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Abstract. Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary and

let q : Ω → C be a bounded complex potential. We study the Dirichlet-to-
Neumann graph associated with the operator −∆ + q and we give an example

in which it is not m-sectorial.

1. Introduction. The classical Dirichlet-to-Neumann operator D is a positive self-
adjoint operator acting on functions defined on the boundary Γ = ∂Ω of a bounded
open set Ω ⊂ Rd with Lipschitz boundary. The operator D is defined as follows. Let
ϕ,ψ ∈ L2(Γ). Then ϕ ∈ domD and Dϕ = ψ if and only if there exists a u ∈ H1(Ω)
such that  Tru = ϕ,

−∆u = 0 weakly on Ω,

∂νu = ψ,

(1)

where ∂ν is the (weak) normal derivative. The Dirichlet-to-Neumann operator can
also be described by form methods, see, e.g. [4]. Define the form a : H1(Ω) ×
H1(Ω)→ C by

a(u, v) =

∫
Ω

∇u · ∇v. (2)

Let ϕ,ψ ∈ L2(Γ). Then ϕ ∈ domD and Dϕ = ψ if and only if there exists a
u ∈ H1(Ω) such that Tru = ϕ and a(u, v) = (ψ,Tr v)L2(Γ) for all v ∈ H1(Ω). The
Dirichlet-to-Neumann operator plays a central role in direct and inverse spectral
problems and has attracted a lot of attention; for a small selection of recent contri-
butions of operator theoretic flavor see [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 23, 24, 25, 26, 27].

There are various extensions of the Dirichlet-to-Neumann operator. The first one
is where the operator −∆ in (1) is replaced by a formally symmetric pure second-
order strongly elliptic differential operator in divergence form. Then one again
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obtains a self-adjoint version of the Dirichlet-to-Neumann operator, which enjoys
a description with a form by making the obvious changes in (2). Similarly, if one
replaces the operator −∆ in (1) by a pure second-order strongly elliptic differential
operator in divergence form (which is possibly not symmetric), then the associated
Dirichlet-to-Neumann operator is an m-sectorial operator.

There occurs a significant difference if one replaces the operator −∆ in (1) by a
formally symmetric second-order strongly elliptic differential operator in divergence
form, this time with lower-order terms. Then it might happen that D is no longer
a self-adjoint operator, because it could be multivalued. Nevertheless, it turns out
that D is a self-adjoint graph, which is lower bounded (see [6] Theorems 4.5 and
4.15, or [8] Theorem 5.7).

The aim of this note is to consider the case where the operator −∆ in (1) is
replaced by −∆+q, where q : Ω→ C is a bounded measurable complex valued func-
tion; in a similar way a general second-order strongly elliptic operator in divergence
form with lower-order terms could be considered. In Section 2 the form method
from [3, 4, 5, 6] will be adapted and applied to the present situation in an abstract
form, and in Section 3 the Dirichlet-to-Neumann graph D associated with −∆ + q
will be studied. Although one may expect that D is an m-sectorial graph it turns
out in Example 3.7 that this is not the case in general.

2. Forms. In this section we review and extend the form methods and the theory
of self-adjoint graphs.

Let V and H be Hilbert spaces. Let a : V × V → C be a continuous sesquilin-
ear form. Continuous means that there exists an M > 0 such that |a(u, v)| ≤
M ‖u‖V ‖v‖V for all u, v ∈ V . Let j ∈ L(V,H) be an operator. Define the graph D
in H ×H by

D = {(ϕ,ψ) ∈ H ×H : there exists a u ∈ V such that

j(u) = ϕ and a(u, v) = (ψ, j(v))H for all v ∈ V }.

We call D the graph associated with (a, j).
In general, if A is a graph in H, then the domain of A is

domA = {x ∈ H : (x, y) ∈ A for some y ∈ H}

and the multivalued part is

mulA = {y ∈ H : (0, y) ∈ A}.

We say that A is single valued, or an operator, if mulA = {0}. In that case one
can identify A with a map from domA into H.

Clearly mulD 6= {0} if j(V ) is not dense in H. If (ϕ,ψ) ∈ D, then there might
be more than one u ∈ V such that j(u) = ϕ and a(u, v) = (ψ, j(v))H for all v ∈ V .
For that reason we introduce the space

Wj(a) = {u ∈ ker j : a(u, v) = 0 for all v ∈ V }.

If u0 ∈ V is such that j(u0) = ϕ and a(u0, v) = (ψ, j(v))H for all v ∈ V , then

{u ∈ V : j(u) = ϕ and a(u, v) = (ψ, j(v))H for all v ∈ V } = u0 +Wj(a).

Note that Wj(a) is closed in V .
We say that the form a is j-elliptic if there exist µ, ω > 0 such that

Re a(u) + ω ‖j(u)‖2H ≥ µ ‖u‖2V (3)
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for all u ∈ V . Graphs associated with j-elliptic forms behave well.

Theorem 2.1. Suppose that a is j-elliptic and j(V ) is dense in H. Then D is an
m-sectorial operator. Also Wj(a) = {0}.

Proof. See [4] Theorem 2.1 and Proposition 2.3(ii).

If Ω ⊂ Rd is a bounded open set with Lipschitz boundary, V = H1(Ω), H =
L2(Γ), j = Tr and a is as in (2), then D is the Dirichlet-to-Neumann operator as
in the introduction; cf. Section 3 for more details.

In general the form a is not j-elliptic. An example occurs if one replaces a in (2)
by

a(u, v) =

∫
Ω

∇u · ∇v − λ
∫

Ω

u v

with λ ∈ σ(−∆D), where ∆D is the Laplacian on Ω with Dirichlet boundary con-
ditions. Then (3) fails for every µ, ω > 0 if u is a corresponding eigenfunction and
j = Tr . In addition, the graph associated with (a, j) is not single valued any more.
We emphasize that we are interested in the graph associated with (a, j). To get
around the problem that the form a is not j-elliptic, it is convenient to introduce a
different Hilbert space and a different map j̃.

Throughout the remainder of this paper we adopt the following hypothesis.

Hypothesis 2.2. Let V , H and H̃ be Hilbert spaces and let a : V × V → C be a
continuous sesquilinear form. Let j ∈ L(V,H) and let D be the graph associated

with (a, j). Furthermore, let j̃ ∈ L(V, H̃) be a compact map and assume that the
form a is j̃-elliptic, that is, there are µ̃, ω̃ > 0 such that

Re a(u) + ω̃ ‖j̃(u)‖2
H̃
≥ µ̃ ‖u‖2V (4)

for all u ∈ V .

As example, if Ω ⊂ Rd is a bounded open set with Lipschitz boundary as before,

then one can choose V = H1(Ω), H = L2(Γ), H̃ = L2(Ω), j = Tr and j̃ is
the inclusion map from H1(Ω) into L2(Ω). For a one can choose a continuous
sesquilinear form on H1(Ω) like in (2). We consider this example in more detail in
Section 3.

In general, if A is a graph in H, then A is called symmetric if (x, y)H ∈ R for
all (x, y) ∈ A. The graph A is called surjective if for all y ∈ H there exists an
x ∈ H such that (x, y) ∈ A. The graph A is called self-adjoint if A is symmetric
and for all s ∈ R\{0} the graph A+ i s I is surjective, where for all λ ∈ C we define
the graph (A+ λ I) by

(A+ λ I) = {(x, y + λx) : (x, y) ∈ A}.
A symmetric graph A is called bounded below if there exists an ω > 0 such that
(x, y)H + ω ‖x‖2H ≥ 0 for all (x, y) ∈ A.

Under the above main assumptions we can state the following theorem for sym-
metric forms.

Theorem 2.3. Adopt Hypothesis 2.2. Suppose a is symmetric. Then D is a self-
adjoint graph which is bounded below.

Proof. See [6] Theorems 4.5 and 4.15, or [8] Theorem 5.7.

We next wish to study the case when a is not symmetric.



664 JUSSI BEHRNDT AND A. F. M. TER ELST

Proposition 2.4. Adopt Hypothesis 2.2. Then the graph D is closed.

Proof. Let ((ϕn, ψn))n∈N be a sequence in D, let (ϕ,ψ) ∈ H × H and suppose
that limn→∞(ϕn, ψn) = (ϕ,ψ) in H × H. For all n ∈ N there exists a unique
un ∈Wj(a)⊥ such that j(un) = ϕn and

a(un, v) = (ψn, j(v))H (5)

for all v ∈ V , where the orthogonal complement is in V .

We first show that (j̃(un))n∈N is bounded in H̃. Suppose not. Set τn = ‖j̃(un)‖H̃
for all n ∈ N. Passing to a subsequence if necessary, we may assume that τn > 0
for all n ∈ N and limn→∞

1
τn

= 0. Define wn = 1
τn
un for all n ∈ N. Then

a(wn, v) = ( 1
τn
ψn, j(v))H (6)

for all v ∈ V . Choose v = wn. Then

Re a(wn) ≤ ‖ψn‖H
τn

‖j‖ ‖wn‖V

for all n ∈ N. Let µ̃, ω̃ > 0 be as in (4). Then

‖wn‖V ≤ 1
2 µ̃ ‖wn‖

2
V + 1

2µ̃ ≤
1

2µ̃ + 1
2 ω̃ + 1

2 Re a(wn).

So

|Re a(wn)| ≤ ‖ψn‖H ‖j‖
τn

(
1

2µ̃ + 1
2 ω̃ + 1

2 |Re a(wn)|
)

for all n ∈ N. Since (‖ψn‖H)n∈N is bounded and ‖ψn‖H ‖j‖
τn

< 1 for all large n ∈ N,

it follows that (Re a(wn))n∈N is bounded. Together with (4) it then follows that
(wn)n∈N is bounded in V . Passing to a subsequence if necessary there exists a
w ∈ Wj(a)⊥ such that limn→∞ wn = w weakly in V . Then j̃(w) = limn→∞ j̃(wn)

in H̃ since j̃ is compact. So ‖j̃(w)‖H̃ = 1 and in particular w 6= 0. Alternatively,
for all v ∈ V it follows from (6) that

a(w, v) = lim
n→∞

a(wn, v) = lim
n→∞

1
τn

(ψn, j(v))H = 0.

Moreover, j(w) = limn→∞
1
τn
j(un) = limn→∞

1
τn
ϕn = 0, where the limits are in

the weak topology on H. So w ∈Wj(a). Therefore w ∈Wj(a)∩Wj(a)⊥ = {0} and

w = 0. This is a contradiction. So (j̃(un))n∈N is bounded in H̃.
Let n ∈ N. Then with v = un in (5) one deduces that

|Re a(un)| = |Re(ψn, j(un))H |

≤ ‖ψn‖H ‖j‖ ‖un‖V

≤ 1
2 µ̃ ‖un‖

2
V +

‖ψn‖2H ‖j‖2

2µ̃

≤ 1
2 Re a(un) + 1

2 ω̃ ‖j̃(un)‖2
H̃

+
‖ψn‖2H ‖j‖2

2µ̃
,

where we used (4) in the last step. Hence (Re a(un))n∈N is bounded. Using again (4)
one establishes that (un)n∈N is bounded in V . Passing to a subsequence if necessary,
there exists a u ∈ V such that limun = u weakly in V . Then j(u) = lim j(un) =
limϕn = ϕ weakly in H. Finally let v ∈ V . Then (5) gives

a(u, v) = lim
n→∞

a(un, v) = lim
n→∞

(ψn, j(v))H = (ψ, j(v))H .
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So (ϕ,ψ) ∈ D and D is closed.

Proposition 2.5. Adopt Hypothesis 2.2. Suppose j is compact. Then the map
(ϕ,ψ) 7→ ϕ from D into H is compact.

Proof. Define Z : D →Wj(a)⊥ by

Z(ϕ,ψ) = u,

where u ∈Wj(a)⊥ is the unique element such that j(u) = ϕ and a(u, v) = (ψ, j(v))H
for all v ∈ V . We first show that the graph of Z is closed. Let ((ϕn, ψn))n∈N be a
sequence in D, let (ϕ,ψ) ∈ H×H and u ∈ V . Suppose that limϕn = ϕ, limψn = ψ
in H and limun = u in V , where un = Z(ϕn, ψn) for all n ∈ N. Since D is closed by
Proposition 2.4 it follows that (ϕ,ψ) ∈ D. Moreover, j(u) = lim j(un) = limϕn = ϕ
and

a(u, v) = lim a(un, v) = lim(ψn, j(v))H = (ψ, j(v))H

for all v ∈ V . Since un ∈ Wj(a)⊥ for all n ∈ N, it is clear that also u ∈ Wj(a)⊥.
Hence Z(ϕ,ψ) = u and Z has closed graph.

The closed graph theorem, together with Proposition 2.4 implies that Z is con-
tinuous. Since j is compact, the composition j◦Z is compact. But (j◦Z)(ϕ,ψ) = ϕ
for all (ϕ,ψ) ∈ D.

In general, if A is a graph in H, then A is called invertible if it is surjective,
closed and the reflected graph {(y, x) : (x, y) ∈ A} is single-valued. If the graph A
is invertible then we define the operator A−1 : H → H by A−1y = x if (x, y) ∈ A.
The resolvent set ρ(A) of A is the set of all λ ∈ C such that (A−λ I) is invertible.
We say that A has compact resolvent if (A−λ I)−1 is a compact operator for all
λ ∈ ρ(A).

Corollary 2.6. Adopt Hypothesis 2.2. Suppose j is compact. Then the graph D
has compact resolvent.

For the sequel it is convenient to introduce the space

Vj(a) = {u ∈ V : a(u, v) = 0 for all v ∈ ker j}.

Theorem 2.7. Adopt Hypothesis 2.2. If Vj(a) ∩ ker j = {0} and ran j is dense in
H, then D is an m-sectorial operator.

Proof. See [2] Theorem 8.11.

Note that the operator AD in the next lemma is the Dirichlet Laplacian if a is
as in (2) and j̃ is the inclusion map from H1(Ω) into L2(Ω).

Lemma 2.8. Adopt Hypothesis 2.2. Suppose that j̃(ker j) is dense in H̃ and j̃ is
injective. Then the graph AD associated with (a|ker j×ker j , j̃|ker j) is an operator and
one has the following.

(a) kerAD = j̃(Vj(a) ∩ ker j).
(b) 0 6∈ σ(AD) if and only if Vj(a) ∩ ker j = {0}.
(c) If kerAD = {0} and ran j is dense in H, then mulD = {0}.

Proof. The graph AD in H̃ × H̃ associated with (a|ker j×ker j , j̃|ker j) is given by

AD = {(h, k) ∈ H̃ × H̃ : there exists a u ∈ ker j such that

j̃(u) = h and a(u, v) = (k, j̃(v))H̃ for all v ∈ ker j}.
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Now suppose that k ∈ mulAD. Let u ∈ ker j be such that j̃(u) = 0 and a(u, v) =
(k, j̃(v))H̃ for all v ∈ ker j. The assumption that j̃ is injective yields u = 0 and

hence 0 = a(u, v) = (k, j̃(v))H̃ for all v ∈ ker j. Since j̃(ker j) is dense in H̃ it
follows that k = 0. Therefore mulAD = {0} and AD is an operator.

‘(a)’. ‘⊃’. Let u ∈ Vj(a) ∩ ker j. Then u ∈ ker j. Moreover, a(u, v) = 0 for all

v ∈ ker j. So j̃(u) ∈ domAD and AD j̃(u) = 0. Therefore j̃(u) ∈ kerAD.
The converse inclusion can be proved similarly.
‘(b)’. Since AD has compact resolvent, this statement follows from part (a) and

the injectivity of j̃.
‘(c)’. If kerAD = {0} then Vj(a) ∩ ker j = {0} by (a). Now Theorem 2.7 yields

mulD = {0}.

In Corollary 3.4 we give a class of forms such that the converse of Lemma 2.8(c)
is valid.

We conclude this section with some facts on graphs. In general, let A be a graph
in H. In the following definitions we use the conventions as in the book [22] of
Kato. The numerical range of A is the set

W (A) = {(x, y)H : (x, y) ∈ A and ‖x‖H = 1}.

The graph A is called sectorial if there exist γ ∈ R and θ ∈ [0, π2 ) such that
(x, y)H ∈ Σθ for all (x, y) ∈ A−γ I. So A is sectorial if and only if there exist γ ∈ R
and θ ∈ [0, π2 ) such that W (A − γ I) ⊂ Σθ. The graph A is called m-sectorial if
there are γ ∈ R and θ ∈ [0, π2 ) such that (x, y)H ∈ Σθ for all (x, y) ∈ A − γ I and
A− (γ − 1)I is invertible. The graph A is called quasi-accretive if there exists a
γ ∈ R such that Re(x, y)H ≥ 0 for all (x, y) ∈ A− γ I. The graph A is called quasi
m-accretive if there exists a γ ∈ R such that Re(x, y)H ≥ 0 for all (x, y) ∈ A− γ I
and A− (γ−1)I is invertible. Clearly every m-sectorial graph is sectorial and quasi
m-accretive. Moreover, every sectorial graph is quasi-accretive.

Lemma 2.9. Let A be a graph.

(a) If not domA ⊥ mulA, then the numerical range of A is the full complex
plane.

(b) If A is a quasi-accretive graph, then domA ⊥ mulA.
(c) If A is a quasi m-accretive graph, then mulA = (domA)⊥.

Proof. ‘(a)’. There are x ∈ domA and y′ ∈ mulA such that (x, y′)H 6= 0. Without
loss of generality we may assume that ‖x‖H = 1. There exists a y ∈ H such that
(x, y) ∈ A. Then (x, y + τ y′) ∈ A for all τ ∈ C. So (x, y + τ y′)H ∈ W (A) for all
τ ∈ C.

‘(b)’. This follows from Statement (a).
‘(c)’. By Statement (b) it remains to show that (domA)⊥ ⊂ mulA. By as-

sumption there exists a γ ∈ R such that Re(x, y)H ≥ 0 for all (x, y) ∈ A− γ I and
A − (γ − 1)I is invertible. Without loss of generality we may assume that γ = 0.
Let y ∈ (domA)⊥. Define x = (A + I)−1y. Then x ∈ domA and (x, y − x) ∈ A.
So −‖x‖2H = Re(x, y − x)H ≥ 0 and x = 0. Then (0, y) ∈ A and y ∈ mulA as
required.

3. Complex potentials. In this section we consider the Dirichlet-to-Neumann
map with respect to the operator −∆ + q, where q is a bounded complex valued
potential on a Lipschitz domain.
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Throughout this section fix a bounded open set Ω ⊂ Rd with Lipschitz bound-
ary Γ. Let q : Ω → C be a bounded measurable function. Choose V = H1(Ω),

H = L2(Γ), j = Tr : H1(Ω)→ L2(Γ), H̃ = L2(Ω) and j̃ the inclusion of V into H̃.
Then j and j̃ are compact. Moreover, ran j is dense in H by the Stone–Weierstraß
theorem. Define a : H1(Ω)×H1(Ω)→ C by

a(u, v) =

∫
Ω

∇u · ∇v +

∫
Ω

q u v.

Then a is a sesquilinear form and it is j̃-elliptic. Let D be the graph associated
with (a, j). Note that all assumptions in Hypothesis 2.2 are satisfied. In order to
describe D, we need the notion of a weak normal derivative.

Let u ∈ H1(Ω) and suppose that there exists an f ∈ L2(Ω) such that ∆u = f as
distribution. Let ψ ∈ L2(Γ). Then we say that u has weak normal derivative ψ
if ∫

Ω

∇u · ∇v +

∫
Ω

f v =

∫
Γ

ψTr v

for all v ∈ H1(Ω). Since ran j is dense in H it follows that ψ is unique and we write
∂νu = ψ.

The alluded description of the graph D is as follows.

Lemma 3.1. Let ϕ,ψ ∈ L2(Γ). Then the following are equivalent.

(i) (ϕ,ψ) ∈ D.
(ii) There exists a u ∈ H1(Ω) such that Tru = ϕ, (−∆ + q)u = 0 as distribution

and ∂νu = ψ.

Proof. The easy proof is left to the reader.

Let AD = −∆D + q, where ∆D is the Laplacian on Ω with Dirichlet boundary
conditions. Then AD is as in Lemma 2.8. Moreover, (AD)∗ = −∆D + q.

Proposition 3.2. Let u ∈ kerAD. Then u has a weak normal derivative, that
is, ∂νu ∈ L2(Γ) is defined. Similarly, if u ∈ ker(AD)∗, then u has a weak normal
derivative.

Proof. It follows from [21] Theorem B.2 that u ∈ H3/2(Ω). Hence ∂νu ∈ L2(Γ) by
[16] Lemma 2.4.

The claim for (AD)∗ follows by replacing q by q.

Corollary 3.3. mulD = {∂νu : u ∈ kerAD}.

Note that the right hand side is indeed defined and it is a subspace of L2(Γ) by
Proposition 3.2.

Corollary 3.4. The following are equivalent.

(i) D is an m-sectorial operator.
(ii) kerAD = {0}.
(iii) mulD = {0}.

Proof. ‘(i)⇒(iii)’. An operator has trivial multivalued part.
‘(iii)⇒(ii)’. Let u ∈ kerAD. Then ∂νu ∈ mulD = {0} by Corollary 3.3 and

∂νu = 0. By the unique continuation property one deduces that u = 0.
‘(ii)⇒(i)’. It follows from Lemma 2.8(a) that Vj(a) ∩ ker j = {0}. Then use

Theorem 2.7.
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We next determine the domain of the Dirichlet-to-Neumann graph D. The proof
is a variation of Theorem 5.2 in [8], in which the potential q was real valued.

Theorem 3.5. domD = {ϕ ∈ H1(Γ) : (ϕ, ∂νw)L2(Γ) = 0 for all w ∈ ker(AD)∗}.

Proof. ‘⊂’. Let ϕ ∈ domD. Let ψ ∈ L2(Γ) be such that (ϕ,ψ) ∈ D. Then there
exists a u ∈ H1(Ω) such that Tru = ϕ and a(u, v) = (ψ,Tr v)L2(Γ) for all v ∈ H1(Ω).
Note that (−∆ + q)u = 0 as distribution, so ∆u = q u ∈ L2(Ω) as distribution. By
[16] Lemma 2.4 there exists a w ∈ H3/2(Ω) such that ∆w ∈ L2(Ω) and ∂νw = ψ.
Then u−w ∈ H1(Ω) and ∆(u−w) ∈ L2(Ω). Hence u−w ∈ dom ∆N , where ∆N is
the Laplacian with Neumann boundary conditions. Therefore u− w ∈ H3/2(Ω) by
[16] Lemma 4.8. Since w ∈ H3/2(Ω), also u ∈ H3/2(Ω). Because ∆u = q u ∈ L2(Ω)
one deduces from [16] (2.11) in Lemma 2.3 that ϕ = Tru ∈ H1(Γ).

Next let w ∈ ker(AD)∗. Then Trw = 0 and ∆w = q w as distribution. Hence

(∂νw,ϕ)L2(Γ) =

∫
Ω

∇w · ∇u+

∫
Ω

(∆w)u

=

∫
Ω

∇w · ∇u+

∫
Ω

q w u

=

∫
Ω

∇u · ∇w +

∫
Ω

q uw = a(u,w) = (ψ,Trw)L2(Γ) = 0,

since Trw = 0.
‘⊃’. Let ϕ ∈ H1(Γ) and suppose that (ϕ, ∂νw)L2(Γ) = 0 for all w ∈ ker(AD)∗.

We first show that there exists a u ∈ H1(Ω) such that Tru = ϕ and (−∆ + q)u = 0
as distribution.

Let aD = a|H1
0 (Ω)×H1

0 (Ω). Then aD is a continuous sesquilinear form. Hence

there exists a unique T ∈ L(H1
0 (Ω)) such that aD(u, v) = (Tu, v)H1

0 (Ω) for all

u, v ∈ H1
0 (Ω). Let µ̃, ω̃ > 0 be as in (4). Set K = ω̃ j̃∗0 j̃0 ∈ L(H1

0 (Ω)), where
j̃0 = j̃|H1

0 (Ω) is the inclusion of H1
0 (Ω) into L2(Ω). Then K is compact and

µ̃ ‖u‖2H1
0 (Ω) ≤ Re aD(u) + (Ku, u)H1

0 (Ω) = Re((T +K)u, u)H1
0 (Ω)

for all u ∈ H1
0 (Ω). So µ̃ ‖u‖H1

0 (Ω) ≤ ‖(T + K)u‖H1
0 (Ω) for all u ∈ H1

0 (Ω). Hence

(T+K) is injective and has closed range. Similarly (T+K)∗ is injective. So (T+K)
is invertible. Since K is compact, one concludes that T is a Fredholm operator. In
particular, the range ranT of T is closed.

It is easy to verify that kerT ∗ = ker(AD)∗. Therefore ranT = (kerT ∗)⊥ =
(ker(AD)∗)⊥. Since ϕ ∈ H1/2(Γ) there exists a Φ ∈ H1(Ω) such that Tr Φ = ϕ.
Because v 7→ a(Φ, v) is continuous on H1

0 (Ω), there exists a unique u1 ∈ H1
0 (Ω) such

that (u1, v)H1
0 (Ω) = a(Φ, v) for all v ∈ H1

0 (Ω). If w ∈ ker(AD)∗, then the Green
theorem implies that

(u1, w)H1
0 (Ω) = a(Φ, w) = (Tr Φ, ∂νw)L2(Γ) = (ϕ, ∂νw)L2(Γ) = 0.

So u1 ∈ ranT . Hence there exists a u2 ∈ H1
0 (Ω) such that u1 = Tu2. Then

a(u2, v) = a(Φ, v) for all v ∈ H1
0 (Ω). Define u = Φ − u2 ∈ H1(Ω). Then Tru =

Tr Φ = ϕ and a(u, v) = 0 for all v ∈ H1
0 (Ω). So (−∆ + q)u = 0 weakly on Ω.

By [16] (2.11) in Lemma 2.3 there exists a w ∈ H3/2(Ω) such that ∆w ∈ L2(Ω)
and Trw = ϕ. Then u − w ∈ H1(Ω), ∆(u − w) ∈ L2(Ω) and Tr (u − w) = 0.
So u − w ∈ dom ∆D. Therefore u − w ∈ H3/2(Ω) by [21] Theorem B.2. Thus
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u ∈ H3/2(Ω) and hence ∂νu ∈ L2(Γ) by [16] Lemma 2.4. So (ϕ, ∂νu) ∈ D by
Lemma 3.1 and ϕ ∈ domD.

Corollary 3.6. (domD)⊥ = {∂νw : w ∈ ker(AD)∗}.

Proof. Let E = {∂νw : w ∈ ker(AD)∗}. Since dimE < ∞ and H1(Γ) is dense in
L2(Γ) it follows that H1(Γ)∩E⊥ is dense in E⊥. Observe that domD = H1(Γ)∩E⊥
by Theorem 3.5. Therefore domD = E⊥ and hence (domD)⊥ = E.

Theorem 2.3 states that D is a self-adjoint graph whenever a is symmetric, that
is whenever the potential q is real valued. If q is complex valued and mulD 6= {0},
then in general D is not an m-sectorial graph. A counterexample is as follows.

Example 3.7. Let Ω = (0, π) × (0, π). Let τ ∈ R. We will choose τ appropriate
below. Define q : Ω→ C by

q(x, y) =
−8i τ(cos 2x+ 2 cos2 x)

1 + i τ(cos 2x+ 2 cos2 x)
.

Then q ∈ L∞(Ω). Consider the operator −∆ + (q− 2) I, so choose V = H1(Ω) and

a(u, v) =

∫
Ω

∇u · ∇v +

∫
Ω

(q − 2)u v.

Define u : Ω→ C by

u(x, y) = (sinx+ i τ sin 3x) sin y.

Then u ∈ H1
0 (Ω). Since sin 3x = sinx(cos 2x + 2 cos2 x) it follows that (−∆ +

q I)u = 2u. Hence u ∈ domAD and ADu = 0. Since dim kerAD = 1 if τ = 0, it
follows by perturbation, [22] Theorem VII.1.7, that there exists a τ0 > 0 such that
dim kerAD = 1 for all τ ∈ (−τ0, τ0). Moreover, if τ = 0, then the operator AD is
self-adjoint and, in particular, dim ker(AD)∗ = dim kerAD = 1. It is clear that [22]
Theorem VII.1.7 applies in the same way to (AD)∗ and hence it is no restriction
to assume that τ0 > 0 above is chosen such that also dim ker(AD)∗ = 1 for all
τ ∈ (−τ0, τ0). Hence it follows that kerAD = spanu and ker(AD)∗ = spanu for all
τ ∈ (−τ0, τ0).

Note that

(∂νu)(x, 0) = (∂νu)(x, π) = −(sinx+ i τ sin 3x),

(∂νu)(x, 0) = (∂νu)(x, π) = −(sinx− i τ sin 3x),

(∂νu)(0, y) = (∂νu)(π, y) = −(1 + 3i τ) sin y and

(∂νu)(0, y) = (∂νu)(π, y) = −(1− 3i τ) sin y

for all x, y ∈ (0, π). In the present situation Corollary 3.3 and Corollary 3.6 imply

mulD = span ∂νu and (domD)⊥ = span ∂νu. (7)

We assume from now on that τ ∈ (0, τ0). Then ∂νu and ∂νu are linearly indepen-
dent. Thus mulD 6⊂ (domD)⊥ by (7), so not mulD ⊥ domD. Hence D is not a
quasi-accretive graph by Lemma 2.9(b). Moreover, the numerical range of D is the
full complex plane by Lemma 2.9(a). In particular, D is not an m-sectorial graph.
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