Definitizability of a Class of *J*-Selfadjoint Operators with Applications

Jussi Behrndt¹, Friedrich Philipp ^{2,*}, and Carsten Trunk ²

¹ Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

² Institut für Mathematik, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau, Germany

We formulate an abstract result concerning the definitizability of *J*-selfadjoint operators which, roughly speaking, differ by at most finitely many dimensions from the orthogonal sum of a *J*-selfadjoint operator with finitely many negative squares and a semibounded selfadjoint operator in a Hilbert space. The general perturbation result is applied to a class of singular Sturm-Liouville operators with indefinite weight functions.

Copyright line will be provided by the publisher

1 Introduction

Let $(\mathcal{H}, (\cdot, \cdot))$ be a Hilbert space and let J be a bounded and boundedly invertible linear operator in \mathcal{H} with $J = J^{-1} = J^*$. Such an operator induces an additional inner product $[\cdot, \cdot] = (J \cdot, \cdot)$ in \mathcal{H} . The linear operators in \mathcal{H} which are selfadjoint with respect to $[\cdot, \cdot]$ are called *J-selfadjoint*. The spectrum of *J*-selfadjoint operators is known to be symmetric with respect to the real axis and it is easy to see that the mapping $A \mapsto JA$ establishes a one-to-one correspondence between the selfadjoint operators and the *J*-selfadjoint operators in \mathcal{H} .

Among the J-selfadjoint operators is the particularly interesting class of definitizable operators. A J-selfadjoint operator T is called definitizable if $\rho(T) \neq \emptyset$ and if there exists a polynomial p such that $[p(T)f, f] \ge 0$ for all $f \in \text{dom } p(T)$. Such a polynomial is called definitizing for T. If T is a definitizable J-selfadjoint operator, then the nonreal spectrum of T consists of at most finite many eigenvalues and T possesses a spectral function E on \mathbb{R} with singularities; cf. [5]. We say that a definitizable operator T is nonnegative in a neighbourhood of ∞ if there exists some c > 0 such that $[Tf, f] \ge 0$ for all $f \in \text{dom } T \cap E(\mathbb{R} \setminus (-c, c))\mathcal{H}$. This is the case, if, e.g., the poynomial $p(t) = tq(t)\overline{q}(t)$, where q is a monic polynomial, is definitizing for T, see [5].

The following result is well known, see, e.g. [3, Remark 1.3 and Proposition 1.1]. Recall that the essential spectrum $\sigma_{ess}(A)$ of a selfadjoint operator A in \mathcal{H} is the set of all spectral points which are no isolated eigenvalues of finite multiplicity.

Theorem 1.1 Let A be a selfadjoint operator in \mathcal{H} which is semibounded from below. If $\sigma_{ess}(A) \cap (-\infty, 0] = \emptyset$, then JA is definitizable and nonnegative in a neighbourhood of ∞ with definitizing polynomial $p(t) = tq(t)\overline{q}(t)$, where q is a monic polynomial.

We mention that the statement of Theorem 1.1 does not hold in general if $\min \sigma_{ess}(A) \leq 0$. Simple examples show that even $\rho(JA) = \emptyset$ may happen. The main purpose of the present note is to show that under additional assumptions on A the definitizability and nonnegativity of JA are preserved if $\min \sigma_{ess}(A) \leq 0$. In Section 3 we apply this result to a class of indefinite Sturm-Liouville operators which are regular at one endpoint.

2 A perturbation result

Throughout this section let $(\mathcal{H}, (\cdot, \cdot))$ be a Hilbert space, let J be a bounded operator in \mathcal{H} with $J = J^{-1} = J^*$. Let \mathcal{H}_{\pm} be the eigenspace of J with respect to the eigenvalue ± 1 . Then $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$. For a closed operator B in \mathcal{H} denote by $\sigma_{ess}(B)$ the set of points $\lambda \in \mathbb{C}$ such that $B - \lambda$ is not Fredholm. Note that for a selfadjoint operator in \mathcal{H} this coincides with the definition above. In the next theorem we show that under suitable assumptions also in the case min $\sigma_{ess}(A) \leq 0$ the assertions in Theorem 1.1 remain true. Although the statement is essentially a consequence of the results in [4] and [5] we give a short proof for the convenience of the reader.

Theorem 2.1 Let J and \mathcal{H}_{\pm} be as above and let A be a selfadjoint operator in \mathcal{H} which is semibounded from below with $\mu := \min \sigma_{\text{ess}}(A) \leq 0$. Suppose there are linear manifolds \mathcal{D}_+ and \mathcal{D}_0 in dom A with $\mathcal{D}_+ \subset \mathcal{H}_+$ and $\overline{\mathcal{D}}_0 = \mathcal{D}_+^{\perp}$ such that $\dim (\operatorname{dom} A/(\mathcal{D}_+ \oplus \mathcal{D}_0)) < \infty$, $A\mathcal{D}_0 \subset \overline{\mathcal{D}}_0$ and $\sigma_{\text{ess}}(\overline{A \mid \mathcal{D}_0}) = \emptyset$. Then the operator JA is definitizable and nonnegative in a neighbourhood of ∞ with definitizing polynomial $p(t) = (t - \mu)q(t)\overline{q}(t)$, where q is a monic polynomial.

Proof. It is no restriction to assume that \mathcal{D}_+ and \mathcal{D}_0 are closed with respect to the graph norm of A. From the selfadjointness of A we conclude $A\mathcal{D}_+ \subset \overline{\mathcal{D}_+}$. Set $\mathcal{K}_+ := \overline{\mathcal{D}_+}$, $\mathcal{K}_0 := \overline{\mathcal{D}_0} = \mathcal{D}_+^{\perp}$, $S_+ := A \upharpoonright \mathcal{D}_+$ and $S_0 := A \upharpoonright \mathcal{D}_0$. Then S_0 and S_+ are densely defined closed symmetric operators in \mathcal{K}_0 and \mathcal{K}_+ , respectively. Since every $\lambda < \min \sigma(A)$ is a point of regular

^{*} Corresponding author E-mail: friedrich.philipp@tu-ilmenau.de, Phone: +49 3677 69 3255 Fax: +49 3677 69 3270

type of both S_+ and S_0 , these operators admit selfadjoint extensions A_+ and A_0 in the Hilbert spaces \mathcal{K}_+ and \mathcal{K}_0 , respectively. Then, by assumption, $A_+ \oplus A_0$ and A both are finite dimensional extensions of $S_+ \oplus S_0$. Hence $\sigma_{ess}(A_+) \cap (-\infty, \mu) = \emptyset$ and $\sigma_{ess}(A_0) = \sigma_{ess}(S_0) = \emptyset$. Therefore there exists a monic polynomial q_+ such that $(A_+ - \mu)q_+(A_+)\overline{q_+}(A_+)$ is a nonnegative operator in the Hilbert space \mathcal{K}_+ . From Theorem 1.1, applied to A_0 , we see that J_0A_0 is definitizable and since $\sigma_{ess}(A_0) = \emptyset$ it can be shown that $p_0(t) := (t - \mu)q_0(t)\overline{q_0}(t)$ is a definitizing polynomial for J_0A_0 , where q_0 is some monic polynomial. We have $J(A_+ \oplus A_0) = A_+ \oplus J_0A_0$. With $p(t) := (t - \mu)q_0(t)q_+(t)\overline{q_0}(t)\overline{q_+}(t)$ and $f = f_+ \oplus f_0$, where $f_+ \in \text{dom } p(A_+)$ and $f_0 \in \text{dom } p(J_0A_0)$, we obtain

$$[p(A_{+} \oplus J_{0}A_{0})f, f] = ((A_{+} - \mu)q_{+}(A_{+})\overline{q_{+}}(A_{+})q_{0}(A_{+})f_{+}, q_{0}(A_{+})f_{+}) + [p_{0}(J_{0}A_{0})q_{+}(J_{0}A_{0})f_{0}, q_{+}(J_{0}A_{0})f_{0}] \ge 0.$$

Hence, $J(A_+ \oplus A_0)$ is definitizable. From [2, Theorem 2.2], [1, Theorem 3.1] and the proof of [4, Theorem 1] it follows that JA is definitizable with a definitizing polynomial of the desired form, hence JA is nonnegative in a neighbourhood of ∞ .

3 An application to Sturm-Liouville Operators with indefinite weight functions

We apply Theorem 2.1 to indefinite Sturm-Liouville operators associated to differential expressions of the form

$$\ell = \frac{1}{w} \, \left(-\frac{d}{dx} \, p \, \frac{d}{dx} + q \right)$$

on an interval $(a, b), -\infty < a < b \le \infty$, with real coefficients w, p^{-1}, q integrable over (a, c) for every $c \in (a, b)$ such that p > 0 and $w \ne 0$ a.e. on (a, b). Note that the differential expression ℓ is thus assumed to be regular at the endpoint a whereas b is in general a singular endpoint. The definite counterpart $\tau = |w|^{-1}(-\frac{d}{dx}p\frac{d}{dx}+q)$ of ℓ generates selfadjoint operators in the weighted L^2 -space $L^2((a, b), |w|)$ which are one or two dimensional restrictions of the maximal differential operator

$$A_{\max}(a,b)f = \tau f, \quad f \in \mathcal{D}_{\max}(a,b) = \{h \in L^2((a,b),|w|) : h, ph' \text{ locally absolutely continuous, } \tau h \in L^2((a,b),|w|)\},$$

associated to τ . These *selfadjoint realizations* of τ in $L^2((a, b), |w|)$ can also be viewed as finite dimensional extensions of the minimal operator $A_{\min}(a, b) = A_{\max}(a, b)^*$, where * denotes the adjoint with respect to the scalar product in $L^2((a, b), |w|)$. It is well known that $A_{\min}(a, b)$ is a densely defined closed symmetric operator in $L^2((a, b), |w|)$ with equal deficiency indices (1, 1) (if τ is in the limit point case at b) or (2, 2) (if τ is in the limit circle case at b), see, e.g. [6].

The multiplication operator $J = \operatorname{sign}(w)$ satisfies $J = J^{-1} = J^*$ and connects the definite and indefinite Sturm-Liouville expressions τ and ℓ , i.e., $\ell = J\tau$, or, more precisely, the J-selfadjoint realizations T of ℓ in $L^2((a, b), |w|)$ are in one-to-one correspondence with the selfadjoint realizations A of τ via $A \mapsto T = JA$. We note that the indefinite inner product induced by J is $[f,g] = (Jf,g) = \int_a^b f\overline{g} w \, dx$, where (\cdot, \cdot) is the scalar product in $L^2((a,b), |w|)$.

Theorem 3.1 Suppose that the weight function w is positive near the endpoint b and that $A_{\min}(a, b)$ is semibounded from below. Then every J-selfadjoint realization of ℓ in $L^2((a, b), |w|)$ is definitizable and nonnegative in a neighbourhood of ∞ .

Proof. Let A be a selfadjoint realization of τ in $L^2((a, b), |w|)$. Since $A_{\min}(a, b)$ has finite deficiency indices the extension A is semibounded from below. In the case $\min \sigma_{\text{ess}}(A) > 0$ the assertions of Theorem 3.1 follow from Theorem 1.1. Hence, let $\min \sigma_{\text{ess}}(A) \leq 0$. According to the assumption on w there exists $c \in (a, b)$ such that w > 0 a.e. on (c, b). Denote by $A_{\min}(a, c)$ and $A_{\min}(c, b)$ the minimal operators associated to τ in $L^2((a, c), |w|)$ and, $L^2((c, b), |w|)$, respectively, and let

$$\mathcal{D}_0 := \operatorname{dom} A_{\min}(a, c)$$
 and $\mathcal{D}_+ := \operatorname{dom} A_{\min}(c, b).$

Then we have $\overline{\mathcal{D}_0} = L^2((a,c), |w|)$ and $\overline{\mathcal{D}_+} = L^2((c,b), |w|)$. Thus $\overline{\mathcal{D}_0} = \mathcal{D}_+^{\perp}$, where \mathcal{D}_0 and \mathcal{D}_+ are canonically embedded in $L^2((a,b), |w|)$. As $J \upharpoonright \mathcal{D}_+ = 1$ it follows that \mathcal{D}_+ is a subspace of $\mathcal{H}_+ := \ker (J-1)$. Moreover, $\sigma_{\mathrm{ess}}(A \upharpoonright \mathcal{D}_0) = \sigma_{\mathrm{ess}}(A_{\min}(a,c)) = \emptyset$ follows from the fact that τ is regular at a and c, and all conditions of Theorem 2.1 are satisfied. \Box

Acknowledgements The second author is grateful for the support of the Carl-Zeiss-Stiftung, Jena.

References

- [1] T.Ya. Azizov, J. Behrndt, F. Philipp, and C. Trunk, Oper. Theory Adv. Appl. 188, 31–37 (2008).
- [2] T.Ya. Azizov, J. Behrndt and C. Trunk, J. Math. Anal. Appl. (2) 339, 1161–1168 (2008).
- [3] B. Curgus and H. Langer, J. Differ. Equations 79, 31–61 (1989).
- [4] P. Jonas and H. Langer, J. Oper. Theory 2, 63–77 (1979).
- [5] H. Langer, Lect. Notes Math. 948, 1-46 (1982).
- [6] J. Weidmann, Lineare Operatoren in Hilberträumen Teil II (Teubner, 2003).