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ABSTRACT. The spectrum of the singular indefinite Sturm-Liouville operator
42
A=)~z +)
with a real potential ¢ € L'(R) covers the whole real line and, in addition,
non-real eigenvalues may appear if the potential ¢ assumes negative values. A
quantitative analysis of the non-real eigenvalues is a challenging problem, and

so far only partial results in this direction were obtained. In this paper the
bound

Al < llall3
on the absolute values of the non-real eigenvalues A of A is obtained. Further-
more, separate bounds on the imaginary parts and absolute values of these
eigenvalues are proved in terms of the L'-norm of the negative part of gq.

1. INTRODUCTION

The aim of this paper is to prove bounds on the absolute values of the non-real
eigenvalues of the singular indefinite Sturm-Liouville operator

Af =sgn()(=f" +af),
domA = {feL*R): f,f € AC(R),—f"+qf € L*(R)},

where AC(R) stands for space of all locally absolutely continuous functions. It will
always be assumed that the potential ¢ is real-valued and belongs to L!(R).

The operator A is not symmetric nor self-adjoint in an L?-Hilbert space due to
the sign change of the weight function sgn(-). However, A can be interpreted as
a self-adjoint operator with respect to the Krein space inner product (sgn-,-) in
L?(R). We summarize the qualitative spectral properties of A in the next theorem,
which follows from [4, Theorem 4.2] or [16, Proposition 2.4] and the well-known

spectral properties of the definite Sturm-Liouville operator —j—; +q; cf. [23, 24, 25].

Theorem 1.1. The essential spectrum of A coincides with R and the mon-real
spectrum of A consists of isolated eigenvalues with finite algebraic multiplicity which
are symmetric with respect to R.

Indefinite Sturm-Liouville operators have been studied for more than a century,
and have again attracted a lot of attention in the recent past. Early works in this
context usually deal with the regular case, that is, the operator A is studied on a
finite interval with appropriate boundary conditions at the endpoints; cf. [15, 22]
and, e.g., [11, 18, 26]. In this situation the spectrum of A is purely discrete and
various estimates on the real and imaginary parts of the non-real eigenvalues were
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obtained in the last few years; cf. [2, 9, 10, 14, 17, 21]. The singular case is much less
studied, due to the technical difficulties which, very roughly speaking, are caused
by the presence of continuous spectrum.

Explicit bounds on non-real eigenvalues for singular Sturm-Liouville operators
with L>°-potentials were obtained with Krein space perturbation techniques in [5]
and under additional assumptions for L!-potentials in [6, 7], see also [3] for the
absence of real eigenvalues and [19] for the accumulation of non-real eigenvalues of
a very particular family of potentials. In this paper we substantially improve the
earlier bounds in [6, 7] and relax the conditions on the potential. More precisely,
here we prove for arbitrary real ¢ € L*(R) the following bound.

Theorem 1.2. Let ¢ € LY(R) be real. Every non-real eigenvalue \ of the indefinite
Sturm-Liouville operator A satisfies

(1.1) AL < llall-
Moreover, we prove two bounds in terms of the negative part g_ of q.

Theorem 1.3. Let ¢ € L'(R) be real. Every non-real eigenvalue \ of the indefinite
Sturm-Liouville operator A satisfies

(1.2) |Tm A| < 24-V3|lg_[2: and [N < (24-V3+18)|q_|%:.

The bound (1.1) is proved in Section 2. Its proof is based on the Birman-
Schwinger principle using similar arguments as in [1, 13], [12, Chapter 14.3]; see
also [8]. The bounds in (1.2) are obtained in Section 3 by adapting the techniques
from the regular case in [2, 9, 21] to the present singular situation.

2. PROOF OF THEOREM 1.2

In this section we prove the bound (1.1) for the non-real eigenvalues of A. We
adapt a technique similar to the Birman-Schwinger principle in [12] and apply it to
the indefinite operator A. The main ingredient is a bound for the integral kernel
of the resolvent of the operator

Bof =sgn(-)(—f"), domBy={feL'(R): [ f € ACR),—f" € L'(R)},
in L'(R).

Lemma 2.1. The operator By is closed in L'(R) and for all X in the open upper
half-plane C* the resolvent of By is an integral operator

[(Bo—A)~ /KA z,9)9(y)dy, g€ L'(R),

where the kernel Ky : R x R — C is bounded by | Ky (x,y)| < |\|~2 for all z,y € R.

Proof. Here and in the following we define v/A for A € C* as the principal value of
the square root, which ensures Im /XA > 0 and Rev/A > 0. For A € C* consider
the integral operator

(2.1) (Thg)(z /KA z,y)9(y)dy, g€ L'(R),



with the kernel Ky (z,y) = Cx(z,y) + Da(x,y) of the form
aeVAET) g >0,y >0,
—eVAlz+y) >0, 4 <0,

Ch(z,y) = —— .
A@:y) 20V | eV atiy) x<0,y>0,
—&eﬁ(zﬂl), x<0,y<0,
and
aeVAe=ul g >0,y >0,
0, z>0,y<0,
Di(z,y) = ——
A(@:y) 20\ |0, z<0,y>0,

—ae_ﬁ“_y‘, z<0,y<0,

where o := % Hence,
|Kx(z,y)| = |Cx(2,y) + Da(z,y)| \/i

and the integral in (2.1) converges for every g € L'(R). We have

1 1 V2
su Ch(x,y)|dz = +
yzg/ﬂql A )l 2/ (Imﬁ Reﬁ)

1 V2 1
Cr(2,y)| do = + .
ffi%/m wylde = (Imﬁ Reﬁ)

and

For y > 0 we estimate
2— ¢ Im fy

o0 1 _ m\/X‘ _| 1
Dawg)lde = = [ et VAl g ,
/0 2/ Jo 2+/TA| Imf VA Im VA

and analogously for y < 0

2 _ Rcfy

0 1 0
Dy (z,y)|dz = 7/ e~ ReVAlz—yl 4 —
JECY ol LT, mRe

Hence,

c:= sup/|K>\(m,y)|d:B<oo
yeR JR

and Fubini’s theorem yields

ITagllzr < / () / K (z,9)] dedy < cllgllus.
R R

Therefore T in (2.1) is an everywhere defined bounded operator in L!(R).
We claim that T} is the inverse of By — A. In fact, consider the functions u,v
given by

( ) ei\/Xa:’ x>0, o ( ) aeiﬁw +a€7i\/Xa:’ x> 0’
u(zx) = nd v(z)=

aeY e + ae‘ﬁ”“’, x <0, e‘ﬁw7 z <0,
which solve the differential equation sgn(-)(—f") = Af, that is, v and v, and their

derivatives, belong to AC(R) and satisfy the differential equation almost every-
where. Since the Wronskian equals 2av/\, these solutions are linearly independent.
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Note that u,v ¢ L'(R) and one concludes that By — A is injective. A simple
calculation shows the identity

K)\(I',y) = C)\(l’,y) + D)\(Il’,y) -

1 Ju(@)o(y)sen(y), vy <w,
20v/X | v(@)u(y)sen(y), = <y,

and hence we have

1 x oo

D)) = 5 (w0 [ o sentg) dy-+ o) [T utm) st ay).
20[\/X —0o0 x

One verifies Thg, (Thg) € AC(R) and Thg is a solution of sgn(-)(—f") — Af = g.

This implies (Thg)” € L*(R) and hence Thg € dom By satisfies

(By —\Thg =g forall ge L'(R).

Therefore, By — ) is surjective and we have Ty = (Bg — A)~!. It follows that By is
a closed operator in L'(R) and that A belongs to the resolvent set of By. O

Proof of Theorem 1.2. Since the non-real point spectrum of A is symmetric with
respect to the real line (see Theorem 1.1) it suffices to consider eigenvalues in
the upper half plane. Let A € CT be an eigenvalue of A with a corresponding
eigenfunction f € dom A. Since ¢ € L'(R) and _fT; + ¢ is in the limit point
case at +oo (see, e.g. [23, Lemma 9.37]) the function f is unique up to a constant
multiple. As —f” +qf = Af on RT and f” —qf = A\f on R~ with ¢ integrable one
has the well-known asymptotical behaviour

f@)=ay(1+ 0(1))6“517 x — +00,

2.2
22 f(x) = apivA(1+ 0(1))6“5”“', T — 400,
and

T)=a_ 0 eV p o
(2.3) f(z) (1+o0(1))ev, o — —oo,

fl(x) = a_\f/\(l + 0(1))6\505, T — —00,

for some ay,a_ € C; see, e.g. [20, § 24.2, Example a] or [23, Lemma 9.37]. These
asymptotics yield f,qf € L*(R) and —f” = Asgn(-)f — qf € L'(R), and therefore
f € dom By. Thus, f satisfies

0= (A-Nf=sgu(-)(—f") = Af +sgn(-)qf = (Bo — A\)f +sgn(-)qf
and since A is in the resolvent set of By we obtain
—qf = a(Bo — \)"'sgn(-)qf.

Note that ||¢f]|z1 # 0 as otherwise A would be an eigenvalue of By. With the help
of Lemma 2.1 we then conclude

0<llgfler < /R|Q(x)|/R|K>\($ay)”CI(y)f(3/)|dyd$ < \/1|7|||QfL1||QHL1

and this yields the desired bound (1.1). O



3. PROOF OF THEOREM 1.3

In this section we prove the bounds in (1.2) for the non-real eigenvalues of A
in Theorem 1.3, which depend only on the negative part ¢_(x) = max{0, —q(z)},
x € R, of the potential. The following lemma will be useful.

Lemma 3.1. Let A € C* be an eigenvalue of A and let f be a corresponding
etgenfunction. Define

o0

Ule)i= [ sen@lf 0P dt and V()= [ IFOF +a0)l£0)
for x € R. Then the following assertions hold:
(a) AU(z) = f'(z)f(x) + V(2);

(b) limg oo U(x) =0 and lim,_, o V() = 0;
(©) 112 < 2llg-llllfllzz;

(@) [1flle < 2/ llg=llzr 1f 1l

(e) llgf?llzr <8lla-l7: 1513

Proof. Note that f satisfies the asymptotics (2.2)-(2.3) and hence f and f’ vanish
at £oo and f' € L%(R). In particular, V(z) is well defined. We multiply the identity

Af(t) = sgn(t)(—f"(t) + q(t) f(t)) by sgn(t) f(t) and integration by parts yields

W) = [ —f T+ Ol OF dt = F @ + V@)

for all € R. This shows (a). Moreover, we have

A sl OF dt= lim (@) = tim Vie) = [ 170OF +a@lr0F
R R

rT——00

Taking the imaginary part shows lim,_, . U(z) = 0 and, hence, lim,_, ., V(z) =
0. This proves (b).

As f is continuous and vanishes at too we have |f|l < 00. Let gi(z) :=
max{0,q(z)}, € R. Making use of lim,_, o V(z) =0 and ¢ = ¢ — ¢ we find

0< '] = — / aOIF (1) dt = - / (a4(t) — () f ()2 dt
(3.1) R R

< [ IfOP < o u]7)
R
This implies [lg4 /21 < llg_ /222 < ll_[lz:]I]12 and, thus,
(3:2) llaf?| e =/\Q(t)||f(t)|2dt=/ (a4() +a-O)IF ) dt < 2[lg— ||z || f1I5-
R R
In order to verify (d) let z,y € R with > y. Then
[f(@)] = |f(y)? =/ (1£17) () dt < 2/ f@OF @1 dt < 2 fllz=)l ]|
Yy Yy

together with f(y) — 0, y — —o0, leads to || f||% < 2||f|lz2]|f/||z2- Since f is an
eigenfunction || f||cc does not vanish and we have with (3.1)

2 2 / 2
1l < ”f'|'|f||f” < o/l f e,
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which shows (d). Moreover, the estimate in (d) applied to (3.1) and (3.2) yield (c)
and (e). O

Proof of Theorem 1.3. Let A\ € CT be a eigenvalue of A and let f € dom A be a
corresponding eigenfunction. We can assume ||g_||z1 > 0 as otherwise f = 0 by
Lemma 3.1 (d). Let U and V be as in Lemma 3.1, let § := (24||q_||z1)~! and define

the function g on R by
~)sgn(xz), x| >0,
g(x) = {307 2] <6
From Lemma 3.1 (a) we have
(33) A [ g @U@= [ ¢ @)(f @)@ + V@) d
R R

Since g is bounded and U(z) vanishes for  — 400, integration by parts leads to
the estimate

L@@ = [ s@sm@is@rasz [ i@k

1)
(3.4) =II£IIZ> - /_6 |f (@) da > [|fII7- — 20]| £113

2
> £l1Z2 = 80lla-llo: I £IIZ2 = SI1f 1=

here we have used Lemma 3.1 (d) in the last line of (3.4). Further we see with
Lemma 3.1 (c¢)—(d)

_ 3 2
/Rg’(w)f’(x) (@) dz| < [ fllocllflIezllg'llz2 < 4||f1—||21||f||2p\[5

<16 V3llg- 1241 £l 72

Since ||g]lcc = 1 and V' (z) vanishes for 2 — oo integration by parts together with
Lemma 3.1 (¢) and (e) yields

/]R g (z)V(z)dx

(3.5)

[o@ (7@ + @) as
< llglloe (||f 22+ llaf?llee) < 12llg- | )1 f1Z--
Comparing the imaginary parts in (3.3) we have with (3.4) and (3.5)
S <l [ s @] < | [ d@r @
R
<16 V3lg- |17 1 £117:-
In the same way we obtain from (3.4), (3.3) and (3.5)—(3.6) that

SN < [ @ as] = | [ 0 @7@ + V) ds

< (16 VB+12) lg_ 131132
This shows the bounds in (1.2). O

(3.6)

A
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