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We develop relative oscillation theory for general Sturm–Liouville differential 
expressions of the form

1
r

(
− d

dx
p

d
dx

+ q

)

and prove perturbation results and invariance of essential spectra in terms of the 
real coefficients p, q, r. The novelty here is that we also allow perturbations of the 
weight function r in which case the unperturbed and the perturbed operator act in 
different Hilbert spaces.
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1. Introduction

The purpose of this paper is to study relative oscillation theory and related perturbation problems for 
self-adjoint Sturm–Liouville operators associated with differential expressions of the form

τj = 1
rj

(
− d

dxpj
d
dx + qj

)
, j = 0, 1, (1.1)

in the weighted L2-spaces L2((a, b); rj), where −∞ ≤ a < b ≤ ∞. As usual, we impose the standard 
assumptions that 1/pj , qj , rj ∈ L1

loc(a, b) are real-valued and rj, pj > 0 a.e. Our main concern in this note 
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is the essential spectrum of self-adjoint realizations associated with τj and, in particular, conditions on the 
coefficients which leave the essential spectrum invariant.

It is well known that only the asymptotic behaviour of the coefficients near the singular endpoints 
is relevant for the essential spectrum. In particular, the essential spectrum is not affected by boundary 
conditions or the change of the coefficients on any compact subset of (a, b). Moreover, by imposing an 
additional Dirichlet boundary condition at an interior point, the problem can be reduced to two subintervals 
with one regular and one singular endpoint; hence it suffices to consider the case that the endpoint a is 
regular and b is singular.

As mentioned above we are interested in conditions such that two given self-adjoint Sturm–Liouville 
operators T0 and T1 related to τ0 and τ1 in L2((a, b); r0) and L2((a, b); r1), respectively, have the same 
essential spectra. There is a vast literature on this topic for the special case r0 = r1, we mention here only 
[17], where a good introduction and further references can be found.

However, the general case r0 �= r1 has not obtained much attention and to the best of our knowledge there 
is no (nontrivial) criterion available. From the intuition and our introductory remarks one would expect the 
essential spectrum to remain unchanged if the coefficients of τ0 and τ1 have the same asymptotic behaviour. 
In fact, if

lim
x→b

r1(x)
r0(x) = 1, lim

x→b

p1(x)
p0(x) = 1, lim

x→b

q1(x) − q0(x)
r0(x) = 0,

and q0/r0 is bounded near b, then it turns out in Theorem 3.2 that τ0 is limit point at b if and only if τ1 is 
limit point at b, both operators T0 and T1 are semibounded from below, and

σess(T0) = σess(T1).

The key feature in our proof is relative oscillation theory, which is discussed in Section 2 for general 
Sturm–Liouville differential expressions of the form (1.1) along the lines of [3,9–11]. Roughly speaking, 
relative oscillation theory is an analog of classical oscillation theory for Sturm–Liouville operators which, 
rather than measuring the spectrum of one single operator, measures the difference between the spectra of 
two different operators. This is done by replacing zeros of solutions of one operator by weighted zeros of 
Wronskians of solutions of two different operators. Besides the essential spectrum we are also interested in 
the possible accumulation of eigenvalues to the boundary points of the essential spectrum. In this context 
we note that the relative nonoscillatory property in Theorem 3.2 (iv) does not directly apply to boundary 
points of the essential spectrum and hence further assumptions on the coefficients are needed to conclude 
Kneser type results in the spirit of [11]; cf. [8] and also [2,4–6,12,13,16]. Here we first formulate Theorem 3.4
as a straightforward generalization of [11, Theorem 2.1] to obtain sufficient criteria for accumulation and 
non-accumulation of eigenvalues to the bottom of the essential spectrum in Theorem 3.5 and Corollary 3.7. 
These results contain as a special case a variant of Kneser’s classical criterion for general Sturm–Liouville 
operators of the form (1.1); cf. Corollary 3.6.

We remark that in the present paper we are only interested in the question whether two given operators 
are relatively oscillatory or not. Relative oscillation theory can also be used to compute the precise number 
of eigenvalues, see [9,10] (or [14, Sect. 5.5] for a textbook style introduction in the case of regular operators). 
Relative oscillation theory can also be done in terms of the Maslov index [7], which is particularly convenient 
in the case of Sturm–Liouville systems.
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(FWF): P 33568-N. This publication is based upon work from COST Action CA 18232 MAT-DYN-NET, 
supported by COST (European Cooperation in Science and Technology), www .cost .eu.
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2. Relative oscillation theory in a nutshell

2.1. Preliminaries

In this section we recall some results from oscillation theory. An easy introduction in the case of regular 
problems can be found in [14], for more advanced results we refer to [3,17,18]. Our focus will be on the 
necessary modifications to accommodate the case r0 �= r1.

Consider two Sturm–Liouville differential expressions

τj = 1
rj

(
− d

dxpj
d
dx + qj

)
, where j = 0, 1, (2.1)

on an open interval (a, b) with finite left endpoint a and we shall impose the following conditions

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pj , qj , rj are real-valued functions on (a, b),
pj(x) > 0, rj(x) > 0 for almost all x ∈ (a, b),
1/pj , qj , rj ∈ L1

loc(a, b),
τj is regular at a

(2.2)

for j = 0, 1. Note that since we are interested in the essential spectra of self-adjoint realizations of τj, the 
assumption that a is regular can be made without loss of generality.

Recall that a nontrivial real-valued solution uj of (τj − λ)u = 0, λ ∈ R, can be represented in terms of 
Prüfer variables, that is, there are absolutely continuous functions ρuj

and θuj
such that

uj(x) = ρuj
(x) sin(θuj

(x)) and (pju′
j)(x) = ρuj

(x) cos(θuj
(x)), (2.3)

where the Prüfer radius ρuj
is positive and the Prüfer angle θuj

is uniquely determined once a value of 
θuj

(x0) is chosen by requiring continuity of θuj
. It satisfies the differential equation

θ′uj
= 1

pj
(cos θuj

)2 − (qj − λrj)(sin θuj
)2. (2.4)

One verifies that the Prüfer angle is strictly increasing at the zeros of the solution uj and it follows that 
the number of zeros of uj in (a, x) is given by

Nuj
(x) :=

⌈
θuj

(x)
π

⌉
−
⌊
θuj

(a)
π

⌋
− 1, x ∈ (a, b), (2.5)

where �·� is the ceiling function and �·	 the floor function. For every x ∈ (a, b) the solution uj has at most 
finitely many zeros in (a, x). We note that the function Nuj

: (a, b) → Z is non-negative and increasing.
In the following let λ ∈ R and recall that τ0 − λ is said to be nonoscillatory if there is a nontrivial 

real-valued solution u of (τ0−λ)u = 0 with at most finitely many zeros in (a, b), that is, limx→b Nu(x) < ∞. 
Otherwise, τ0 − λ is called oscillatory. We note that this property is independent of the choice of the 
solution. The number of zeros of a solution of (τ0 − λ)u = 0 is closely related to the spectra of the self-
adjoint realisations of τ0. More precisely, if T0 is some self-adjoint realisation of τ0 in the weighted Hilbert 
space L2((a, b); r0) and E0(·) denotes the spectral measure of T0 then

dim ran
(
E0((−∞, λ))

)
< ∞ if and only if lim Nu(x) < ∞ (2.6)
x→b
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for some (and hence for all) nontrivial real-valued solutions u of (τ0 − λ)u = 0. Furthermore, if −∞ < λ <
μ < ∞ and u and v are nontrivial real-valued solutions of (τ0 − λ)u = 0 and (τ0 − μ)v = 0, respectively, 
then

dim ran
(
E0((λ, μ))

)
< ∞ if and only if lim inf

x→b

(
Nv(x) −Nu(x)

)
< ∞. (2.7)

Note that by (2.6) T0 is semi-bounded from below if and only if there is λ ∈ R such that limx→b Nu(x) < ∞, 
that is, τ0 − λ is nonoscillatory. In this case τ0 − λ is nonoscillatory for all λ < inf σess(T0).

2.2. Relative oscillation theory

The central object in this section is the modified Wronskian and its zeros. For solutions u0 and u1 of two 
different Sturm–Liouville differential expressions,

(τ0 − λ0)u0 = 0 and (τ1 − λ1)u1 = 0,

at two different real values λ0, λ1 the modified Wronskian is defined by

W (u0, u1)(x) := u0(x) (p1u
′
1)(x) − (p0u

′
0)(x)u1(x), x ∈ (a, b).

In the case of real-valued nontrivial solutions u0 and u1 one obtains from (2.3)

W (u0, u1)(x) = ρu0(x)ρu1(x) sin
(
θu0(x) − θu1(x)

)
and hence W (u0, u1)(x) = 0 if and only if θu1(x) − θu0(x) = kπ for some k ∈ Z. We consider the function

N(u0, u1)(x) :=
⌈
θu1(x) − θu0(x)

π

⌉
−
⌊
θu1(a) − θu0(a)

π

⌋
− 1, x ∈ (a, b). (2.8)

Remark 2.1. Nontrivial solutions (when considered as vector-valued solutions (u, pu′) of the associated 
system) correspond to a path of one-dimensional Lagrangian subspaces and hence these subspaces can be 
identified with the corresponding Prüfer angles. In particular, two such paths cross whenever the Prüfer 
angles agree modulo π and hence whenever the Wronskian of the two solutions vanishes. Consequently, (2.8)
can be identified with the Maslov index of the two solutions on the interval (a, x); cf. [7].

Let u2 be a real-valued nontrivial solution of (τ2 − λ2)u = 0, where τ2 is a differential expression of the 
form (2.1) satisfying (2.2). It follows from (2.5) and the properties of the ceiling function �·� and the floor 
function �·	 that

Nu1(x) −Nu0(x) − 3 ≤ N(u0, u1)(x) ≤ Nu1(x) −Nu0(x) + 1, (2.9)

−N(u1, u0)(x) − 2 ≤ N(u0, u1)(x) ≤ −N(u1, u0)(x), and (2.10)

N(u0, u1)(x) + N(u1, u2)(x) − 1 ≤ N(u0, u2)(x) ≤ N(u0, u1)(x) + N(u1, u2)(x) + 1 (2.11)

for all x ∈ (a, b).

Lemma 2.2. Suppose that (2.2) holds for j = 0. Let u and v be nontrivial real-valued solutions of (τ0−λ)u = 0
for λ ∈ R. If u and v are linearly dependent solutions then N(u, v)(x) = −1 for all x ∈ (a, b). Otherwise 
N(u, v)(x) = 0 for all x ∈ (a, b).
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Proof. Since u and v are solutions of the same differential equation, the Wronskian is constant on [a, b). If 
u and v are linearly dependent then the Wronskian vanishes everywhere and due to the representation by 
means of Prüfer variables we see θv(x) − θu(x) = kπ for all x ∈ [a, b) and a suitable k ∈ Z. This implies 
N(u, v)(x) = −1 for all x ∈ (a, b). Otherwise, if both functions are linearly independent then the Wronskian 
has no zeros in [a, b). Hence, the difference of Prüfer angles θv − θu does not attain any integer multiple 
of π. By continuity we have θv(x) − θu(x) ∈ (kπ, (k + 1)π) for all x ∈ [a, b) and some k ∈ Z, which shows 
N(u, v)(x) = 0. �

Under some additional assumptions on the coefficients of τj it turns out that the function N(u0, u1) in 
(2.8) has similar properties as the functions Nuj

in (2.5).

Lemma 2.3. Let uj be real-valued nontrivial solutions of (τj − λj)u = 0 for j = 0, 1, and λj ∈ R.

(i) Assume that the conditions

p0 ≥ p1 and q0 − λ0r0 ≥ q1 − λ1r1 (2.12)

hold. Then N(u0, u1) is an increasing function with N(u0, u1)(x) ≥ −1 for all x ∈ (a, b).
(ii) Assume that the conditions

p0 ≥ p1 and q0 − λ0r0 > q1 − λ1r1 (2.13)

hold. Then for every x ∈ (a, b) the Wronskian W (u0, u1) has at most finitely many zeros in (a, x) and 
the value N(u0, u1)(x) coincides with the number of zeros of W (u0, u1) in (a, x).

Proof. (i) Let a ≤ ξ < x < b and assume that θu1(ξ) − θu0(ξ) ∈ [kπ, (k + 1)π) for some k ∈ Z. By (2.4) and 
the angle addition formulae sin(α + β) sin(α− β) = cos2 β − cos2 α = sin2 α− sin2 β we obtain

θ′u1
− θ′u0

=
(

1
p1

− 1
p0

)
cos2 θu1 +

(
(q0 − λ0r0) − (q1 − λ1r1)

)
sin2 θu0

− (q1 − λ1r1)
(
sin2 θu1 − sin2 θu0

)
− 1

p0

(
cos2 θu0 − cos2 θu1

)

=
(

1
p1

− 1
p0

)
cos2 θu1 +

(
(q0 − λ0r0) − (q1 − λ1r1)

)
sin2 θu0

− (−1)k
(

1
p0

+ q1 − λ1r1

)
sin(θu0 + θu1) sin δ,

where δ stands for θu1 − θu0 − kπ. We consider the functions

f =
(

1
p1

− 1
p0

)
cos2 θu1 +

(
(q0 − λ0r0) − (q1 − λ1r1)

)
sin2 θu0 (2.14)

and

h = −(−1)k
(

1
p0

+ q1 − λ1r1

)
sin(θu0 + θu1)

sin δ

δ
.

Clearly, we have δ′ = f +hδ, where the functions f , h are integrable on (a, c) for all c ∈ (a, b). Consider the 
positive function g given by
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g(x) = exp

⎛⎝−
x∫

a

h(t) dt

⎞⎠ .

Then

(gδ)′ = −δhg + (f + hδ)g = fg ≥ 0 (2.15)

by (2.14) and (2.12). Hence, gδ is an increasing function. For x > ξ the estimate

g(x)
(
θu1(x) − θu0(x) − kπ

)
= (gδ)(x) ≥ (gδ)(ξ) = g(ξ)

(
θu1(ξ) − θu0(ξ) − kπ

)
(2.16)

holds. As θu1(ξ) − θu0(ξ) ∈ [kπ, (k + 1)π), (2.16) implies θu1(x) − θu0(x) ≥ kπ and⌊
θu1(ξ) − θu0(ξ)

π

⌋
≤

⌈
θu1(ξ) − θu0(ξ)

π

⌉
≤

⌈
θu1(x) − θu0(x)

π

⌉
.

This shows N(u0, u1)(ξ) ≤ N(u0, u1)(x) and with ξ = a one sees N(u0, u1)(x) ≥ −1.
(ii) Under the stronger condition (2.13), the inequality in (2.15) is strict (almost everywhere in a neigh-

bourhood of ξ) and, hence, also the inequality in (2.16). In particular, we see that for x > ξ

θu1(ξ) − θu0(ξ) ≥ kπ implies θu1(x) − θu0(x) > kπ (2.17)

and for x < ξ the inequality in (2.16) changes accordingly and

θu1(ξ) − θu0(ξ) ≤ kπ implies θu1(x) − θu0(x) < kπ. (2.18)

In what follows, choose x ∈ (a, b) and k ∈ Z with θu1(a) − θu0(a) ∈ [kπ, (k + 1)π) which means 
�θu1(a) − θu0(a)	 = kπ. Moreover, by (2.17), we have

θu1(y) − θu0(y) ∈ (kπ,∞) for all y ∈ (a, x).

If θu1(x) − θu0(x) ∈ (kπ, (k + 1)π], then N(u0, u1)(x) = 0 by definition. By (2.17) there is no y ∈ (a, x)
with θu1(y) − θu0(y) ≥ (k + 1)π. Therefore

θu1(y) − θu0(y) ∈ (kπ, (k + 1)π) for all y ∈ (a, x).

As the Wronskian W (u0, u1) is zero if and only if θu1(y) − θu0(y) equals lπ for some l ∈ Z, we see that on 
the interval (a, x) there are no zeros of the Wronskian. This coincides with the value of N(u0, u1)(x).

If θu1(x) − θu0(x) ∈ ((k + 1)π, (k + 2)π], then N(u0, u1)(x) = 1 by definition. By (2.17) there is no 
y ∈ (a, x) with θu1(y) − θu0(y) ≥ (k + 2)π. Therefore

θu1(y) − θu0(y) ∈ (kπ, (k + 2)π) for all y ∈ (a, x).

As the function θu1 −θu0 is continuous and takes in a a value below (k+1)π and in x a value above (k+1)π, 
there exists y1 ∈ (a, x) with θu1(y1) − θu0(y1) = (k + 1)π, which is a zero of the Wronskian. An application 
of (2.17) and (2.18) with ξ = y1 shows that this is the only zero of the Wronskian in the interval (a, x), 
which coincides with the value of N(u0, u1)(x).

If θu1(x) − θu0(x) ∈ ((k + 2)π, (k + 3)π], then N(u0, u1)(x) = 2 by definition. Similar as above, by 
(2.17), there is no y ∈ (a, x) with θu1(y) − θu0(y) ≥ (k + 3)π and we conclude with (2.17) and (2.18)
that the Wronskian on the interval (a, x) has N(u0, u1)(x) = 2 zeros. Continuing in this way shows the 
statement. �
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An important special case in Lemma 2.3 (ii) is the case that u0 and v0 are real-valued solutions of 
(τ0 − λ)u = 0 and (τ0 − μ)v = 0, respectively, where λ < μ. In this situation (2.13) holds with p0 = p1
and q0 − λr0 > q0 − μr0 and hence N(u0, v0)(x) < ∞ is the number of zeros of the Wronskian W (u0, v0) in 
(a, x). As a consequence we also conclude the following useful version of Sturm’s comparison theorem.

Corollary 2.4 (Sturm’s comparison theorem). Let uj be real-valued nontrivial solutions of (τj −λj)u = 0 for 
j = 0, 1, and λj ∈ R, and let x0 and x1 be consecutive zeros of u0 in (a, b). If the condition (2.13) holds, 
then there is at least one zero y ∈ (x0, x1) of u1.

Proof. Let θu0(x0) = kπ, θu0(x1) = (k + 1)π, and θu1(x0) ∈ [jπ, (j + 1)π) for some k, j ∈ Z. Then

(j − k)π ≤ θu1(x0) − θu0(x0)

and by (2.17)

(j − k)π < θu1(x1) − θu0(x1) = θu1(x1) − (k + 1)π.

Therefore, θu1(x1) > (j + 1)π which yields the existence of y ∈ (x0, x1) with θu1(y) = (j + 1)π, that is 
u1(y) = 0. �

We next introduce the concept of relative oscillation. The following definition is due to Krüger and 
Teschl [9–11].

Definition 2.5. For j = 0, 1 and λj ∈ R consider nontrivial real-valued solutions uj of (τj − λj)u = 0. We 
say that τ0 − λ0 is relatively nonoscillatory with respect to τ1 − λ1 if both limits

N(u0, u1) := lim inf
x→b

N(u0, u1)(x) and N(u0, u1) := lim sup
x→b

N(u0, u1)(x)

are finite. Otherwise, τ0 − λ0 is called relatively oscillatory with respect to τ1 − λ1.

It turns out that the definition of relative (non)oscillation does not depend on the particular solutions. 
In fact, for another pair of nontrivial real-valued solutions v0, v1 of (τ0 − λ0)u = 0 and (τ1 − λ1)u = 0, 
respectively, the inequality (2.11) applied twice together with Lemma 2.2 implies

N(v0, v1)(x) ≤ N(v0, u0)(x) + N(u0, v1)(x) + 1

≤ N(v0, u0)(x) + N(u0, u1)(x) + N(u1, v1)(x) + 2 ≤ N(u0, u1)(x) + 2

and

N(v0, v1)(x) ≥ N(v0, u0)(x) + N(u0, v1)(x) − 1

≥ N(v0, u0)(x) + N(u0, u1)(x) + N(u1, v1)(x) − 2 ≥ N(u0, u1)(x) − 4

for all x ∈ (a, b). Hence, the limits N(u0, u1) and N(u0, u1) are finite if and only if N(v0, v1) and N(v0, v1)
are finite. Furthermore, the notion relatively nonoscillatory gives rise to an equivalence relation. Below we 
will use the following facts which are direct consequences of (2.10) and (2.11). For this let τ2 be a differential 
expression of the form (2.1) satisfying (2.2).
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(a) If τ0 − λ0 is relatively oscillatory with respect to τ1 − λ1, then τ1 − λ1 is relatively oscillatory with 
respect to τ0 − λ0.

(b) If τ0−λ0 is relatively oscillatory with respect to τ1−λ1 and τ1−λ1 is relatively oscillatory with respect 
to τ2 − λ2, then τ0 − λ0 is relatively oscillatory with respect to τ2 − λ2.

Note also that under assumption (2.12) or (2.13) the function N(u0, u1) is increasing and hence in that 
case

lim
x→b

N(u0, u1)(x) = N(u0, u1) = N(u0, u1) ≤ ∞. (2.19)

The next lemma describes the relationship between classical and relative oscillation; cf. [10, Lemma 4.5].

Lemma 2.6. Suppose that τ0 − λ0 is nonoscillatory. Then τ1 − λ1 is relatively nonoscillatory with respect to 
τ0 − λ0 if and only if τ1 − λ1 is nonoscillatory.

Proof. Let u0 and u1 be nontrivial real-valued solutions of (τ0−λ0)u0 = 0 and (τ1−λ1)u1 = 0, respectively. 
Since τ0 − λ0 is nonoscillatory the solution u0 has at most finitely many zeros in (a, b) and hence we have 
0 ≤ Nu0(x) ≤ n0 for some n0 ∈ N and all x ∈ (a, b). Therefore (2.9) implies

Nu1(x) − n0 − 3 ≤ Nu1(x) −Nu0(x) − 3

≤ N(u0, u1)(x)

≤ Nu1(x) −Nu0(x) + 1 ≤ Nu1(x) + 1

for all x ∈ (a, b). This shows that limx→b Nu1(x) is finite if and only if (τ0 − λ0) is relatively nonoscillatory 
with respect to (τ1 − λ1). �

Along the lines of (2.7) we obtain a result on the finiteness and infiniteness of the spectrum. Again E0(·)
denotes the spectral measure of T0; cf. [17, Sect. 14].

Lemma 2.7. Let T0 be a self-adjoint realisation of τ0 in L2((a, b); r0) and fix λ, μ ∈ R with λ < μ. Then 
dim ran(E0((λ, μ))) < ∞ if and only if τ0 − λ is relatively nonoscillatory with respect to τ0 − μ.

Proof. Let u0 and v0 be nontrivial real-valued solutions of (τ0 − λ)u = 0 and (τ0 − μ)v = 0, respectively. 
Then (2.9) and (2.19) give

lim inf
x→∞

(
Nv0(x) −Nu0(x)

)
− 3 ≤ N(u0, v0) = N(u0, v0) ≤ lim inf

x→∞

(
Nv0(x) −Nu0(x)

)
+ 1

and hence the statement follows from (2.7). �
Observe that dim ran(E0((λ, μ))) < ∞ implies dim ran(E0((λ, η))) < ∞ for all η ∈ [λ, μ] and hence 

Lemma 2.7 also shows that τ0 − λ is relatively nonoscillatory with respect to τ0 − η for all η ∈ [λ, μ].
The next result extends [10, Theorem 4.6] to r0 �= r1.

Theorem 2.8. Let Tj be self-adjoint realizations of τj in L2((a, b); rj) with spectral measures Ej(·) for j = 0, 1. 
Fix λ, μ ∈ R with λ < μ and assume that dim ranE0((λ, μ)) < ∞. If τ0 − λ is relatively nonoscillatory with 
respect to τ1−λ and τ0−μ is relatively nonoscillatory with respect to τ1−μ, then dim ran(E1((λ, μ))) < ∞.

Proof. From dim ranE0((λ, μ)) < ∞ and Lemma 2.7 it follows that τ0 − λ is relatively nonoscillatory with 
respect to τ0 − μ. As τ0 − λ is relatively nonoscillatory with respect to τ1 − λ and τ0 − μ is relatively 
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nonoscillatory with respect to τ1−μ by assumption we conclude with the properties (a) and (b) from above 
that τ1 − λ is relatively nonoscillatory with respect to τ1 − μ. With the help of Lemma 2.7 we now obtain 
dim ranE1((λ, μ)) < ∞. �
3. Essential spectra of Sturm–Liouville operators

In this section we shall consider the Sturm–Liouville expressions τj, j = 0, 1, in (2.1)–(2.2). Our main 
objective is to prove a result on the invariance of the essential spectrum for the self-adjoint realizations of τj
in L2((a, b); rj). In this context it seems natural to impose a limit point assumption for the right endpoint 
b; cf. Theorem 3.2 (i). We start with a useful consequence of Theorem 2.8, which provides the inclusion of 
the essential spectra.

Proposition 3.1. Let Tj be self-adjoint realizations of τj in L2((a, b); rj) for j = 0, 1, and assume that τ1 −λ

is relatively nonoscillatory with respect to τ0 − λ for every λ ∈ R \ σess(T0). Then σess(T1) ⊂ σess(T0).

Proof. For η ∈ R \ σess(T0) choose λ < η < μ such that [λ, μ] ⊂ R \ σess(T0). Then we have 
dim ranE0((λ, μ)) < ∞ and it follows from the assumption that τ0 − λ is relatively nonoscillatory with 
respect to τ1 − λ and τ0 − μ is relatively nonoscillatory with respect to τ1 − μ. Now Theorem 2.8 implies 
dim ranE1((λ, μ)) < ∞ which leads to η ∈ R \ σess(T1). �

Next, we obtain a criterion for two Sturm–Liouville differential expressions being relatively nonoscillatory 
with respect to each other involving all coefficients. The special case r0 = r1 was treated in [10].

Theorem 3.2. Let Tj be self-adjoint realizations of τj in L2((a, b); rj) for j = 0, 1, and assume the following 
conditions at the endpoint b:

(α) lim
x→b

r1(x)
r0(x) = 1, lim

x→b

p1(x)
p0(x) = 1, lim

x→b

q1(x)−q0(x)
r0(x) = 0;

(β) q0/r0 is bounded near b.

Then the following assertions hold:

(i) τ0 is limit point at b if and only if τ1 is limit point at b;
(ii) σess(T0) = σess(T1);
(iii) T0 and T1 are semibounded from below;
(iv) τ1 − λ is relatively nonoscillatory with respect to τ0 − λ for every λ ∈ R \ σess(T0).

Observe that by Theorem 3.2 (i) τ0 is limit circle (or regular) at b if and only if τ1 is limit circle (or 
regular) at b, in which case σess(T0) = σess(T1) = ∅.

Remark 3.3. Observe that the conditions (α) and (β) in Theorem 3.2 are equivalent to the conditions

(α′) lim
x→b

r0(x)
r1(x) = 1, lim

x→b

p0(x)
p1(x) = 1, lim

x→b

q0(x)−q1(x)
r1(x) = 0;

(β′) q1/r1 is bounded near b.

In fact, this follows immediately from

q0 − q1 = −q1 − q0 · r0 , q1 =
(
q1 − q0 + q0

)
r0

.

r1 r0 r1 r1 r0 r0 r1
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and hence the roles of τ0 and τ1 can be interchanged in the Theorem 3.2.

Proof of Theorem 3.2. (i) By assumption (α) there is c ∈ (a, b) such that

p0/2 < p1 < 3p0/2 and r0/2 < r1 < 3r0/2 (3.1)

a.e. on (c, b). This yields L2((c, b); r0) = L2((c, b); r1). Since qj/rj , j = 0, 1, is bounded near b by (β) and 
(β′) (see Remark 3.3), the differential expression τj is in the limit point case at b if and only if

τ̂j = 1
rj

(
− d

dxpj
d
dx

)
is in the limit point case at b; cf. [18, Corollary 7.4.1]. Here τ̂ju = 0 is explicitly solvable with a fundamental 
system given by

uj(x) =
x∫

c

1
pj(t)

dt, vj(x) = 1.

One has v0 = v1 and 2/3u1 ≤ u0 ≤ 2u1 by (3.1). Hence the number of L2-solutions near b is the same for 
the differential expressions τ̂0, τ̂1, τ0, and τ1. In particular, this implies (i).

(ii)–(iv) By condition (β) there is d ∈ (a, b) such that

λd := ess inf
x∈(d,b)

q0(x)
r0(x) > −∞

and, thus, q0−λdr0 ≥ 0 a.e. on (d, b). This implies that τ0−λd is nonoscillatory (see, e.g. [18, Lemma 7.4.1]) 
and hence T0 is semibounded from below.

Let λ ∈ R \ σess(T0) and consider the differential expression

τ̃1 = 1
r0

(
− d

dxp1
d
dx + q̃1

)
, where q̃1 := q1 + λr0 − λr1,

on (a, b). Then r0(x)−1(q0(x) − q̃1(x)) → 0 as x → b. Therefore, by [10, Lemma 4.7] applied to τ0 − λ and 
τ̃1 − λ the differential expression τ̃1 − λ is relatively nonoscillatory with respect to τ0 − λ. Because of

r0
r1

(τ̃1 − λ)u = (τ1 − λ)u

the differential equations (τ1 −λ)u = 0 and (τ̃1 −λ)u = 0 share the same solutions. This implies that τ1 −λ

is relatively nonoscillatory with respect to τ0 − λ for all λ ∈ R \ σess(T0) and hence Proposition 3.1 yields 
σess(T1) ⊂ σess(T0). The same reasoning with the roles of τ0 and τ1 reversed together with Remark 3.3
shows the semiboundedness of T1 and the inclusion σess(T0) ⊂ σess(T1). �

Note that the relative nonoscillatory property in Theorem 3.2 (iv) does not apply to boundary points of 
the essential spectrum and hence no additional information on the possible accumulation of eigenvalues at 
the boundary of the essential spectrum can be directly obtained.

The following is a straightforward extension of [11, Theorem 2.1] to the case r0 �= r1. For its formulation 
suppose that (τ0 − λ)u = 0 has a positive solution and let u0 be the corresponding minimal (principal) 
positive solution of (τ0 − λ)u0 = 0 near b, that is,
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b∫
c

dt

p0(t)u0(t)2
= ∞

for c ∈ (a, b). A second linearly independent solution v0 satisfying W (u0, v0) = 1 is given by d’Alembert’s 
formula, see, e.g., [1],

v0(x) := u0(x)
x∫

c

dt

p0(t)u0(t)2
. (3.2)

Theorem 3.4. Let λ denote the minimum of the spectrum of T0 (see Theorem 3.2), suppose that τ0−λ has a 
positive solution near b, and let u0 be a minimal positive solution near b. Define v0 by d’Alembert’s formula 
(3.2) and abbreviate

Δ(x) := p0(x)v0(x)2
(
u0(x)2

(
q1(x) − q0(x) − λ(r1(x) − r0(x))

)
+ (p0(x)u′

0(x))2 p1(x) − p0(x)
p1(x)p0(x)

)
. (3.3)

In addition, suppose

lim
x→b

v0(x) p0(x)u′
0(x)p1(x) − p0(x)

p1(x) = lim
x→b

p1(x) − p0(x)
p1(x) = 0.

Then τ1 − λ is oscillatory if

lim sup
x→b

Δ(x) < −1
4

and nonoscillatory if

lim inf
x→b

Δ(x) > −1
4 .

Proof. This is immediate from [11, Theorem 2.1] since the transformation qj → qj −λrj reduces everything 
to the case λ = 0 in which case rj becomes irrelevant. �

In the following we show a variant of Kneser’s classical result [8] (see also [15, Theorem 9.42 and Corol-
lary 9.43]). To this end we recall the iterated logarithm logn(x) which is defined recursively via

log0(x) := x and logn(x) := log(logn−1(x)).

Here we use the convention log(x) := log |x| for negative values of x. Then logn(x) will be continuous for 
x > en−1 and positive for x > en, where e−1 := −∞ and en := een−1 . Abbreviate further

Ln(x) := 1
log′n+1(x)

=
n∏

j=0
logj(x)

and

Qn(x) := −1
4

n−1∑
j=0

1
Lj(x)2 .

Here the usual convention that 
∑−1

j=0 ≡ 0 is used, that is, Q0(x) = 0. In what follows we consider as the 
underlying interval the interval (a, ∞).
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Theorem 3.5. Consider the Sturm–Liouville differential expression τ1 on (a, ∞) and assume, in addition, 
that the limits

q∞ := lim
x→∞

q1(x), p∞ := lim
x→∞

p1(x), r∞ := lim
x→∞

r1(x) (3.4)

exist in R such that p∞ > 0 and r∞ > 0. For n ∈ N0 abbreviate

Δ̃(x) :=Ln(x)2
⎛⎝q1(x)

p∞
−Qn(x) − q∞

p∞r∞
r1(x) + 1

4

(
n−1∑
j=0

1
Lj(x)

)2 (
1 − p∞

p1(x)

)⎞⎠ . (3.5)

Then τ1 is in the limit-point case at ∞, every self-adjoint realisation T1 of τ1 in L2((a, ∞); r1) is semibounded 
from below, and

σess(T1) = [q∞/r∞,∞). (3.6)

Furthermore, the following assertions hold:

(i) If

lim sup
x→∞

Δ̃(x) < −1
4 , (3.7)

then σ(T1) ∩ (−∞, q∞/r∞) consists of infinitely many simple eigenvalues which accumulate at q∞/r∞;
(ii) If

lim inf
x→∞

Δ̃(x)2 > −1
4 , (3.8)

then σ(T1) ∩ (−∞, q∞/r∞) consists of finitely many simple eigenvalues.

Proof. The property of τ1 − λ to be oscillatory or nonoscillatory does not depend on the left endpoint of 
the interval (a, ∞). The same applies for the essential spectrum and the semi-boundedness. Therefore we 
can assume without loss of generality that a = en and, hence, u0(x) :=

√
Ln−1(x) is positive, where we set 

L−1(x) = 1.
We choose r0(x) := r∞, p0(x) := p∞, q0(x) := q∞ + p∞Qn(x) and λ := q∞

r∞
. One verifies in the same way 

as in the proof of [11, Corollary 2.3] that −u′′
0 + Qnu0 = 0 and hence(

τ0 −
q∞
r∞

)
u0 = 0, where τ0 = 1

r∞

(
− d

dx
p∞

d

dx
+ q∞ + p∞Qn

)
.

It is clear that u0 is the minimal positive solution near ∞ and the solution v0 given by d’Alemberts formula 
is

v0(x) = 1
p∞

√
Ln−1(x)

x∫
en

log′n(t) dt = 1
p∞

√
Ln−1(x) logn(x).

Let T0 be a self-adjoint realization of τ0 in L2((en, ∞)) with Dirichlet boundary conditions in en. From 
q0(x) = q∞ + p∞Qn(x) ≥ q∞ for x ∈ (en, ∞) and limx→∞ q0(x) = q∞ we conclude

σ(T0) = σess(T0) = [q∞/r∞,∞).



J. Behrndt et al. / J. Math. Anal. Appl. 518 (2023) 126673 13
By Theorem 3.2 τ1 is in limit point at ∞, T1 is semibounded and (3.6) holds. For the function Δ in 
Theorem 3.4 we obtain

Δ(x) = 1
p∞

logn(x)2Ln−1(x)
(
Ln−1(x)

(
q1(x) − q∞ − p∞Qn(x) − q∞

r∞
(r1(x) − r∞)

)

+
(
p∞

√
Ln−1(x)

′)2 p1(x) − p∞
p1(x)p∞

)

= L2
n(x)

(
q1(x)
p∞

−Qn(x) − q∞
p∞r∞

r1(x)
)

+ logn(x)2Ln−1(x)
(

L′
n−1(x)

2
√

Ln−1(x)

)2
p1(x) − p∞

p1(x) .

We use the formula L′
m(x) = Lm(x) 

∑m
j=0 Lj(x)−1 from [11] and conclude

Δ(x) = L2
n(x)

(
q1(x)
p∞

−Qn(x) − q∞
p∞r∞

r1(x)
)

+ L2
n(x)

(
1
2

n−1∑
j=0

1
Lj(x)

)2
p1(x) − p∞

p1(x) .

Thus the function Δ in Theorem 3.4 coincides with Δ̃. Now the statements (i) and (ii) follow from Theo-
rem 3.4 and (2.6). �

For the special case n = 0 Theorem 3.5 reduces to the following statement, which extends the classical 
Kneser result from [8] to the case of non-constant coefficients p1 and r1.

Corollary 3.6. Assume that the limits in (3.4) exist in R such that p∞ > 0 and r∞ > 0. Then the following 
assertions hold:

(i) If

lim sup
x→∞

x2
(
q1(x)
p∞

− q∞
p∞r∞

r1(x)
)

< −1
4 ,

then σ(T1) ∩ (−∞, q∞/r∞) consists of infinitely many simple eigenvalues which accumulate at q∞/r∞;
(ii) If

lim inf
x→∞

x2
(
q1(x)
p∞

− q∞
p∞r∞

r1(x)
)

> −1
4 ,

then σ(T1) ∩ (−∞, q∞/r∞) consists of finitely many simple eigenvalues.

In the next corollary we impose an additional condition on the coefficient p1 and obtain from Theorem 3.5
for n ≥ 1 simplified criteria for the spectrum in (−∞, q∞/r∞) to be infinite or finite.

Corollary 3.7. Assume that the limits in (3.4) exist in R such that p∞ > 0 and r∞ > 0, and let

p1(x) = p∞ + o

(
x2

Ln(x)2

)
(3.9)

for some n ∈ N. Then the following assertions hold:
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(i) If

lim sup
x→∞

L2
n(x)

(
q1(x)
p∞

−Qn(x) − q∞
p∞r∞

r1(x)
)

< −1
4 ,

then σ(T1) ∩ (−∞, q∞/r∞) consists of infinitely many simple eigenvalues which accumulate at q∞/r∞;
(ii) If

lim inf
x→∞

L2
n(x)

(
q1(x)
p∞

−Qn(x) − q∞
p∞r∞

r1(x)
)

> −1
4 ,

then σ(T1) ∩ (−∞, q∞/r∞) consists of finitely many simple eigenvalues.

Proof. Assertions (i) and (ii) follow from Theorem 3.5 if we show that

lim
x→∞

L2
n(x)1

4

(
n−1∑
j=0

1
Lj(x)

)2 (
1 − p∞

p1(x)

)
= 0. (3.10)

In fact, it is easy to see that

n−1∑
j=0

1
Lj(x) = 1

x
+ o(1/x),

and hence (
n−1∑
j=0

1
Lj(x)

)2

= 1
x2 + o(1/x2),

that is, (
n−1∑
j=0

L−1
j

)2

= 1
x2 + w(x), where lim

x→∞
x2w(x) = 0.

Furthermore, from (3.9) we conclude

1 − p∞
p1(x) = p1(x) − p∞

p1(x) = k(x)
p∞ + k(x) , where lim

x→∞
Ln(x)2k(x)

x2 = 0,

and therefore

lim
x→∞

L2
n(x)
x2

k(x)
p∞ + k(x) = 0 and lim

x→∞
L2
n(x)w(x) k(x)

p∞ + k(x) = 0.

This implies (3.10) and hence (i) and (ii) follow. �
As a last result in this context we formulate a variant of Theorem 3.4, where the pointwise limits are 

replaced by averaged ones; cf. [11, Theorem 2.5]. We leave it to the reader to formulate further generalizations 
of the results in [11] to the case r0 �= r1 by using the transformation qj → qj − λrj from the proof of 
Theorem 3.4.
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Theorem 3.8. Suppose the same assumptions and the same notation as in Theorem 3.4. Suppose, in addition, 
that the functions Δ and ρ := (p0u0v0)−1 are both bounded and ρ satisfies ρ = o(1) and

1


�∫
0

|ρ(x + t) − ρ(x)| dt = o(ρ(x)).

Then τ1 − λ is oscillatory if

inf
�>0

lim sup
x→b

x+�∫
x

Δ(t)dt < −1
4

and τ1 − λ is nonoscillatory if

sup
�>0

lim inf
x→b

x+�∫
x

Δ(t)dt > −1
4 .
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