SPECTRAL BOUNDS FOR SINGULAR INDEFINITE STURM-LIOUVILLE OPERATORS WITH L^1-POTENTIALS

JUSSI BEHRNDT, PHILIPP SCHMITZ, AND CARSTEN TRUNK

Abstract. The spectrum of the singular indefinite Sturm-Liouville operator
$$A = \text{sgn}(\cdot)\left(-\frac{d^2}{dx^2} + q\right)$$
with a real potential $q \in L^1(\mathbb{R})$ covers the whole real line and, in addition, non-real eigenvalues may appear if the potential q assumes negative values. A quantitative analysis of the non-real eigenvalues is a challenging problem, and so far only partial results in this direction were obtained. In this paper the bound
$$|\lambda| \leq \|q\|_{L^1}^2$$
on the absolute values of the non-real eigenvalues λ of A is obtained. Furthermore, separate bounds on the imaginary parts and absolute values of these eigenvalues are proved in terms of the L^1-norm of the negative part of q.

1. Introduction

The aim of this paper is to prove bounds on the absolute values of the non-real eigenvalues of the singular indefinite Sturm-Liouville operator
$$Af = \text{sgn}(\cdot)(-f'' + qf),$$
$$\text{dom } A = \{f \in L^2(\mathbb{R}) : f, f' \in AC(\mathbb{R}), -f'' + qf \in L^2(\mathbb{R})\},$$
where $AC(\mathbb{R})$ stands for space of all locally absolutely continuous functions. It will always be assumed that the potential q is real-valued and belongs to $L^1(\mathbb{R})$.

The operator A is not symmetric nor self-adjoint in an L^2-Hilbert space due to the sign change of the weight function $\text{sgn}(\cdot)$. However, A can be interpreted as a self-adjoint operator with respect to the Krein space inner product $(\text{sgn} \cdot, \cdot)$ in $L^2(\mathbb{R})$. We summarize the qualitative spectral properties of A in the next theorem, which follows from [4, Theorem 4.2] or [16, Proposition 2.4] and the well-known spectral properties of the definite Sturm-Liouville operator $-\frac{d^2}{dx^2} + q$; cf. [23, 24, 25].

Theorem 1.1. The essential spectrum of A coincides with \mathbb{R} and the non-real spectrum of A consists of isolated eigenvalues with finite algebraic multiplicity which are symmetric with respect to \mathbb{R}.

Indefinite Sturm-Liouville operators have been studied for more than a century, and have again attracted a lot of attention in the recent past. Early works in this context usually deal with the regular case, that is, the operator A is studied on a finite interval with appropriate boundary conditions at the endpoints; cf. [15, 22] and, e.g., [11, 18, 26]. In this situation the spectrum of A is purely discrete and various estimates on the real and imaginary parts of the non-real eigenvalues were

Key words and phrases. Non-real eigenvalue, indefinite Sturm-Liouville operator, Krein space, Birman-Schwinger principle.
obtained in the last few years; cf. [2, 9, 10, 14, 17, 21]. The singular case is much less studied, due to the technical difficulties which, very roughly speaking, are caused by the presence of continuous spectrum.

Explicit bounds on non-real eigenvalues for singular Sturm-Liouville operators with L^∞-potentials were obtained with Krein space perturbation techniques in [5] and under additional assumptions for L^1-potentials in [6, 7], see also [3] for the absence of real eigenvalues and [19] for the accumulation of non-real eigenvalues of a very particular family of potentials. In this paper we substantially improve the earlier bounds in [6, 7] and relax the conditions on the potential. More precisely, here we prove for arbitrary real $q \in L^1(\mathbb{R})$ the following bound.

Theorem 1.2. Let $q \in L^1(\mathbb{R})$ be real. Every non-real eigenvalue λ of the indefinite Sturm-Liouville operator A satisfies

$$|\lambda| \leq ||q||^2_{L^1}, \quad (1.1)$$

Moreover, we prove two bounds in terms of the negative part q_- of q.

Theorem 1.3. Let $q \in L^1(\mathbb{R})$ be real. Every non-real eigenvalue λ of the indefinite Sturm-Liouville operator A satisfies

$$|\text{Im}\lambda| \leq 24 \cdot \sqrt{3} ||q_-||_{L^1}^2 \quad \text{and} \quad |\lambda| \leq (24 \cdot \sqrt{3} + 18) ||q_-||_{L^1}^2, \quad (1.2)$$

The bound (1.1) is proved in Section 2. Its proof is based on the Birman-Schwinger principle using similar arguments as in [1, 13], [12, Chapter 14.3]; see also [8]. The bounds in (1.2) are obtained in Section 3 by adapting the techniques from the regular case in [2, 9, 21] to the present singular situation.

2. **Proof of Theorem 1.2**

In this section we prove the bound (1.1) for the non-real eigenvalues of A. We adapt a technique similar to the Birman-Schwinger principle in [12] and apply it to the indefinite operator A. The main ingredient is a bound for the integral kernel of the resolvent of the operator

$$B_0 f = \text{sgn}(\cdot)(-f''), \quad \text{dom} B_0 = \{ f \in L^1(\mathbb{R}) : f, f' \in AC(\mathbb{R}), -f'' \in L^1(\mathbb{R}) \},$$

in $L^1(\mathbb{R})$.

Lemma 2.1. The operator B_0 is closed in $L^1(\mathbb{R})$ and for all λ in the open upper half-plane \mathbb{C}^+ the resolvent of B_0 is an integral operator

$$(B_0 - \lambda)^{-1} g = \int_{\mathbb{R}} K_\lambda(x, y) g(y) dy, \quad g \in L^1(\mathbb{R}),$$

where the kernel $K_\lambda : \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ is bounded by $|K_\lambda(x, y)| \leq |\lambda|^{-\frac{1}{2}}$ for all $x, y \in \mathbb{R}$.

Proof. Here and in the following we define $\sqrt{\lambda}$ for $\lambda \in \mathbb{C}^+$ as the principal value of the square root, which ensures $\text{Im} \sqrt{\lambda} > 0$ and $\text{Re} \sqrt{\lambda} > 0$. For $\lambda \in \mathbb{C}^+$ consider the integral operator

$$(T_\lambda g)(x) = \int_{\mathbb{R}} K_\lambda(x, y) g(y) dy, \quad g \in L^1(\mathbb{R}), \quad (2.1)$$
with the kernel $K_\lambda(x,y) = C_\lambda(x,y) + D_\lambda(x,y)$ of the form

$$C_\lambda(x,y) = \frac{1}{2\alpha \sqrt{\lambda}} \begin{cases} \alpha e^{i\sqrt{\lambda}(x+y)}, & x \geq 0, y \geq 0, \\ -e^{i\sqrt{\lambda}(x+y)}, & x \geq 0, y < 0, \\ e^{i\sqrt{\lambda}(x+y)}, & x < 0, y \geq 0, \\ -\alpha e^{i\sqrt{\lambda}(x+y)}, & x < 0, y < 0, \end{cases}$$

and

$$D_\lambda(x,y) = \frac{1}{2\alpha \sqrt{\lambda}} \begin{cases} \alpha e^{i\sqrt{\lambda}|x-y|}, & x \geq 0, y \geq 0, \\ 0, & x \geq 0, y < 0, \\ 0, & x < 0, y \geq 0, \\ -\alpha e^{-i\sqrt{\lambda}|x-y|}, & x < 0, y < 0, \end{cases}$$

where $\alpha := \frac{1-i}{\pi}$. Hence,

$$|K_\lambda(x,y)| = |C_\lambda(x,y) + D_\lambda(x,y)| \leq \frac{1}{\sqrt{\lambda}}$$

and the integral in (2.1) converges for every $g \in L^1(\mathbb{R})$. We have

$$\sup_{y \geq 0} \int_\mathbb{R} |C_\lambda(x,y)| \, dx = \frac{1}{2\sqrt{\lambda}} \left(\frac{1}{\text{Im} \sqrt{\lambda}} + \frac{\sqrt{2}}{\text{Re} \sqrt{\lambda}} \right)$$

and

$$\sup_{y < 0} \int_\mathbb{R} |C_\lambda(x,y)| \, dx = \frac{1}{2\sqrt{\lambda}} \left(\frac{\sqrt{2}}{\text{Im} \sqrt{\lambda}} + \frac{1}{\text{Re} \sqrt{\lambda}} \right).$$

For $y \geq 0$ we estimate

$$\int_0^\infty |D_\lambda(x,y)| \, dx = \frac{1}{2\sqrt{\lambda}} \int_0^\infty e^{-\text{Im} \sqrt{\lambda}|x-y|} \, dx = \frac{2 - e^{-\text{Im} \sqrt{\lambda}y}}{2\sqrt{\lambda} \text{Im} \sqrt{\lambda}} \leq \frac{1}{\sqrt{\lambda} \text{Im} \sqrt{\lambda}},$$

and analogously for $y < 0$

$$\int_{-\infty}^0 |D_\lambda(x,y)| \, dx = \frac{1}{2\sqrt{\lambda}} \int_{-\infty}^0 e^{-\text{Re} \sqrt{\lambda}|x-y|} \, dx = \frac{2 - e^{\text{Re} \sqrt{\lambda}y}}{2\sqrt{\lambda} \text{Re} \sqrt{\lambda}} \leq \frac{1}{\sqrt{\lambda} \text{Re} \sqrt{\lambda}}.$$

Hence,

$$c := \sup_{y \in \mathbb{R}} \int_\mathbb{R} |K_\lambda(x,y)| \, dx < \infty$$

and Fubini’s theorem yields

$$\|T_\lambda g\|_{L^1} \leq \int_\mathbb{R} |g(y)| \int_\mathbb{R} |K_\lambda(x,y)| \, dx \, dy \leq c \|g\|_{L^1}.$$

Therefore T_λ in (2.1) is an everywhere defined bounded operator in $L^1(\mathbb{R})$.

We claim that T_λ is the inverse of $B_0 - \lambda$. In fact, consider the functions u, v given by

$$u(x) = \begin{cases} e^{i\sqrt{\lambda}x}, & x \geq 0, \\ \overline{\alpha} e^{i\sqrt{\lambda}x} + \alpha e^{-i\sqrt{\lambda}x}, & x < 0, \end{cases} \quad \text{and} \quad v(x) = \begin{cases} \alpha e^{i\sqrt{\lambda}x} + \overline{\alpha} e^{-i\sqrt{\lambda}x}, & x \geq 0, \\ e^{i\sqrt{\lambda}x}, & x < 0, \end{cases}$$

which solve the differential equation $\text{sgn}(\cdot)(-f'') = \lambda f$, that is, u and v, and their derivatives, belong to $AC(\mathbb{R})$ and satisfy the differential equation almost everywhere. Since the Wronskian equals $2\alpha \sqrt{\lambda}$, these solutions are linearly independent.
Note that \(u, v \notin L^1(\mathbb{R}) \) and one concludes that \(B_0 - \lambda \) is injective. A simple calculation shows the identity
\[
K_\lambda(x, y) = C_\lambda(x, y) + D_\lambda(x, y) = \frac{1}{2\alpha \sqrt{\lambda}} \begin{cases} u(x)v(y) \text{sgn}(y), & y < x, \\ v(x)u(y) \text{sgn}(y), & x < y, \end{cases}
\]
and hence we have
\[
(T_\lambda g)(x) = \frac{1}{2\alpha \sqrt{\lambda}} \left(u(x) \int_{-\infty}^{x} v(y) \text{sgn}(y) g(y) \, dy + v(x) \int_{x}^{\infty} u(y) \text{sgn}(y) g(y) \, dy \right).
\]
One verifies \(T_\lambda g, (T_\lambda g)' \in AC(\mathbb{R}) \) and \(T_\lambda g \) is a solution of \(\text{sgn}(\cdot)(-f''') - \lambda f = g \).
This implies \((T_\lambda g)'' \in L^1(\mathbb{R}) \) and hence \(T_\lambda g \in \text{dom } B_0 \) satisfies
\[
(B_0 - \lambda)T_\lambda g = g \quad \text{for all } g \in L^1(\mathbb{R}).
\]
Therefore, \(B_0 - \lambda \) is surjective and we have \(T_\lambda = (B_0 - \lambda)^{-1} \). It follows that \(B_0 \) is a closed operator in \(L^1(\mathbb{R}) \) and that \(\lambda \) belongs to the resolvent set of \(B_0 \). \(\square \)

Proof of Theorem 1.2. Since the non-real point spectrum of \(A \) is symmetric with respect to the real line (see Theorem 1.1) it suffices to consider eigenvalues in the upper half plane. Let \(\lambda \in \mathbb{C}^+ \) be an eigenvalue of \(A \) with a corresponding eigenfunction \(f \in \text{dom } A \). Since \(q \in L^1(\mathbb{R}) \) and \(-\frac{d^2}{dx^2} + q \) is in the limit point case at \(\pm \infty \) (see, e.g. [23, Lemma 9.37]) the function \(f \) is unique up to a constant multiple. As \(-f''' + qf = \lambda f \) on \(\mathbb{R}^+ \) and \(f''' - qf = \lambda f \) on \(\mathbb{R}^- \) with \(q \) integrable one has the well-known asymptotical behaviour
\[
\begin{align*}
f(x) &= \alpha_+ (1 + o(1)) e^{i \sqrt{\lambda} x}, & x \to +\infty, \\
f'(x) &= \alpha_+ i \sqrt{\lambda} (1 + o(1)) e^{i \sqrt{\lambda} x}, & x \to +\infty,
\end{align*}
\]
and
\[
\begin{align*}
f(x) &= \alpha_- (1 + o(1)) e^{\sqrt{\lambda} x}, & x \to -\infty, \\
f'(x) &= \alpha_- \sqrt{\lambda} (1 + o(1)) e^{\sqrt{\lambda} x}, & x \to -\infty,
\end{align*}
\]
for some \(\alpha_+, \alpha_- \in \mathbb{C} \); see, e.g. [20, § 24.2, Example a] or [23, Lemma 9.37]. These asymptotics yield \(f, qf \in L^1(\mathbb{R}) \) and \(-f''' = \lambda \text{sgn}(\cdot) f - qf \in L^1(\mathbb{R}) \), and therefore \(f \in \text{dom } B_0 \). Thus, \(f \) satisfies
\[
0 = (A - \lambda)f = \text{sgn}(\cdot)(-f''') - \lambda f + \text{sgn}(\cdot)qf = (B_0 - \lambda)f + \text{sgn}(\cdot)qf
\]
and since \(\lambda \) is in the resolvent set of \(B_0 \) we obtain
\[
-qf = q(B_0 - \lambda)^{-1} \text{sgn}(\cdot)qf.
\]
Note that \(\|qf\|_{L^1} \neq 0 \) as otherwise \(\lambda \) would be an eigenvalue of \(B_0 \). With the help of Lemma 2.1 we then conclude
\[
0 < \|qf\|_{L^1} \leq \int_{\mathbb{R}} |q(x)| \int_{\mathbb{R}} |K_\lambda(x, y)||q(y)f(y)| \, dy \, dx \leq \frac{1}{\sqrt{|\lambda|}} \|qf\|_{L^1} \|q\|_{L^1}
\]
and this yields the desired bound (1.1). \(\square \)
3. Proof of Theorem 1.3

In this section we prove the bounds in (1.2) for the non-real eigenvalues of \(A \) in Theorem 1.3, which depend only on the negative part \(q_-(x) = \max\{0, -q(x)\} \), \(x \in \mathbb{R} \), of the potential. The following lemma will be useful.

Lemma 3.1. Let \(\lambda \in \mathbb{C}^+ \) be an eigenvalue of \(A \) and let \(f \) be a corresponding eigenfunction. Define

\[
U(x) := \int_x^\infty \text{sgn}(t)|f(t)|^2 \, dt \quad \text{and} \quad V(x) := \int_x^\infty |f'(t)|^2 + q(t)|f(t)|^2 \, dt.
\]

for \(x \in \mathbb{R} \). Then the following assertions hold:

(a) \(\lambda U(x) = f'(x)f(x) + V(x) \);
(b) \(\lim_{x \to -\infty} U(x) = 0 \) and \(\lim_{x \to -\infty} V(x) = 0 \);
(c) \(\|f\|_{L^2} \leq 2\|q_-\|_{L^1}\|f\|_{L^2} \);
(d) \(\|f\|_\infty \leq 2\sqrt{\|q_-\|_{\mathbb{R}}^2\|f\|_{L^2}} \);
(e) \(qf^2 \|_{L^1} \leq 8\|q_-\|_{L^1}\|f\|_{L^2}^2 \).

Proof. Note that \(f \) satisfies the asymptotics (2.2)–(2.3) and hence \(f \) and \(f' \) vanish at \(\pm \infty \) and \(f' \in L^2(\mathbb{R}) \). In particular, \(V(x) \) is well defined. We multiply the identity \(\lambda f(t) = \text{sgn}(t)(-f''(t) + q(t)f(t)) \) by \(\text{sgn}(t)f(t) \) and integration by parts yields

\[
\lambda U(x) = \int_x^\infty -f''(t)f(t) + q(t)|f(t)|^2 \, dt = f'(x)f(x) + V(x)
\]

for all \(x \in \mathbb{R} \). This shows (a). Moreover, we have

\[
\lambda \int_\mathbb{R} \text{sgn}(t)|f(t)|^2 \, dt = \lim_{x \to -\infty} \lambda U(x) = \lim_{x \to -\infty} V(x) = \int_\mathbb{R} |f'(t)|^2 + q(t)|f(t)|^2 \, dt.
\]

Taking the imaginary part shows \(\lim_{x \to -\infty} U(x) = 0 \) and, hence, \(\lim_{x \to -\infty} V(x) = 0 \). This proves (b).

As \(f \) is continuous and vanishes at \(\pm \infty \) we have \(\|f\|_\infty < \infty \). Let \(q_+(x) := \max\{0, q(x)\} \), \(x \in \mathbb{R} \). Making use of \(\lim_{x \to -\infty} V(x) = 0 \) and \(q = q_--q_- \) we find

\[
0 \leq \|f\|_{L^2}^2 = -\int_\mathbb{R} q(t)|f(t)|^2 \, dt = -\int_\mathbb{R} (q_+(t) - q_-(t))|f(t)|^2 \, dt
\]

\[
\leq \int_\mathbb{R} q_-|f(t)|^2 \, dt \leq \|q_-\|_{L^1}\|f\|_{L^\infty}^2.
\]

This implies \(\|q_+\|_{L^1} \leq \|q_-\|_{L^1} \), \(\|q_-\|_{L^1} \leq \|q_-\|_{L^1} \), \(\|f\|_{L^\infty} \) and, thus,

\[
\|qf^2\|_{L^1} = \int_\mathbb{R} |q(t)||f(t)|^2 \, dt = \int_\mathbb{R} (q_+(t) + q_-(t))|f(t)|^2 \, dt \leq 2\|q_-\|_{L^1}\|f\|_{L^\infty}^2.
\]

In order to verify (d) let \(x, y \in \mathbb{R} \) with \(x > y \). Then

\[
|f(x)|^2 - |f(y)|^2 = \int_y^x (f'(t))^2 \, dt \leq 2\int_y^x |f(t)f'(t)| \, dt \leq 2\|f\|_{L^2}\|f'\|_{L^2}.
\]

Together with \(f(y) \to 0 \), \(y \to -\infty \), leads to \(\|f\|_{L^\infty}^2 \leq 2\|f\|_{L^2}\|f'\|_{L^2} \). Since \(f \) is an eigenfunction \(\|f\|_{L^\infty} \) does not vanish and we have with (3.1)

\[
\|f\|_{L^\infty} \leq \frac{2\|f\|_{L^2}\|f'\|_{L^2}}{\|f\|_{L^\infty}} \leq 2\sqrt{\|q_-\|_{L^1}\|f\|_{L^2}},
\]
which shows (d). Moreover, the estimate in (d) applied to (3.1) and (3.2) yield (c) and (e).

Proof of Theorem 1.3. Let $\lambda \in \mathbb{C}^+$ be a eigenvalue of A and let $f \in \text{dom } A$ be a corresponding eigenfunction. We can assume $\|q_-\|_{L^1} > 0$ as otherwise $f = 0$ by Lemma 3.1 (d). Let U and V be as in Lemma 3.1, let $\delta := (24\|q_-\|_{L^1})^{-1}$ and define the function g on \mathbb{R} by

$$g(x) = \begin{cases} \text{sgn}(x), & |x| > \delta, \\ \frac{x}{3}, & |x| \leq \delta. \end{cases}$$

From Lemma 3.1 (a) we have

$$\lambda \int_{\mathbb{R}} g'(x)U(x) \, dx = \int_{\mathbb{R}} g'(x)(f'(x)f(x) + V(x)) \, dx. \quad (3.3)$$

Since g is bounded and $U(x)$ vanishes for $x \to \pm \infty$, integration by parts leads to the estimate

$$\int_{\mathbb{R}} g'(x)U(x) \, dx = \int_{\mathbb{R}} g(x)\text{sgn}(x)|f(x)|^2 \, dx \geq \int_{|x| \leq \delta} |f(x)|^2 \, dx \geq \|f\|_{L^2}^2 - \int_{|x| > \delta} |f(x)|^2 \, dx \geq \|f\|_{L^2}^2 - 2\delta\|f\|_{L^2}^2 - 2\delta\|f\|_{L^2}^2 = \frac{2}{3}\|f\|_{L^2}^2; \quad (3.4)$$

here we have used Lemma 3.1 (d) in the last line of (3.4). Further we see with Lemma 3.1 (c)–(d)

$$\left| \int_{\mathbb{R}} g'(x)f'(x)\overline{f(x)} \, dx \right| \leq \|f\|_{L^\infty} \|f'\|_{L^2} \|g'\|_{L^2} \leq 4\|q_-\|^\frac{3}{2}_{L^2} \|f\|_{L^2}^2 \sqrt{2} \delta < 16\sqrt{3}\|q_-\|^\frac{3}{2}_{L^2} \|f\|_{L^2}^2. \quad (3.5)$$

Since $\|g\|_{L^\infty} = 1$ and $V(x)$ vanishes for $x \to \pm \infty$, integration by parts together with Lemma 3.1 (c) and (e) yields

$$\left| \int_{\mathbb{R}} g'(x)V(x) \, dx \right| = \left| \int_{\mathbb{R}} g(x)\left(|f'(x)|^2 + q(x)|f(x)|^2\right) \, dx \right| \leq \|g\|_{L^\infty} (\|f'\|_{L^2}^2 + \|qf^2\|_{L^1}) \leq 12\|q_-\|^\frac{3}{2}_{L^2} \|f\|_{L^2}^2. \quad (3.6)$$

Comparing the imaginary parts in (3.3) we have with (3.4) and (3.5)

$$\frac{2}{3}\text{Im } \lambda \|f\|_{L^2}^2 \leq \text{Im } \lambda \left| \int_{\mathbb{R}} g'(x)U(x) \, dx \right| \leq \left| \int_{\mathbb{R}} g'(x)f'(x)\overline{f(x)} \, dx \right| \leq 16\sqrt{3}\|q_-\|^\frac{3}{2}_{L^2} \|f\|_{L^2}^2. \quad \square$$

In the same way we obtain from (3.4), (3.3) and (3.5)–(3.6) that

$$\frac{2}{3}|\lambda|\|f\|_{L^2}^2 \leq \left| \lambda \int_{\mathbb{R}} g'(x)U(x) \, dx \right| \leq \left| \int_{\mathbb{R}} g'(x)(f'(x)\overline{f(x)} + V(x)) \, dx \right| \leq \left(16\sqrt{3} + 12 \right) \|q_-\|^\frac{3}{2}_{L^2} \|f\|_{L^2}^2.$$

This shows the bounds in (1.2). \square
References
