. λ ∈ R and therefore we find

det(SG(λ)) det
(
S̃Θop

(λ)
)

= det(SH(λ)) (4.42)

for a.e. λ ∈ R. Taking into account (4.33) and (4.36) we obtain (4.34). The relation
(4.35) follows from (4.34). �

Making use of Corollary 4.3 we obtain the following form for the relations (4.34)
and (4.35).
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Corollary 4.7. Let the assumptions be as in Theorem 4.6 and let η−τ(µ)(·) and
η−M(µ)(·) be as in (4.24) and (4.25), respectively. Then the channel scattering ma-
trices {SH(λ)}λ∈R and {SG(λ)}λ∈R are connected with the functions λ 7→ η−τ(λ)(λ)
and λ 7→ η−M(λ)(λ) via

det(SH(λ)) = det(SG(λ)) exp
(
−2πiη−τ(λ)(λ)

)
(4.43)

and

det(SG(λ)) = det(SH(λ)) exp
(
−2πiη−M(λ)(λ)

)
(4.44)

for a.e. λ ∈ R.
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