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We investigate some classes of eigenvalue dependent boundary value problems of the form

f
′ − λf = k, τ(λ)Γ0f̂ + Γ1f̂ = 0, f̂ =

` f

f ′

´
∈ A

+
,

where A ⊂ A+ is a symmetric relation in a Krein space K, τ is a matrix function and Γ0, Γ1 are
abstract boundary mappings. It is assumed that A admits a selfadjoint extension in K which locally
has the same spectral properties as a definitizable relation, and that τ is a matrix function which
locally can be represented with the resolvent of a selfadjoint definitizable relation. The strict part
of τ is realized as the Weyl function of a symmetric operator T in a Krein space H, a selfadjoint

extension eA of A × T in K ×H with the property that the compressed resolvent PK( eA − λ)−1|K k
yields the unique solution of the boundary value problem is constructed, and the local spectral

properties of this so-called linearization eA are studied. The general results are applied to indefinite
Sturm-Liouville operators with eigenvalue dependent boundary conditions.

Copyright line will be provided by the publisher

1 Introduction

The main objective of this paper is the investigation of a class of abstract boundary value problems
with boundary conditions depending on the eigenvalue parameter. For this let A be a closed symmetric
operator or relation of finite defect n in some Krein space K, let {Cn, Γ0, Γ1} be a boundary triplet for
the adjoint A+, and assume that τ is an L(Cn)-valued function locally holomorphic in some open subset
of the extended complex plane which is symmetric with respect to the real line such that τ (λ) = τ (λ)∗

holds for all λ belonging to the set h(τ ) of points of holomorphy of τ . We study boundary value problems

of the following form: For a given k ∈ K and λ ∈ h(τ ) find a vector f̂ =
( f

f ′

)
∈ A+ such that

f ′ − λf = k and τ (λ)Γ0f̂ + Γ1f̂ = 0 (1.1)

holds. Under additional assumptions on τ and A, a solution of this problem can be obtained with the

help of the compressed resolvent of a selfadjoint extension Ã of A which acts in a larger Krein space.

Such a selfadjoint relation Ã is said to be a linearization of the boundary value problem (1.1). Based on
the idea of a coupling method developed in [15] (see also [29, 30]) we construct a linearization of (1.1)
and we study its spectral properties, which are closely connected with the solvability of this boundary
value problem.

In the case that A is a symmetric operator or relation in a Hilbert space and τ is a Nevanlinna function
or a generalized Nevanlinna function, boundary value problems of the form (1.1) have extensively been
studied in a more or less abstract framework in the last decades (see e.g. [1, 11, 15, 20, 21, 23, 26, 45, 46]).

∗ e-mail: behrndt@math.tu-berlin.de, Phone: +49 30 314 23607, Fax: +49 30 314 21110

Copyright line will be provided by the publisher



2 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

Problems of the type (1.1) with symmetric operators and relations of defect one in Krein spaces and
special classes of scalar functions in the boundary condition were considered in [3, 7] and [10]. In [13]
and [14] symmetric operators or relations of infinite defect in Krein spaces and operator functions in the
boundary condition were allowed. Very general classes of locally holomorphic functions in the boundary
condition can be found in e.g. [14, 20] and [22].

Here we assume - roughly speaking - that A admits a selfadjoint extension in K which locally has the
same spectral properties as a definitizable operator or relation and that τ is a matrix function which
locally can be represented with the resolvent of a selfadjoint definitizable relation. More precisely,
let Ω be some domain in C symmetric with respect to the real line such that Ω ∩ R 6= ∅ and the
intersections of Ω with the upper and lower open half-planes are simply connected. We will suppose
that the selfadjoint extension A0 := ker Γ0 of A is definitizable over Ω, i.e., for every subdomain Ω′

of Ω with the same properties as Ω, Ω′ ⊂ Ω, there exists a selfadjoint projection E which reduces A0

such that A0 ∩ (EK)2 is definitizable in the Krein space EK and Ω′ belongs to the resolvent set of
A0 ∩ ((1 − E)K)2. With the help of approximative eigensequences or the local spectral function of A0

the spectral points of A0 in Ω ∩ R can be classified in points of positive and negative type and critical
points, cf. [32, 36]. Furthermore, we assume that τ is an L(Cn)-valued locally definitizable function in
Ω, that is, for every domain Ω′, Ω′ ⊂ Ω, τ can be written as the sum of a definitizable function, see
[34, 35], and a function holomorphic on Ω′. Similarly to selfadjoint operators and relations definitizable
over Ω the points in Ω∩R can be classified in points of positive and negative type and critical points of
τ . The well-known representation of Nevanlinna functions and generalized Nevanlinna functions with
the help of resolvents of selfadjoint operators and relations in Hilbert and Pontryagin spaces (see e.g.
[41]) was generalized to locally definitizable functions in [37], i.e., the locally definitizable function τ
can be minimally represented with a selfadjoint relation T0 definitizable over Ω′, Ω′ ⊂ Ω, in some Krein
space H such that the sign types of τ and T0 coincide in Ω′ ∩ R.

Following the idea of the coupling method for the construction of the linearization Ã of (1.1) from [15]
we have to realize the function τ in the boundary condition of (1.1) as the Weyl function corresponding
to a symmetric operator T ⊂ T0 in H and a boundary triplet for T+. This is possible if the L(Cn)-valued
locally definitizable function τ is strict, that is,

⋂

λ∈Ω∩h(τ)

ker
τ (λ) − τ (µ0)

∗

λ − µ0

= {0}

holds for some µ0 ∈ h(τ )∩Ω, see Lemma 3.2 and Theorem 3.3. For matrix-valued generalized Nevanlinna
functions this is known from [17] and for scalar and matrix-valued local generalized Nevanlinna functions
from [7] and [8]. We emphasize, that the Weyl function corresponding to a boundary triplet of a
symmetric operator in a Krein or Pontryagin space is in general not strict, cf. Example 3.8. In the case
that τ is a non-strict locally definitizable matrix function we show in Theorem 3.5 that τ can be written
in the form

λ 7→ τ (λ) =

(
0 0
0 τs(λ)

)
+ S, S =

(
∗ ∗
∗ 0

)
,

where τs is a strict L(Cs)-valued locally definitizable function which is also minimally represented by the
relation T0, s < n, and S is a symmetric matrix constant. With the help of a suitable (n−s)-dimensional
extension B of A and a boundary triplet {Cs, Γs

0, Γ
s
1} for B+ we rewrite the boundary value problem

(1.1) in the form

f ′ − λf = k, τs(λ)Γs
0f̂ + Γs

1f̂ = 0, f̂ =

(
f
f ′

)
∈ B+. (1.2)

The linearization Ã of the boundary value problem (1.1), (1.2) will be constructed in Theorem 4.3.

Here Ã is a finite dimensional perturbation in resolvent sense of the selfadjoint relation A0 × T0 in the
Krein space K ×H. If the sign types of A0 and τ are d-compatible in Ω ∩ R (see Definition 4.1), then
it follows that A0 × T0 is locally definitizable over Ω′ and a recent perturbation result from [4] implies

Copyright line will be provided by the publisher



mn header will be provided by the publisher 3

that the linearization Ã is also locally definitizable over Ω′ and its sign types are d-compatible with the
sign types of A0 and τ in Ω′ ∩ R.

This paper is organized as follows. In Section 2 we first provide some basic definitions and we recall the
definitions of locally definitizable selfadjoint relations and (matrix-valued) locally definitizable functions
as well as the concept of boundary triplets and associated Weyl functions. In Section 3 we show how
strict matrix-valued locally definitizable functions can be realized as Weyl functions corresponding to
symmetric operators of finite defect and suitable boundary triplets. Theorem 3.5 deals with the non-
strict case. A simple example of a symmetric operator of defect one in (C2, [·, ·]) and a boundary
triplet where the corresponding Weyl function is not strict will be given at the end of Section 3. The
λ-dependent boundary value problem (1.1) is studied in Section 4. First we introduce the notion of d-
compatibility of sign types of locally definitizable functions and locally definitizable selfadjoint relations
in Definition 4.1. The main result in Section 4 is Theorem 4.3. Here we construct a minimal linearization
Ã of the boundary value problem (1.1), (1.2) such that the compressed resolvent of Ã onto the basic space
yields the unique solution of (1.1), (1.2). In Theorem 4.5 we show that the eigenvectors corresponding

to an eigenvalue µ of Ã yield solutions of the ”homogeneous” boundary value problem

f ′ − µf = 0 and τ (µ)Γ0f̂ + Γ1f̂ = 0, f̂ =

(
f
f ′

)
∈ A+.

We finish Section 4 with some special cases of Theorem 4.3. In Section 5 we formulate the main result
from Section 4 for the case that A has a selfadjoint extension which locally has the same spectral
properties as a selfadjoint operator or relation in a Pontryagin space and the function τ is a strict local
generalized Nevanlinna function. Furthermore, in Theorem 5.2, we consider the “global” case, that
is, we assume that A is a densely defined operator in a Pontryagin space and τ is a (not necessarily
strict) matrix-valued generalized Nevanlinna function. Finally we show in Section 6 that the general
results from Section 4 can be applied to singular indefinite Sturm-Liouville operators with λ-dependent
interface conditions.

2 Locally definitizable relations and locally definitizable functions

2.1 Notations and definitions

Let (K, [·, ·]) be a separable Krein space. We study linear relations in K, that is, linear subspaces of
K × K. For the elements in a linear relation we use a vector notation. The set of all closed linear
relations in K is denoted by C̃(K). Linear operators in K are viewed as linear relations via their graphs.
For the usual definitions of the linear operations with relations, the inverse etc., we refer to [24]. The
direct sum of subspaces will be denoted by +̂. The linear space of bounded linear operators defined on
a Krein space K with values in a separable Krein space H is denoted by L(K,H). If K = H we simply
write L(K). The elements of K×H will be denoted in the form {k, h}, k ∈ K, h ∈ H. K×H equipped
with the inner product [{k, h}, {k′, h′}] := [k, k′] + [h, h′], k, k′ ∈ K, h, h′ ∈ H, is also a Krein space. If
S is a relation in K and T is a relation in H we shall write S × T for the direct product of S and T
which is a relation in K ×H,

S × T =

{(
{s, t}
{s′, t′}

) ∣∣∣∣∣

(
s
s′

)
∈ S,

(
t
t′

)
∈ T

}
. (2.1)

For the pair
(
{s,t}

{s′,t′}

)
on the right hand side of (2.1) we shall also write {ŝ, t̂}, where ŝ =

(
s
s′

)
, t̂ =

(
t
t′

)
.

For a linear relation S in K the adjoint relation S+ ∈ C̃(K) is defined as

S+ :=

{(
g
g′

) ∣∣∣ [f ′, g] = [f, g′] for all

(
f
f ′

)
∈ S

}
. (2.2)

Note that (2.2) extends the definition of the adjoint operator. A linear relation S is called symmetric

(selfadjoint) if S ⊂ S+ (resp. S = S+). The resolvent set ρ(S) of a closed linear relation S ∈ C̃(K) is
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4 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

the set of all λ ∈ C such that (S − λ)−1 ∈ L(K), the spectrum σ(S) of S is the complement of ρ(S) in
C. The extended spectrum σ̃(S) of S is defined by σ̃(S) = σ(S) if S ∈ L(K) and σ̃(S) = σ(S) ∪ {∞}

otherwise. A point λ ∈ C is called a point of regular type of S ∈ C̃(K), λ ∈ r(S), if (S−λ)−1 is a bounded
operator. We say that λ ∈ C belongs to the approximate point spectrum of S, denoted by σap(S), if
there exists a sequence

(
xn

yn

)
∈ S, n = 1, 2, . . . , such that ‖xn‖ = 1 and limn→∞ ‖yn − λxn‖ = 0. The

extended approximate point spectrum σ̃ap(S) of S is defined by

σ̃ap(S) :=

{
σap(S) ∪ {∞} if 0 ∈ σap(S

−1)

σap(S) if 0 6∈ σap(S
−1)

.

We remark, that the boundary points of σ̃(S) in C belong to σ̃ap(S).

2.2 Locally definitizable selfadjoint relations

In the following we briefly recall the definition and some basic properties of locally definitizable self-
adjoint relations and a perturbation result on the stability of such operators and relations under finite
rank perturbations, see [4, 33, 36].

For this we first remind the reader on the notion of spectral points of positive and negative type
with respect to a selfadjoint relation A0 in the separable Krein space (K, [·, ·]), cf. [36, 44]. A point
λ ∈ σap(A0) is said to be of positive type (negative type) with respect to A0, if for every sequence(

xn

yn

)
∈ A0, n = 1, 2 . . . , with ‖xn‖ = 1, limn→∞ ‖yn − λxn‖ = 0 we have

lim inf
n→∞

[xn, xn] > 0
(
resp. lim sup

n→∞
[xn, xn] < 0

)
.

If ∞ ∈ σ̃ap(A0), ∞ is said to be of positive type (negative type) with respect to A0 if the point 0 is of

positive type (resp. negative type) with respect to A−1
0 . The set of all spectral points of positive type

(negative type) with respect to A0 will be denoted by σ++(A0) (resp. σ−−(A0)). An open subset ∆
of R is said to be of positive type (negative type) with respect to A0 if each point λ ∈ ∆ ∩ σ̃(A0) is of
positive type (resp. negative type) with respect to A0. An open subset ∆ of R is called of definite type
with respect to A0 if ∆ is either of positive or of negative type with respect to A0.

Let in the following Ω be a domain in C symmetric with respect to the real line such that Ω∩R 6= ∅
and the intersections of Ω with the upper open half plane C+ and lower open half plane C− are simply
connected. The next definition can be found in [33], see also [36].

Definition 2.1 A selfadjoint relation A0 in the Krein space K is said to be definitizable over Ω if
σ(A0)∩ (Ω\R) consists of isolated points which are poles of the resolvent of A0, no point of Ω∩R is an
accumulation point of the nonreal spectrum of A0 in Ω and the following holds.

(i) Every point µ ∈ Ω∩R has an open connected neighborhood Iµ in R such that both components of
Iµ\{µ} are of definite type with respect to A0.

(ii) For every finite union ∆, ∆ ⊂ Ω ∩ R, of open connected subsets there exists m ≥ 1, M > 0 and an
open neighborhood U of ∆ in Ω such that

‖(A0 − λ)−1‖ ≤ M(1 + |λ|)2m−2 |Im λ|−m

holds for all λ ∈ U\R.

By [36, Theorem 4.7] a selfadjoint relation A0 in K is definitizable over C if and only if A0 is
definitizable, that is, the resolvent set of A0 is non-empty and there exists a rational function r 6= 0
with poles only in ρ(A0) such that [r(A0)x, x] ≥ 0 holds for all x ∈ K. We refer to [43] for a detailed
investigation of definitizable operators, see also [25, §4 and §5].

It is also important to note, that a selfadjoint relation A0 in K is definitizable over Ω if and only if
for every domain Ω′ with the same properties as Ω, Ω′ ⊂ Ω, there exists a selfadjoint projection E in K
such that A0 can be decomposed in

A0 =
(
A0 ∩ (EK)2

)
+̂
(
A0 ∩ ((1 − E)K)2

)
, (2.3)
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where A0 ∩ (EK)2 is a definitizable relation in the Krein space EK and σ̃(A0 ∩ ((1 − E)K)2) ∩ Ω′ = ∅
holds, cf. [36, Theorem 4.8]. We shall say that a selfadjoint relation A0 which is definitizable over Ω
is of type π+ (type π−) over Ω, if for every domain Ω′, Ω′ ⊂ Ω, in the decomposition (2.3) the space
(EK, [·, ·]) is a Pontryagin space with finite rank of negativity (resp. finite rank of positivity) and the
resolvent set of the selfadjoint relation A0 ∩ (EK)2 is nonempty.

The following theorem from [4] on finite rank perturbations in resolvent sense of locally definitizable
relations will be used frequently in Section 4. It is well known for selfadjoint relations which are
definitizable (over C), cf. [38].

Theorem 2.2 Let Ω be a domain as above, let A0 and B0 be selfadjoint relations in the Krein space
K such that ρ(A0) ∩ ρ(B0) ∩ Ω 6= ∅, and assume that

dim
(
ran

(
(B0 − λ)−1 − (A0 − λ)−1

))
< ∞

holds for some λ ∈ ρ(A0)∩ ρ(B0). Then A0 is definitizable over Ω if and only if B0 is definitizable over
Ω. Moreover, if A0 is definitizable over Ω and ∆ ⊂ Ω∩R is an open interval with endpoint µ ∈ Ω∩R and
∆ is of positive type (negative type) with respect to A0, then there exists an open interval ∆′, ∆′ ⊂ ∆,
with endpoint µ such that ∆′ is of positive type (resp. negative type) with respect to B0.

2.3 Matrix-valued locally definitizable functions

In this section we recall the definition of matrix-valued locally definitizable functions from [37]. For this,
let Ω be a domain as in Section 2.2 and let τ be an L(Cn)-valued piecewise meromorphic function in Ω\R
which is symmetric with respect to the real axis, that is τ (λ) = τ (λ)∗ for all points λ of holomorphy of τ .
If, in addition, no point of Ω∩R is an accumulation point of nonreal poles of τ we write τ ∈ Mn×n(Ω).
The set of the points of holomorphy of τ in Ω\R and all points µ ∈ Ω∩R such that τ can be analytically
continued to µ and the continuations from Ω ∩ C+ and Ω ∩ C− coincide, is denoted by h(τ ).

The following definition of sets of positive and negative type with respect to matrix functions and
Definition 2.4 below of locally definitizable matrix functions can be found in [37].

Definition 2.3 Let τ ∈ Mn×n(Ω). An open subset ∆ ⊂ Ω ∩ R is said to be of positive type with
respect to τ if for every x ∈ Cn and every sequence (µk) of points in Ω ∩ C+ ∩ h(τ ) which converges in
C to a point of ∆ we have

lim inf
k→∞

Im
(
τ (µk)x, x

)
≥ 0.

An open subset ∆ ⊂ Ω ∩ R is said to be of negative type with respect to τ if ∆ is of positive type with
respect to −τ . ∆ is said to be of definite type with respect to τ if ∆ is either of positive or of negative
type with respect to τ .

Definition 2.4 A function τ ∈ Mn×n(Ω) is called definitizable in Ω if the following holds.

(i) Every point µ ∈ Ω∩R has an open connected neighborhood Iµ in R such that both components of
Iµ\{µ} are of definite type with respect to τ .

(ii) For every finite union ∆ of open connected subsets in R, ∆ ⊂ Ω∩R, there exist m ≥ 1, M > 0 and
an open neighborhood U of ∆ in C such that

‖τ (λ)‖ ≤ M(1 + |λ|)2m |Im λ|−m

holds for all λ ∈ U\R.

A function τ ∈ Mn×n(C) which is definitizable in C is called definitizable, see [36]. We note that
τ ∈ Mn×n(C) is definitizable if and only if there exists a rational function g symmetric with respect to
the real axis such that the poles of g belong to h(τ ) ∪ {∞} and gτ is the sum of a Nevanlinna function
and a meromorphic function in C, cf. [36]. For a comprehensive study of definitizable functions we refer
to the papers [34, 35] of P. Jonas. We mention only that the generalized Nevanlinna class is a subclass
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6 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

of the definitizable functions. Recall that a function τ ∈ Mn×n(C) is called a generalized Nevanlinna
function if the kernel Kτ ,

Kτ (λ, µ) =
τ (λ) − τ (µ)

λ − µ
,

has finitely many negative squares, see, e.g., [41, 42].
In [37] it is shown that a function τ ∈ Mn×n(Ω) is definitizable in Ω if and only if for every domain

Ω′ with the same properties as Ω, Ω′ ⊂ Ω, τ can be written as the sum

τ = τ0 + τ(0) (2.4)

of an L(Cn)-valued definitizable function τ0 and an L(Cn)-valued function τ(0) which is locally holo-

morphic on Ω′. We shall say that a locally definitizable function τ ∈ Mn×n(Ω) is a local generalized
Nevanlinna function in Ω if for every domain Ω′, Ω′ ⊂ Ω, the function τ0 in the decomposition (2.4) is
an L(Cn)-valued generalized Nevanlinna function.

The following theorem from [37, §3.1] establishes a connection between selfadjoint relations which
are locally definitizable (selfadjoint relations which are locally of type π+) and L(Cn)-valued locally
definitizable functions (resp. L(Cn)-valued local generalized Nevanlinna functions).

Theorem 2.5 Let Ω be a domain as above and let A0 be a selfadjoint relation in the Krein space
K which is definitizable over Ω (of type π+ over Ω). Let γ ∈ L(Cn,K) and S = S∗ ∈ L(Cn), fix some
point λ0 ∈ ρ(A0) and define

τ (λ) := S + γ+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(A0 − λ)−1

)
γ

for λ ∈ ρ(A0). Then the function τ is definitizable in Ω (resp. a local generalized Nevanlinna function
in Ω). Moreover, if an open subset ∆ ⊂ Ω∩R is of positive type (negative type) with respect to A0, then
∆ is of positive type (resp. negative type) with respect to τ .

The next theorem states that a locally definitizable function (a local generalized Nevanlinna function)
can be minimally represented with a locally definitizable selfadjoint relation (resp. a selfadjoint relation
which is locally of type π+). A proof can be found in [37].

Theorem 2.6 Let τ be an L(Cn)-valued function which is definitizable in Ω (an L(Cn)-valued local
generalized Nevanlinna function in Ω) and let Ω′ be a domain with the same properties as Ω, Ω′ ⊂ Ω.
Then there exists a Krein space H, a selfadjoint relation T0 in H which is definitizable over Ω′ (resp.
of type π+ over Ω′) and a mapping γ′ ∈ L(Cn,H) such that (a)-(d) hold.

(a) ρ(T0) ∩ Ω′ = h(τ ) ∩ Ω′.

(b) For a fixed λ0 ∈ ρ(T0) ∩ Ω′ and all λ ∈ ρ(T0) ∩ Ω′

τ (λ) = Re τ (λ0) + γ′+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(T0 − λ)−1

)
γ′ (2.5)

holds.

(c) The minimality condition

H = clsp
{(

1 + (λ − λ0)(T0 − λ)−1
)
γ′ x |λ ∈ ρ(T0) ∩ Ω′, x ∈ C

n
}

(2.6)

is fulfilled.

(d) An open set ∆ of R, ∆ ⊂ Ω′ ∩ R, is of positive type (negative type) with respect to τ if and only if
∆ is of positive type (resp. negative type) with respect to T0.

If τ and T0 are as in Theorem 2.6 we shall say that T0 is a minimal representing relation for τ .
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2.4 Boundary triplets and Weyl functions

Let (K, [·, ·]) be a separable Krein space with corresponding fundamental symmetry J and let A ∈ C̃(K)
be a closed symmetric relation. We say that A is of defect m ∈ N0 ∪ {∞}, if the deficiency indices

n±(JA) = dimker
(
(JA)∗ ∓ i

)

of the symmetric relation JA in the Hilbert space (K, [J ·, ·]) are equal to m. We note that this is
equivalent to the fact that there exists a selfadjoint extension of A in K and that each selfadjoint
extension Â of A in K satisfies dim

(
Â/A

)
= m.

We shall use the concept of boundary triplets for the description of the symmetric and selfadjoint
extensions of closed symmetric relations in Krein spaces. The following definition is taken from [14].

Definition 2.7 Let A be a closed symmetric relation in the Krein space K. We say that {G, Γ0, Γ1}
is a boundary triplet for A+ if G is a Hilbert space and there exist mappings Γ0, Γ1 : A+ → G such that
Γ :=

(
Γ0

Γ1

)
: A+ → G × G is surjective, and the relation

[
f ′, g

]
−
[
f, g′

]
=
(
Γ1f̂ , Γ0ĝ

)
−
(
Γ0f̂ , Γ1ĝ

)
(2.7)

holds for all f̂ =
( f

f ′

)
, ĝ =

( g

g′

)
∈ A+.

In the following we briefly recall some basic facts on boundary triplets which can be found in e.g.

[13] and [14]. For the Hilbert space case we refer to [18, 19, 28]. Let A ∈ C̃(K) be a closed symmetric
relation in K and let λ ∈ r(A) be a point of regular type of A. Then the defect subspace of A at λ is

Nλ,A+ := ker(A+ − λ) = ran (A − λ)[⊥]

and we define

N̂λ,A+ :=
{(

fλ

λfλ

)
| fλ ∈ Nλ,A+

}
. (2.8)

When no confusion can arise we will simply write Nλ and N̂λ instead of Nλ,A+ and N̂λ,A+ . If there

exists a selfadjoint extension Â of A in K such that ρ(Â) 6= ∅, then we have

A+ = Â +̂ N̂λ (2.9)

for all λ ∈ ρ(Â) and there exists a boundary triplet {G, Γ0, Γ1} for A+ such that ker Γ0 = Â, cf. [14].
Let in the following A, {G, Γ0, Γ1} and Γ be as in Definition 2.7. It follows that the mapping Γ and

the mappings Γ0 and Γ1 are continuous, A = kerΓ and the extensions A0 := ker Γ0 and A1 := ker Γ1 of
A are selfadjoint. The mapping Γ induces, via

AΘ := Γ(−1)Θ =
{
f̂ ∈ A+ |Γf̂ ∈ Θ

}
, Θ ∈ C̃(G), (2.10)

a bijective correspondence Θ 7→ AΘ between the set of all closed linear relations C̃(G) in G and the set
of closed extensions AΘ ⊂ A+ of A. In particular (2.10) gives a one-to-one correspondence between the
closed symmetric (selfadjoint) extensions of A and the closed symmetric (resp. selfadjoint) relations in
G. In the special case that Θ is a closed operator in G the corresponding extension AΘ of A is determined
by

AΘ = ker
(
Γ1 − ΘΓ0

)
. (2.11)

Assume now that ρ(A0) is nonempty and denote by π1 the orthogonal projection onto the first

component of K ×K. Then A+ = A0 +̂ N̂λ for every λ ∈ ρ(A0) and the operators

γ(λ) = π1

(
Γ0 | N̂λ

)−1
∈ L(G,K) and M(λ) = Γ1

(
Γ0 | N̂λ

)−1
∈ L(G)
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8 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

are well defined. The functions λ 7→ γ(λ) and λ 7→ M(λ) are called the γ-field and the Weyl function
corresponding to the boundary triplet {G, Γ0, Γ1}. γ and M are holomorphic on ρ(A0) and the relations

γ(ζ) = (1 + (ζ − λ)(A0 − ζ)−1)γ(λ) and M(λ) − M(ζ)∗ = (λ − ζ)γ(ζ)+γ(λ) (2.12)

hold for all λ, ζ ∈ ρ(A0). With the help of the Weyl function the spectral properties of the closed
extensions AΘ ⊂ A+ of A can be described. For a proof of the next theorem see, e.g., [14].

Theorem 2.8 Let A be a closed symmetric relation in the Krein space K and let {G, Γ0, Γ1} be a
boundary triplet for A+. Assume that A0 = ker Γ0 has a nonempty resolvent set and let γ and M be

the γ-field and Weyl function corresponding to {G, Γ0, Γ1}. If Θ ∈ C̃(G) and AΘ is the corresponding
extension of A via (2.10), then a point λ ∈ ρ(A0) belongs to ρ(AΘ) (σi(AΘ), i = p, c, r) if and only if
the point 0 belongs to ρ(Θ − M(λ)) (resp. σi(Θ − M(λ)), i = p, c, r) and the formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ − M(λ)

)−1
γ(λ)+ (2.13)

holds for all λ ∈ ρ(A0) ∩ ρ(AΘ)

Let again A ∈ C̃(K) be a symmetric relation and let {G, Γ0, Γ1} be a boundary triplet for A+, assume
that A0 = ker Γ0 has a nonempty resolvent set and let γ and M be the corresponding γ-field and Weyl
function, respectively. For a fixed λ0 ∈ ρ(A0) it follows from (2.12) that

M(λ) = Re M(λ0) + γ(λ0)
+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(A0 − λ)−1

)
γ(λ0) (2.14)

holds for all λ ∈ ρ(A0). If, in addition, the symmetric relation A has the property

K = clsp
{
Nλ |λ ∈ ρ(A0)

}
,

then A0 fulfils the minimality condition

K = clsp
{
(1 + (λ − λ0)(A0 − λ)−1)γ(λ0)x |λ ∈ ρ(A0), x ∈ G

}
.

Note that in this case A is automatically an operator without eigenvalues.

3 Realization of matrix-valued locally definitizable functions as Weyl func-
tions

Let A be a closed symmetric relation of finite defect n in the Krein space K and assume that A has a
selfadjoint extension A0 in K which is definitizable (of type π+) over some domain Ω as in Section 2.2.
Then there exists a boundary triplet {Cn, Γ0, Γ1} for A+ such that A0 = kerΓ0 and by relation (2.14)
and Theorem 2.5 the corresponding Weyl function is an L(Cn)-valued function which is definitizable in
Ω (resp. an L(Cn)-valued local generalized Nevanlinna function over Ω).

In this section we shall show that each L(Cn)-valued locally definitizable function can be written as the
sum of a symmetric matrix constant and a “smaller” L(Cs)-valued locally definitizable function, s ≤ n,
which has an additional property such that it can be represented as the Weyl function corresponding to
a suitable boundary triplet of some symmetric operator of defect s. The following considerations hold
in particular for (local) generalized Nevanlinna functions. For brevity we formulate most results in this
section only for locally definitizable functions.

Definition 3.1 Let τ be an L(Cn)-valued function which is definitizable in Ω. We shall say that τ
is strict if

⋂

λ∈h(τ)∩Ω

ker
τ (λ) − τ (µ0)

∗

λ − µ0

= {0} (3.1)

holds for some µ0 ∈ h(τ ) ∩ Ω.
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If λ1 ∈ h(τ ) ∩ Ω and Uλ1
is an open neighborhood of λ1, Uλ1

⊂ h(τ ) ∩ Ω, then it follows from the
holomorphy of τ in h(τ ) ∩ Ω that in the intersection in (3.1) the set h(τ ) ∩ Ω can be replaced by the
smaller set Uλ1

∪U∗
λ1

, where U∗
λ1

= {λ ∈ C |λ ∈ Uλ1
}. Moreover, if (3.1) holds for a point µ0 ∈ h(τ )∩Ω,

then (3.1) holds also for µ0 replaced by an arbitrary point µ1 ∈ h(τ ) ∩ Ω.
For a Nevanlinna function τ the property (3.1) is equivalent to the invertibility of Im τ (λ) for all

λ ∈ C\R. It is well known that every Nevanlinna function τ (which can be operator-valued) with the
property 0 ∈ ρ(Im τ (λ1)) for some (and hence for all) λ1 ∈ C\R can be realized as the Weyl function
of some boundary triplet, see e.g. [18, Theorem 1]. In order to realize an operator-valued Nevanlinna
function τ with the property 0 6∈ σp(Im τ (λ1)) as a “Weyl function”, so-called generalized boundary
triplets were introduced in [19]. Recently V.A. Derkach, S. Hassi, M.M. Malamud and H.S.V. de Snoo
developed in [16] the more general concept of a boundary relation for a symmetric relation in a Hilbert
space. In this framework it is possible to realize every Nevanlinna family as a so-called Weyl family
corresponding to a boundary relation.

For generalized Nevanlinna functions the notion strict defined above can be found in [17]. By [17,
Proposition 3.1] a matrix-valued generalized Nevanlinna function with this additional property is a Weyl
function corresponding to a symmetric operator in a Pontryagin space and a suitable boundary triplet
for its adjoint. Here we obtain this result as a special case of Theorem 3.3 in Corollary 3.4.

In the next lemma we show that in a minimal representation (see Theorem 2.6) of a strict locally
definitizable function the mapping γ′ is always injective and that a strict function does not ”contain” a
nontrivial constant part.

Lemma 3.2 Let τ be an L(Cn)-valued function which is definitizable in Ω. The following assertions
(i)-(iv) are equivalent.

(i) The function τ is strict.

(ii) There exists a minimal representation of τ of the form (2.5)–(2.6) such that the mapping γ′ is
injective.

(iii) In every representation of the form

τ (λ) = Re τ (λ0) + γ̃+
(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(S0 − λ)−1

)
γ̃,

where S0 is a selfadjoint relation in some Krein space H̃, ρ(S0)∩Ω 6= ∅ and λ0, λ ∈ ρ(S0) ∩Ω, the

mapping γ̃ ∈ L(Cn, H̃) is injective.

(iv) If S′ is an operator in Cn such that S′ ⊂ τ (λ) holds for all λ ∈ h(τ ) ∩ Ω, then dom S′ = {0}.

P r o o f. (i) ⇒ (iii) : Assume that condition (3.1) is fulfilled for some µ0 ∈ h(τ )∩Ω. It is no restriction
to assume that µ0 belongs to ρ(S0). A straightforward calculation shows that

τ (λ)−τ (µ0)
∗

λ − µ0

= γ̃+
(
1+(µ0−λ0)(S0−µ0)

−1
)(

1+(λ−λ0)(S0−λ)−1
)
γ̃

holds for all λ ∈ h(τ ) ∩ ρ(S0) ∩ Ω. Hence γ̃ is injective.

The implication (iii) ⇒ (ii) evidently holds.

(ii) ⇒ (i) : Assume that τ is not strict, i.e. for all µ0 ∈ h(τ ) ∩ Ω′ there exists some xµ0
6= 0 such that

xµ0
∈ ker

(
τ (λ) − τ (µ0)

∗

λ − µ0

)

holds for all λ ∈ h(τ ) ∩ Ω′. Let Ω′ be a domain as Ω, Ω′ ⊂ Ω, and let τ be represented in the form
(2.5)–(2.6) with γ′ ∈ L(Cn,H) and a selfadjoint relation T0 in H which is definitizable over Ω′. Setting
µ0 = λ0 we obtain from this representation

0 =

(
τ (λ) − τ (λ0)

λ − λ0
xλ0

, y

)
=
(
γ′+
(
1 + (λ − λ0)(T0 − λ)−1

)
γ′xλ0

, y
)

=
[
γ′xλ0

, (1 + (λ − λ0)(T0 − λ)−1)γ′y
]
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10 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

for all y ∈ C
n and all λ ∈ h(τ ) ∩ Ω′. The minimality condition (2.6) implies γ′xλ0

= 0 and therefore γ′

is not injective.

(i) ⇔ (iv) : If τ is not strict there exist u, v ∈ C
n, u 6= 0, such that τ (λ)u = v holds for all λ ∈ h(τ )∩Ω.

Setting dom S′ = sp {u} and S′(αu) = ατ (λ)u, α ∈ C, we find that (iv) does not hold. Conversely,
if there exists an operator S′ such that dom S′ 6= {0} and S′x = τ (λ)x for all x ∈ dom S′ and all
λ ∈ h(τ ) ∩ Ω, then

x ∈
⋂

λ∈h(τ)∩Ω

ker
τ (λ) − τ (µ0)

∗

λ − µ0

holds for every µ0 ∈ h(τ ) ∩ Ω. Hence τ is not strict.

The next theorem states that a strict matrix-valued locally definitizable function τ can be realized as
the Weyl function corresponding to a symmetric operator and suitable boundary triplet. In the special
case that τ is a scalar function which is not equal to a constant Theorem 3.3 was proved in [3], see also
[7], and a proof for matrix-valued local generalized Nevanlinna functions was given in [8]. Although the
proof here is completely analogous we give a short sketch for the convenience of the reader.

Theorem 3.3 Let τ be a strict L(Cn)-valued function which is definitizable in Ω, let Ω′ be a domain
with the same properties as Ω, Ω′ ⊂ Ω, and let τ be represented as in (2.5)–(2.6) by a selfadjoint relation
T0 which is definitizable over Ω′. Then there exists a closed symmetric operator T ⊂ T0 of defect n and
a boundary triplet {Cn, Γ′

0, Γ
′
1} for T+, T0 = kerΓ′

0, such that τ coincides with the corresponding Weyl
function on Ω′.

For L(Cn)-valued generalized Nevanlinna functions Theorem 3.3 yields the following corollary (cf.
[17, Proposition 3.1]).

Corollary 3.4 Let τ be an L(Cn)-valued strict generalized Nevanlinna function. Then there exists
a closed symmetric operator T of defect n in a Pontryagin space with finite rank of negativity and a
boundary triplet {Cn, Γ′

0, Γ
′
1} for T+ such that τ is the corresponding Weyl function.

Proof of Theorem 3.3. Let τ be represented by a selfadjoint relation T0 in a Krein space H as in
(2.5)–(2.6). For all λ ∈ h(τ ) ∩ Ω′ and a fixed λ0 ∈ h(τ ) ∩ Ω′ we define the mapping

γ′(λ) :=
(
1 + (λ − λ0)(T0 − λ)−1

)
γ′ ∈ L(Cn,H). (3.2)

Then we have γ′(λ0) = γ′ and γ′(ζ) = (1 + (ζ − λ)(T0 − ζ)−1)γ′(λ) for all λ, ζ ∈ h(τ ) ∩ Ω′. For some
µ ∈ h(τ ) ∩ Ω′ we define the closed symmetric relation

T :=

{(
f
g

)
∈ T0

∣∣∣ [g − µf, γ′(µ)h] = 0 for all h ∈ C
n

}
(3.3)

in H. Note that T has defect n and does not depend on the choice of µ ∈ h(τ ) ∩ Ω′. We have
Nλ,T+ = ran γ′(λ) and the minimality condition (2.6) implies H = clsp {Nλ,T+ |λ ∈ ρ(T0) ∩ Ω′}. As τ
is strict and T0 is a minimal representing relation for τ by Lemma 3.2 γ′ ∈ L(Cn,H) is injective. Since
the operator 1+(λ−λ0)(T0−λ)−1 is an isomorphism of Nλ0,T+ onto Nλ,T+ the mapping γ′(λ) in (3.2)

is an isomorphism of Cn onto Nλ,T+ . The inverse of this mapping is denoted by γ′(λ)(−1).

We write the elements f̂ ∈ T+, for some fixed λ ∈ h(τ ) ∩ Ω′, in the form

f̂ =

(
f0

f ′
0

)
+

(
fλ

λfλ

)
,

where
( f0

f ′

0

)
∈ T0 and fλ ∈ Nλ,T+ (see (2.9)). Let Γ′

0, Γ
′
1 : T+ → C

n be the linear mappings defined by

Γ′
0f̂ := γ′(λ)(−1)fλ and Γ′

1f̂ := γ′(λ)+(f ′
0 − λf0) + τ (λ)γ′(λ)(−1)fλ.

One verifies that the definition of Γ0 and Γ1 does not depend on the choice of λ ∈ h(τ ) ∩ Ω′, and the
same calculation as in [7, Proof of Theorem 3.3] shows that {Cn, Γ0, Γ1} is a boundary triplet for T+.
Then it is easy to see that the corresponding Weyl function coincides with τ on h(τ ) ∩ Ω′.
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In the next theorem we show that a non-strict locally definitizable matrix function can be written as
the sum of a “smaller” strict function and a symmetric matrix constant. Note, that by Lemma 3.2 a
non-strict function τ contains a nontrivial symmetric operator S′.

Theorem 3.5 Let τ be a non-strict L(Cn)-valued function which is definitizable in Ω and not equal
to a constant. Let Ω′ be a domain with the same properties as Ω, Ω′ ⊂ Ω, and let τ be represented as in
(2.5)–(2.6) by a selfadjoint relation T0 which is definitizable over Ω′. Then the following holds.

(i) There exists a decomposition Cn−s ⊕ Cs of Cn, s ∈ {1, . . . , n − 1}, a strict L(Cs)-valued function
τs which is definitizable in Ω and a symmetric S ∈ L(Cn) such that

τ (λ) =

(
0 0
0 τs(λ)

)
+ S, S =

(
∗ ∗
∗ 0

)
, λ ∈ h(τ ) ∩ Ω,

holds with respect to the decomposition Cn−s ⊕ Cs, where

C
n−s =

⋂

λ∈h(τ)∩Ω

ker
τ (λ) − τ (µ0)

∗

λ − µ0

, µ0 ∈ h(τ ) ∩ Ω.

(ii) For the symmetric operator S′ := S ↾ dom S′, dom S′ := Cn−s, the relation

τ (λ) ↾ domS′ = S′

holds for all λ ∈ h(τ )∩Ω. The operator S′ is maximal in the sense that S′′ ⊂ τ (λ) for all λ ∈ h(τ )∩Ω
implies S′′ ⊂ S′.

(iii) Let π be the orthogonal projection in C
n onto C

s and let ι be the embedding of C
s in C

n. Then

τs(λ) = πτ (λ)ι = Re τs(λ0) +
(
γ′ι
)+(

(λ − Re λ0) + (λ − λ0)(λ − λ0)(T0 − λ)−1
)
γ′ι (3.4)

holds for λ0, λ ∈ h(τ ) ∩ Ω′ and the minimality condition

H = clsp
{(

1 + (λ − λ0)(T0 − λ)−1
)
γ′ι y |λ ∈ ρ(T0) ∩ Ω′, y ∈ C

s
}

(3.5)

is fulfilled.

(iv) There exists a closed symmetric operator T ⊂ T0 of defect s and a boundary triplet {Cs, Γ′
0, Γ

′
1} for

T+, T0 = kerΓ′
0, such that τs coincides with the corresponding Weyl function on Ω′.

P r o o f. (i) Since τ is not strict there exist elements x1, c1 ∈ Cn, ‖x1‖ = 1, such that τ (λ)x1 = c1

holds for every λ ∈ h(τ )∩Ω. We choose y2, . . . , yn ∈ Cn such that {x1, y2, . . . , yn} forms an orthonormal
basis in Cn. With respect to this basis we conclude from τ (λ) = τ (λ)∗, λ ∈ h(τ ) ∩ Ω, that τ has the
form

τ (λ) =




0 · · · 0
... τn−1(λ)
0


+




(c1, x1) (y2, c1) · · · (yn, c1)
(c1, y2) 0 · · · 0

...
...

...
(c1, yn) 0 · · · 0


 , λ ∈ h(τ ) ∩ Ω,

where τn−1 is an L(Cn−1)-valued function which is definitizable in Ω.
If τn−1 is not strict this consideration can be repeated with suitable elements x2, c2 ∈ sp {y2, . . . , yn}

such that τn−1(λ)x2 = c2 for λ ∈ h(τ1) ∩ Ω and ‖x2‖ = 1. Let {x2, z3, . . . , zn} be an orthormal basis in
Cn−1 = sp {y2, . . . , yn}. Then, with respect to the orthonormal basis {x1, x2, z3, . . . , zn}, the function
τ has the form

τ (λ) =




0 0 · · · 0
0 0 · · · 0
...

... τn−2(λ)
0 0


+




(c1, x1) (x2, c1) (z3, c1) · · · (zn, c1)
(c1, x2) (c2, x2) (z3, c2) · · · (zn, c2)
(c1, z3) (c2, z3) 0 · · · 0

...
...

...
...

(c1, zn) (c2, zn) 0 · · · 0




,
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12 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

λ ∈ h(τ ) ∩Ω, where τn−2 is an L(Cn−2)-valued locally definitizable function. By repeating this consid-
eration we obtain an orthonormal basis

{
x1, . . . , xn−s, z̃n−s+1, . . . , z̃n

}

in C
n, 1 ≤ s ≤ n − 1, subspaces

C
n−s := sp {x1, . . . , xn−s} =

⋂

λ∈h(τ)∩Ω

ker
τ (λ) − τ (µ0)

∗

λ − µ0

and C
s := sp {z̃n−s+1, . . . , z̃n}, a strict L(Cs)-valued locally definitizable function τs and S11 ∈ L(Cn−s),

S11 = S∗
11, S12 ∈ L(Cn−s, Cs) such that

τ (λ) =

(
0 0
0 τs(λ)

)
+ S, S :=

(
S11 S∗

12

S12 0

)
, λ ∈ h(τ ) ∩ Ω,

holds with respect to the decomposition Cn−s ⊕ Cs.

(ii) The operator S′ :=
(

S11

S12

)
, dom S′ = C

n−s, is symmetric in C
n and the function τ restricted to

dom S′ coincides with S′. If S′′ is a symmetric operator in Cn with S′′ ⊂ τ (λ) for all λ ∈ h(τ )∩Ω, then
dom S′′ is a subset of Cn−s and S′′ coincides with S′ on dom S′′. Therefore S′ is maximal.

(iii) Since τ is represented as in (2.5) by a selfadjoint relation T0 which is definitizable over Ω′ it follows
that T0 is also a representing relation for τs and (3.4) holds. In order to verify the minimality condition
(3.5) we show that x ∈ C

n belongs to ker γ′ if and only if πx = 0. For x ∈ ker γ′ we conclude from (2.5)
τ (λ)x = Re τ (λ0)x for all λ ∈ h(τ ) ∩ Ω′ and therefore x belongs to

⋂

λ∈h(τ)∩Ω′

ker
τ (λ) − τ (µ0)

∗

λ − µ0

= C
n−s, (3.6)

i.e. πx = 0. Conversely, if πx = 0, then x belongs to the set (3.6). But then x belongs also to the set
(3.6) with µ0 replaced by λ0. As in the proof of (ii)⇒(i) in Lemma 3.2 we conclude from

0 =

(
τ (λ) − τ (λ0)

λ − λ0
x, y

)
=
[
γ′x, (1 + (λ − λ0)(T0 − λ)−1)γ′y

]

and the minimality condition (2.6) that x belongs to ker γ′. Now the condition (3.5) follows from the
minimality condition (2.6).

(iv) This assertion is a consequence of Theorem 3.3 applied to the minimal representation of the function
τs from (iii).

Remark 3.6 Let τ be an L(Cn)-valued Nevanlinna function. Since ϕ(η) = i(1− η)(1+ η)−1, η ∈ D,
maps the open unit disc D onto the upper halfplane C+ and Im τ (λ) ≥ 0, λ ∈ C+, the function

U : D → L(Cn), η 7→
(
τ (ϕ(η)) − i

)(
τ (ϕ(η)) + i

)−1

is a contractive analytic function. It is well known (cf. [27, §5, Proposition 2.1]) that there exist
uniquely determined compositions C

n = G1 ⊕ G2 and C
n = G′

1 ⊕ G′
2 such that η 7→ U(η)↾ G1 : G1 → G′

1,
η ∈ D, is a unitary constant and η 7→ U(η) ↾ G2 : G2 → G′

2 is a purely contractive function. We regard
V := U(η) ↾ G1, dom V = G1, as an isometric operator in Cn with ran V = G′

1. As η 7→ U(η) ↾ G2 is
purely contractive it follows that V ⊂ U(η) is maximal. Since

τ (ϕ(η)) = i
(
1 + U(η)

)(
1 − U(η)

)−1
, η ∈ D,

and Ŝ := i(1 + V )(1− V )−1 is symmetric and Ŝ ⊂ τ (λ) for all λ ∈ C\R it follows that Ŝ coincides with
the symmetric operator S′ from Theorem 3.5.
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We finish this section with a simple lemma that gives a criterion for a Weyl function corresponding
to a boundary triplet of a symmetric relation to be strict. Furthermore we give an example of a
boundary triplet for a symmetric operator of defect one in a two-dimensional Pontryagin space where
the corresponding Weyl function is equal to zero and hence in particular not strict.

Lemma 3.7 Let A be a closed symmetric relation of finite defect n in the Krein space K and let
{Cn, Γ0, Γ1} be a boundary triplet for A+. Assume that the selfadjoint relation A0 = ker Γ0 is definiti-
zable over Ω and that the condition K = clsp {Nλ |λ ∈ ρ(A0) ∩ Ω} is fulfilled. Then the Weyl function
M corresponding to {Cn, Γ0, Γ1} is strict.

P r o o f. If the Weyl function M would not be strict, then for every point µ0 in ρ(A0)∩Ω there would
exist a nonzero element

xµ0
∈

⋂

λ∈ρ(A0)∩Ω

ker
M(λ) − M(µ0)

∗

λ − µ0

.

Let γ be the γ-field corresponding to {Cn, Γ0, Γ1} and fix some λ0 ∈ ρ(A0) ∩ Ω. Setting µ0 = λ0 and
making use of (2.12) we would obtain

0 =

(
M(λ) − M(λ0)

λ − λ0
xλ0

, y

)
=
[
γ(λ)xλ0

, γ(λ0)y
]

=
[
γ(λ0)xλ0

, γ(λ)y
]

for all y ∈ Cn (cf. the proof of Lemma 3.2). Now

K = clsp
{
Nλ |λ ∈ ρ(A0) ∩ Ω

}
= clsp

{
γ(λ)y |λ ∈ ρ(A0) ∩ Ω, y ∈ C

n
}

would imply γ(λ0)xλ0
= 0 and we would get xλ0

= 0.

Example 3.8 We equip C
2 with the indefinite inner product [·, ·] := (J ·, ·), where J =

(
0 1
1 0

)
and

(·, ·) is the usual scalar product. Then

B0 :=

(
0 1
0 0

)
∈ L(C2)

is selfadjoint in the Pontryagin space (C2, [·, ·]) and for every λ ∈ C\{0} we have

(B0 − λ)−1 =

(
−λ−1 −λ−2

0 −λ−1

)
∈ L(C2).

Let λ0 ∈ C\{0}, γλ0
:= (1, 0)⊤ ∈ C2 and define for λ ∈ C\{0}

γ(λ) : C → C
2, c 7→

(
1 + (λ − λ0)(B0 − λ)−1

)
γλ0

c = c
(λ0

λ
, 0
)⊤

.

From

γ(µ)+ : C
2 → C, (x1, x2)

⊤ 7→
λ0

µ
x2, µ ∈ C\{0},

we obtain γ(µ)+γ(λ) = 0 for all λ, µ ∈ C\{0} and

γ+
λ0

(
(λ − Re λ0) + (λ − λ0)(λ − λ0)(B0 − λ)−1

)
γλ0

= 0.

Consider the closed symmetric operator

B := B0 ↾ dom B, dom B =
{
(x1, x2)

⊤ ∈ C
2 |x2 = 0

}
.
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14 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

Then we have Nλ,B+ = ran γ(λ) for all λ ∈ C\{0} and hence B has defect one and Nλ,B+ [⊥]Nµ,B+

holds for all λ, µ ∈ C\{0}. For a fixed λ ∈ C\{0} and fλ :=
(

λ0

λ
, 0
)⊤

∈ Nλ,B+ we write the elements

f̂ , ĝ ∈ B+ in the form

f̂ =

(
f0

B0f0

)
+ α

(
fλ

λfλ

)
, ĝ =

(
g0

B0g0

)
+ β

(
fλ

λfλ

)
, f0, g0 ∈ C

2, α, β ∈ C,

see (2.9). We claim that {C, Γ0, Γ1}, where

Γ0f̂ := α and Γ1f̂ := γ(λ)+(B0 − λ)f0,

is a boundary triplet for B+. In fact, if f̂ , ĝ ∈ B+ are as above, then the selfadjointness of the operator
B0, Nλ,B+ [⊥]Nλ,B+ and γ(λ)1 = fλ imply

[
B0f0 + αλfλ, g0 + βfλ

]
−
[
f0 + αfλ, B0g0 + βλfλ

]

=
[
(B0 − λ)f0, βfλ

]
−
[
αfλ, (B0 − λ)g0

]

=
(
γ(λ)+(B0 − λ)f0, β

)
−
(
α, γ(λ)+(B0 − λ)g0

)
= (Γ1f̂ , Γ0ĝ) − (Γ0f̂ , Γ1ĝ)

and the surjectivity of Γ =
(

Γ0

Γ1

)
follows from λ ∈ ρ(B0). Furthermore it is not difficult to check that the

definition of the mappings Γ0 and Γ1 does not depend on the choice of the point λ ∈ C\{0}. Hence it

follows from Γ1f̂µ = 0, f̂µ ∈ N̂µ,B+ , µ ∈ C\{0}, that the Weyl function τ corresponding to the boundary
triplet {C, Γ0, Γ1} is identically equal to zero.

4 Boundary value problems with matrix-valued locally definitizable func-
tions in the boundary condition

In this section we consider a class of abstract boundary value problems with boundary conditions
depending on the eigenvalue parameter. Let A be a closed symmetric relation of finite defect n in the
Krein space K, let {Cn, Γ0, Γ1} be a boundary triplet for A+ and let τ be an L(Cn)-valued locally
definitizable function. We investigate problems of the following form: For a given vector k ∈ K and

λ ∈ h(τ ) find f̂1 =
( f1

f ′

1

)
∈ A+ such that

f ′
1 − λf1 = k and τ (λ)Γ0f̂1 + Γ1f̂1 = 0 (4.1)

holds. Under suitable assumptions a solution of this problem can be obtained with the help of the

compressed resolvent of a selfadjoint extension Ã of A in a larger Krein space K×H. Such a selfadjoint

relation Ã is said to be a linearization of the boundary value problem (4.1). As the spectral properties

of Ã are closely connected with the solvability of (4.1) we investigate the spectrum of Ã. If, e.g., A
has a locally definitizable selfadjoint extension A0 in K such that the sign properties of τ and the

spectral properties of A0 are “similar” (see Definition 4.1) we show in Theorem 4.3 that Ã is also locally
definitizable. Theorem 4.3, Theorem 4.6 – 4.7 and Theorem 5.1 – 5.2 in the next section extend results
obtained with the help of the coupling method in [15] for a symmetric operator A in a Hilbert space
and a Nevanlinna function τ in the boundary condition. We note that problems of the type (4.1) with
scalar locally definitizable or scalar local generalized Nevanlinna functions were already treated in [3, 7],
see also [10] for some more concrete problems involving indefinite Sturm-Liouville operators.

For the case that the L(Cn)-valued function τ in (4.1) is equal to a selfadjoint constant the boundary
value problem can be solved with the help of the resolvent of a canonical selfadjoint extension of A.
Let Ω = Ω∗ be a domain as in the beginning of Section 2.2 and assume that the selfadjoint relation
A0 = ker Γ0 is definitizable over Ω. Denote by γ and M be the γ-field and Weyl function corresponding
to the boundary triplet {Cn, Γ0, Γ1} and assume that the function λ 7→ det(M(λ)+ τ ) is not identically
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equal to zero in Ω. By Theorem 2.8 the resolvent of the selfadjoint extension A−τ := ker(τΓ0 + Γ1) of
A in K corresponding to the selfadjoint operator −τ via (2.10), (2.11) has the form

(A−τ − λ)−1 = (A0 − λ)−1 − γ(λ)
(
M(λ) + τ

)−1
γ(λ)+

for all λ belonging to h(M) ∩ h((M + τ )−1). Since A0 is definitizable over Ω and has finite defect
Theorem 2.2 implies that A−τ is also definitizable over Ω. Setting f1 := (A−τ − λ)−1k we see that

f̂1 :=

(
f1

λf1 + k

)
∈ A−τ

is a solution of (4.1) with λ 7→ τ (λ) = τ . For λ ∈ h(M) ∩ h((M + τ )−1) this solution is unique, since if

ĝ1 =
( g1

λg1+k

)
∈ A+ is also a solution of (4.1), then we have f̂1 − ĝ1 ∈ N̂λ,A+ and

0 = τΓ0(f̂1 − ĝ1) + Γ1(f̂1 − ĝ1) =
(
τ + M(λ)

)
Γ0(f̂1 − ĝ1)

implies f̂1 − ĝ1 ∈ A0 ∩ N̂λ,A+ , hence, by (2.9), f̂1 = ĝ1.
In the sequel we shall often assume that the sign types of selfadjoint relations which are locally

definitizable over Ω, and locally definitizable functions in Ω coincide outside of a discrete set in Ω ∩ R.
A notion for this concept will be introduced in the following definition, cf. [3].

Definition 4.1 Let A1 and A2 be selfadjoint relations which are definitizable over Ω and let τ1 and
τ2 be L(Cn)-valued locally definitizable functions in Ω. We shall say that the sign types of A1 and A2

(A1 and τ1, τ1 and τ2) are d-compatible in Ω if for every µ ∈ Ω ∩ R there exists an open connected
neighborhood Iµ ⊂ Ω∩R of µ such that each component of Iµ\{µ} is either of positive type with respect
to A1 and A2 (A1 and τ1, τ1 and τ2) or of negative type with respect to A1 and A2 (resp. A1 and τ1,
τ1 and τ2).

If τ is an L(Cn)-valued locally definitizable function in Ω, Ω′ is a domain as Ω, Ω′ ⊂ Ω, and T0 is
a minimal representing relation for τ which is definitizable over Ω′, then the sign types of τ and T0

are d-compatible in Ω′ (see Theorem 2.6). A more instructive example is the d-compatibility of the
sign types of local generalized Nevanlinna functions in Ω and arbitrary selfadjoint relations which are
of type π+ over Ω. An example of d-compatibility of the sign types of selfadjoint relations A1 and A2

follows from Theorem 2.2, that is, if A2 is a finite dimensional perturbation in resolvent sense of the
locally definitizable relation A1, then A2 is also locally definitizable and the sign types of A1 and A2

are d-compatible.
For the case of symmetric relations of defect one and scalar locally definitizable functions the following

lemma reduces to [3, Proposition 3.5].

Lemma 4.2 Let A be a closed symmetric relation of finite defect n in the Krein space K and let
{Cn, Γ0, Γ1} be a boundary triplet for A+ with corresponding Weyl function M . Assume that A0 = ker Γ0

is definitizable over Ω and let τ be an L(Cn)-valued definitizable function in Ω such that the sign types
of τ and A0 are d-compatible in Ω. Let Ω′ be a domain with the same properties as Ω, Ω′ ⊂ Ω, and
let T0 be a minimal representing relation for τ in some Krein space H (see Theorem 2.6). Then the
following holds.

(i) The selfadjoint relation A0 × T0 in K × H is definitizable over Ω′ and the sign types of A0 × T0,
A0, T0 and the functions M and τ are pairwise d-compatible in Ω′.

(ii) The function M + τ is definitizable in Ω and the sign types of M + τ are d-compatible with the sign
types of M and τ .

P r o o f. (i) Since A0 and T0 are definitizable over Ω and Ω′, respectively, their resolvents satisfy the
growth condition in Definition 2.1 (ii), and hence this conditionwith Ω replaced by Ω′ holds also for the
resolvent of A0 × T0. By Theorem 2.6 the sign types of τ and T0 are d-compatible in Ω′. Therefore, for
every µ ∈ Ω′ ∩ R there exists an open connected neighborhood Iµ of µ in R such that each component
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16 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

of Iµ\{µ} is of the same sign type with respect to A0 and T0. Hence A0 × T0 is definitizable over Ω′.
It follows from relation (2.14) and Theorem 2.5 that the Weyl function M is locally definitizable over
Ω and that the sign types of A0 and M are d-compatible in Ω. Thus the sign types of A0 × T0, A0, T0

and M and τ are pairwise d-compatible in Ω′.

(ii) By (i) the sign types of M and τ are d-compatible in Ω, hence every point µ ∈ Ω ∩ R possesses an
open connected neighborhood Iµ in R such that each component of Iµ\{µ} is of the same sign type with
respect to M and τ . It follows from Definition 2.3 that the sign types are the same with respect to the
function M + τ . The growth properties of M and τ near to open connected subsets ∆, ∆ ⊂ Ω∩R, (see
Definition 2.4 (ii)) imply that M + τ fulfils the second condition in Definition 2.4 and therefore M + τ
is definitizable in Ω.

The next theorem is the main result of this section. We construct a linearization Ã of the boundary
value problem (4.1) and investigate its spectral properties. A special feature here is that we do not
assume that the matrix function τ in the boundary condition of (4.1) is strict (see Theorem 4.6 for the
special case that τ is strict).

Theorem 4.3 Let A be a closed symmetric relation of finite defect n in the Krein space K and
assume that there exists a selfadjoint extension A0 of A which is definitizable over Ω. Let {Cn, Γ0, Γ1}
be a boundary triplet for A+, A0 = ker Γ0, and denote by γ and M the corresponding γ-field and Weyl
function, respectively.
Let τ be an L(Cn)-valued function which is definitizable in Ω and not equal to a constant and assume that
the sign types of τ and A0 are d-compatible in Ω. Choose s ∈ 1, . . . , n, a strict L(Cs)-valued function
τs and a symmetric S ∈ L(Cn) such that

τ (λ) =

(
0 0
0 τs(λ)

)
+ S, S =

(
∗ ∗
∗ 0

)
, λ ∈ h(τ ) ∩ Ω,

holds with respect to the decomposition Cn = Cn−s ⊕ Cs (cf. Theorem 3.5). Let Ω′ be a domain as
Ω, Ω′ ⊂ Ω, and choose a closed symmetric operator T in a Krein space H and a boundary triplet
{Cs, Γ′

0, Γ
′
1} for T+ such that τs is the corresponding Weyl function and T0 = ker Γ′

0 is a minimal
representing relation for τs which is definitizable over Ω′.
Let π be the orthogonal projection in Cn onto Cs and let ι be the embedding of Cs in Cn. Assume that
the functions λ 7→ det(M(λ) + S) and λ 7→ det(π(M(λ) + S)−1ι) are not identically equal to zero in Ω.
Let

Ms(λ) :=
(
π(M(λ) + S)−1ι

)−1
, (4.2)

suppose that the function λ 7→ det
(
Ms(λ) + τs(λ)

)
is not identically equal to zero in Ω and define

h0 := h(Ms) ∩ h(τs) ∩ h
(
(Ms + τs)

−1
)
.

Then the relation

Ã =
{{

f̂1, f̂2

}
∈ A+× T+

∣∣ (1 − π)(SΓ0 + Γ1)f̂1 = 0,

π(SΓ0 + Γ1)f̂1 − Γ′
1f̂2 = πΓ0f̂1 + Γ′

0f̂2 = 0
} (4.3)

is a selfadjoint extension of A in K×H which is definitizable over Ω′, the sign types of Ã are d-compatible

with the sign types of A0 and τ in Ω′ and Ã fulfils the minimality condition

K ×H = clsp
{
K, (Ã − λ)−1|K |λ ∈ ρ(Ã) ∩ Ω′

}
. (4.4)

The set Ω′\(R ∪ h0) is finite. For every k ∈ K and every λ ∈ h0 ∩ Ω′ the unique solution of the
λ-dependent boundary value problem

f ′
1 − λf1 = k, τ(λ)Γ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ A+, (4.5)
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is given by

f1 = PK(Ã − λ)−1{k, 0} = (B0 − λ)−1k − γs(λ)
(
Ms(λ) + τs(λ)

)−1
γs(λ)+k,

f ′
1 = λf1 + k,

(4.6)

where

B0 =
{
f̂1 ∈ A+

∣∣πΓ0f̂1 = (1 − π)(SΓ0 + Γ1)f̂1 = 0
}

(4.7)

is a selfadjoint extension of A in K which is definitizable over Ω, γs is the analytic continuation of the
function λ 7→ γ(λ)(M(λ) + S)−1ιMs(λ) onto h(Ms) and PK is the orthogonal projection onto the first
component of K ×H.

P r o o f. 1. In this first step of the proof we define a symmetric intermediate extension B of A,
a boundary triplet for B+ such that B0 in (4.7) is the fixed canonical extension, Ms in (4.2) is the
corresponding Weyl function and we show that the set Ω′\(R ∪ h0) is finite.

Note first that {Cn, SΓ0 + Γ1,−Γ0} is a boundary triplet for A+. By Theorem 2.8 a point λ ∈ ρ(A0)
belongs to the resolvent set of the selfadjoint relation

B1 := ker
(
SΓ0 + Γ1

)
(4.8)

if and only if (M(λ) + S)−1 ∈ L(Cn). By our assumptions A0 is definitizable over Ω and the function
λ 7→ det(M(λ) + S) is not identically equal to zero in Ω. Therefore ρ(B1) ∩Ω 6= ∅ and by Theorem 2.2
the selfadjoint relation B1 is definitizable over Ω. The γ-field and Weyl function corresponding to
the boundary triplet {Cn, SΓ0 + Γ1,−Γ0} are defined for all λ ∈ ρ(B1). For λ ∈ ρ(A0) ∩ ρ(B1) =
h(M) ∩ h((M + S)−1) it is not difficult to verify that they are given by

λ 7→ γ(λ)(M(λ) + S)−1 and λ 7→ −(M(λ) + S)−1,

respectively, (cf. [15, §3.3]). It follows from [2, Theorem 2.5] or relation (2.14) and Theorem 2.5 that
the L(Cn)-valued function λ 7→ −(M(λ) + S)−1 is definitizable over Ω.

We define a symmetric relation B, A ⊂ B ⊂ B1, in K by

B :=
{
f̂1 ∈ A+

∣∣πΓ0f̂1 = (SΓ0 + Γ1)f̂1 = 0
}

.

Then the adjoint relation B+ ⊂ A+ is given by

B+ =

{
f̂1 =

(
f1

f ′
1

)
∈ A+

∣∣∣ [g′1, f1] = [f ′
1, g1] for all ĝ1 =

(
g1

g′1

)
∈ B

}

=
{
f̂1 ∈ A+

∣∣ (Γ0ĝ1, Γ1f̂1

)
=
(
Γ1ĝ1, Γ0f̂1

)
for all ĝ1 ∈ B

}

=
{
f̂1 ∈ A+

∣∣ (1 − π)(SΓ0 + Γ1)f̂1 = 0
}

.

(4.9)

An application of [15, Corollary 4.2] to A+ and the boundary triplet {Cn, SΓ0 + Γ1,−Γ0} shows that
{Cs, (SΓ0 + Γ1)|B+ ,−πΓ0|B+} is a boundary triplet for B+ with corresponding γ-field

λ 7→ γ(λ)(M(λ) + S)−1ι, λ ∈ ρ(A0) ∩ ρ(B1),

and Weyl function

λ 7→ −π(M(λ) + S)−1ι, λ ∈ ρ(A0) ∩ ρ(B1).

Hence {Cs, πΓ0|B+ , (SΓ0 + Γ1)|B+} is also a boundary triplet for B+. By our assumptions the function
λ 7→ π(M(λ) + S)−1ι is invertible for some µ ∈ Ω. Then, by Theorem 2.8, the resolvent set of the
selfadjoint relation

B0 = ker
(
πΓ0|B+

)
=
{

f̂1 ∈ A+
∣∣πΓ0f̂1 = (1 − π)(SΓ0 + Γ1)f̂1 = 0

}

Copyright line will be provided by the publisher



18 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

in Ω is nonempty and we conclude from Theorem 2.2 that B0 is definitizable over Ω.
The γ-field γs and Weyl function Ms corresponding to {Cs, πΓ0|B+ , (SΓ0 + Γ1)|B+} are defined for

all λ ∈ ρ(B0). For λ ∈ ρ(A0) ∩ ρ(B1) ∩ ρ(B0) we have

γs(λ) = γ(λ)
(
M(λ) + S

)−1
ι
(
π(M(λ) + S)−1ι

)−1
∈ L(Cs,K),

and

Ms(λ) =
(
π(M(λ) + S)−1ι

)−1
∈ L(Cs).

Since A0, B1 and B0 are definitizable over Ω the set of nonreal points in Ω not belonging to

ρ(A0) ∩ ρ(B1) ∩ ρ(B0) = h(M) ∩ h
(
(M + S)−1

)
∩ h(Ms)

is discrete and does not accumulate to Ω ∩ R. Moreover the local definitizability of B0 over Ω implies
that the function Ms is definitizable over Ω and that the sign types of Ms are d-compatible with the
sign types of B0 and A0 in Ω, see e.g. Lemma 4.2.

It follows from πτ (λ)ι = τs(λ), λ ∈ h(τ ), that τs is a locally definitizable function in Ω and that the
sign types of τ and τs are d-compatible. By our assumptions the sign types of A0 and τ are d-compatible
in Ω. Hence the sign types of Ms and τs are also d-compatible in Ω and it follows as in the proof of
Lemma 4.2 (ii) that the function

λ 7→ Ms(λ) + τs(λ)

is definitizable in Ω. By our assumptions λ 7→ det(Ms(λ) + τs(λ)) is not identically equal to zero in Ω.
Therefore we can apply [2, Theorem 2.5] and it follows that

λ 7→ −
(
Ms(λ) + τs(λ)

)−1

is also a locally definitizable function in Ω. Hence the nonreal poles of this function in Ω do not
accumulate to Ω ∩ R. By our assumptions Ω′ is a domain with the same properties as Ω such that
Ω′ ⊂ Ω. This implies that there are only finitely many nonreal points which do not belong to

h0 ∩ Ω′ = h(Ms) ∩ h(τs) ∩ h
(
(Ms+τs)

−1
)
∩ Ω′

and therefore the set Ω′\(R ∪ h0) is finite.

2. In this step we define a boundary triplet for the relation B+ ×T+ in K×H, where T+ is as in the

assumptions of the theorem, and we construct a selfadjoint relation Ã ⊂ B+ × T+ in K ×H such that

the compressed resolvent of Ã onto K yields the unique solution of the boundary value problem (4.5).
Let T be a symmetric relation with defect s in the Krein space H and let {Cs, Γ′

0, Γ
′
1} be a boundary

triplet for T+ such that τs is the corresponding Weyl function (see Theorem 3.3 and Theorem 3.5) and
T0 = kerΓ′

0 is a minimal representing relation for τs which is definitizable over the domain Ω′, Ω′ ⊂ Ω.
The γ-field corresponding to the boundary triplet {Cs, Γ′

0, Γ
′
1} will be denoted by γ′. It is not difficult

to see that {Cs ×Cs, Γ̃0, Γ̃1}, where Γ̃0 and Γ̃1 are the mappings from B+ ×T+ into Cs ×Cs defined by

Γ̃0

{
f̂1, f̂2

}
:=

(
πΓ0f̂1

Γ′
0f̂2

)
, f̂1 ∈ B+, f̂2 ∈ T+, (4.10)

and

Γ̃1

{
f̂1, f̂2

}
:=

(
(SΓ0 + Γ1)f̂1

Γ′
1f̂2

)
, f̂1 ∈ B+, f̂2 ∈ T+, (4.11)
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is a boundary triplet for B+ × T+. The γ-field γ̃ and the Weyl function M̃ corresponding to the

boundary triplet {Cs × Cs, Γ̃0, Γ̃1} are defined for all λ ∈ ρ(B0) ∩ ρ(T0) ∩ Ω′ = h(Ms) ∩ h(τs) ∩ Ω′ and
are given by

λ 7→ γ̃(λ) =

(
γs(λ) 0

0 γ′(λ)

)
∈ L(Cs × C

s,K ×H), λ ∈ ρ(Ms) ∩ h(τs) ∩ Ω′, (4.12)

and

λ 7→ M̃(λ) =

(
Ms(λ) 0

0 τs(λ)

)
∈ L(Cs × C

s), λ ∈ ρ(Ms) ∩ h(τs) ∩ Ω′,

respectively.
It is straightforward to check that the relation

Θ =

{(
{u,−u}
{v, v}

) ∣∣∣u, v ∈ C
s

}
(4.13)

in C
s × C

s is selfadjoint. The selfadjoint relation Ã = Γ̃−1Θ ⊂ B+ × T+, Γ̃ = (Γ̃0, Γ̃1)
⊤, in K × H

corresponding to Θ via (2.10) is given by

Ã =
{{

f̂1, f̂2

}
∈ B+ × T+ |πΓ0f̂1 + Γ′

0f̂2 = (SΓ0 + Γ1)f̂1 − Γ′
1f̂2 = 0

}

=
{{

f̂1, f̂2

}
∈ A+× T+| (1 − π)(SΓ0 + Γ1)f̂1 = 0,

(SΓ0 + Γ1)f̂1 − Γ′
1f̂2 = πΓ0f̂1 + Γ′

0f̂2 = 0
}

.

(4.14)

We have

(
Θ − M̃(λ)

)−1
=

{(
{v − Ms(λ)u, v + τs(λ)u}

{u,−u}

) ∣∣∣u, v ∈ C
s

}
.

Setting x = v − Ms(λ)u and y = v + τs(λ)u we obtain

u = −
(
Ms(λ) + τs(λ)

)−1
x +

(
Ms(λ) + τs(λ)

)−1
y, λ ∈ h0 ∩ Ω′.

For λ ∈ h0 ∩ Ω′ the set
{
{v − Ms(λ)u, v + τs(λ)u} |u, v ∈ Cs

}
coincides with Cs × Cs and therefore(

Θ − M̃(λ)
)−1

is the matrix-valued function

(
−
(
Ms(λ) + τs(λ)

)−1 (
Ms(λ) + τs(λ)

)−1

(
Ms(λ) + τs(λ)

)−1
−
(
Ms(λ) + τs(λ)

)−1

)
∈ L(Cs × C

s). (4.15)

Note that by Theorem 2.8 a point λ ∈ h(M̃)∩Ω′ = h(Ms)∩ h(τs)∩Ω′ belongs to ρ(Ã) if and only if

(Θ− M̃(λ))−1 ∈ L(Cs × Cs). Hence we obtain (h0 ∩Ω′) ⊂ ρ(Ã) and for every λ ∈ h0 ∩Ω′ Theorem 2.8
implies

(Ã − λ)−1 =

(
(B0 − λ)−1 0

0 (T0 − λ)−1

)
+ γ̃(λ)

(
Θ − M̃(λ)

)−1
γ̃(λ)+. (4.16)

Let us show that the compressed resolvent of Ã onto K has the form (4.6) and is a solution of (4.5).
From (4.12), (4.15) and (4.16) we obtain

PK(Ã − λ)−1|K = (B0 − λ)−1 − γs(λ)
(
Ms(λ) + τs(λ)

)−1
γs(λ)+
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20 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

for λ ∈ h0 ∩ Ω′. For a given k ∈ K and λ ∈ h0 ∩ Ω′ we define

f1 := PK(Ã − λ)−1{k, 0} and f2 := PH(Ã − λ)−1{k, 0}.

Then
(

{f1, f2}
{λf1 + k, λf2}

)
∈ Ã

and from Ã ⊂ B+× T+ we obtain

f̂1 :=

(
f1

λf1 + k

)
∈ B+ and f̂2 :=

(
f2

λf2

)
∈ N̂λ,T+ .

It remains to check that the boundary condition τ (λ)Γ0f̂1 + Γ1f̂1 = 0 is fulfilled. From the decom-
position of τ in the asssumptions of the theorem we see that

τ (λ)Γ0f̂1 + Γ1f̂1 =

(
(1 − π)(SΓ0 + Γ1)f̂1

τs(λ)πΓ0f̂1 + π(SΓ0 + Γ1)f̂1

)
= 0 (4.17)

has to be verified. As f̂1 ∈ B+ ⊂ A+ we have (1 − π)(SΓ0 + Γ1)f̂1 = 0. The form of Ã in (4.14) and
the fact that τs is the Weyl function corresponding to T and the boundary triplet {Cs, Γ′

0, Γ
′
1} implies

π(SΓ0 + Γ1)f̂1 = Γ′
1f̂2 = τs(λ)Γ′

0f̂2 = −τs(λ)πΓ0f̂1

for λ ∈ h0 ∩ Ω′. We have shown that for k ∈ K and λ ∈ h0 ∩ Ω′ the vector

f̂1 =

(
f1

λf1 + k

)
∈ A+ (4.18)

is a solution of the boundary value problem (4.5).

Let us verify that this solution f̂1 ∈ A+ is unique. Assume that the vector ĝ1 =
( g1

λg1+k

)
∈ A+ is

also a solution of (4.5), λ ∈ h0 ∩ Ω′. Then f̂1 − ĝ1 belongs to N̂λ,A+ and the relations

(1 − π)(SΓ0 + Γ1)(f̂1 − ĝ1) = 0,

τs(λ)πΓ0(f̂1 − ĝ1) + π(SΓ0 + Γ1)(f̂1 − ĝ1) = 0
(4.19)

are fulfilled. The first relation in (4.19) implies f̂1 − ĝ1 ∈ N̂λ,B+ . Since Ms is the Weyl function
corresponding to {Cs, πΓ0|B+ , (SΓ0 + Γ1)|B+} the second relation in (4.19) can be written as

(
Ms(λ) + τs(λ)

)
πΓ0(f̂1 − ĝ1) = 0.

As ker(Ms(λ) + τs(λ)) = {0}, λ ∈ h0 ∩ Ω′, we obtain f̂1 − ĝ1 ∈ ker(πΓ0|B+) = B0. But for λ ∈ h0 ∩ Ω′

we have B+ = B0 +̂ N̂λ,B+ and as f̂1 − ĝ1 ∈ N̂λ,B+ we conclude f̂1 = ĝ1, that is, the solution (4.18) of
(4.5) is unique.

3. It remains to show that Ã is definitizable over Ω′, that the sign types of Ã are d-compatible with
the sign types of A0 and τ in Ω′ and that the minimality condition

K ×H = clsp
{
K, (Ã − λ)−1{k, 0} |λ ∈ ρ(Ã) ∩ Ω′, k ∈ K

}
(4.20)

holds.
Let us first verify, that Ã fulfils (4.20). As T0 is a minimal representing relation for τs we have

H = clsp
{(

1 + (λ − λ0)(T0 − λ)−1
)
γ′x |λ ∈ ρ(T0) ∩ Ω′, x ∈ C

s
}

(4.21)
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and by (2.12) and (4.21)

H = clsp
{
γ′(λ)x |λ ∈ ρ(T0) ∩ Ω′, x ∈ C

s
}

(4.22)

holds. The set ρ(T0) ∩ Ω′ in (4.22) can be replaced by ρ(Ã) ∩ Ω′. From (4.12), (4.15) and (4.16) we
obtain

PH(Ã − λ)−1{k, 0} = γ′(λ)
(
Ms(λ) + τs(λ)

)−1
γs(λ)+k

for k ∈ K and λ ∈ h0 ∩ Ω′. As γs(λ) is injective ran γs(λ)+ = Cs follows. Making use of (4.22) we
obtain

H = clsp
{
PH(Ã − λ)−1{k, 0} |λ ∈ ρ(Ã) ∩ Ω′, k ∈ K

}
,

and therefore Ã fulfils the minimality condition (4.20).
As the sign types of A0 are d-compatible with the sign types of τ in Ω, Lemma 4.2 (i) implies that

A0 × T0 is definitizable over Ω′ and the sign types of A0 × T0 are d-compatible with the sign types of
A0 and τ in Ω′. For λ ∈ h0 ∩ Ω′ we have

dim
(
ran

(
(Ã − λ)−1 − ((A0 × T0) − λ)−1

))
< ∞

and therefore Theorem 2.2 implies that Ã is definitizable over Ω′ and that the sign types of Ã, A0 and
τ are d-compatible in Ω′.

Remark 4.4 For a symmetric operator A in a Hilbert space and an L(Cn)-valued Nevanlinna func-
tion τ a result very similar to Theorem 4.3 was proved in [15]. For the case that τ is not strict it is
sufficient to consider the relation-valued Nevanlinna function

λ 7→ τ (λ) =

{(
0
x

) ∣∣x ∈ C
n−s

}
+̂ τs(λ), λ ∈ C\R,

where τs is a strict L(Cs)-valued Nevanlinna function. Similarly to the proof of Theorem 4.3 the
λ-dependent boundary value problem

f ′
1 − λf1 = k, τ(λ)Γ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ A∗,

can be rewritten in the form

f ′
1 − λf1 = k, τs(λ)Γ0f̂1 + πΓ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ C∗,

where C∗ = {f̂1 ∈ A∗ | (1 − π)Γ0f̂1 = 0} and π is the orthogonal projection from Cn onto Cs. Note,
that the selfadjoint relation A0 = kerΓ0 is a restriction of C∗ whereas in the proof of Theorem 4.3 (if τ
is not strict) the relation A0 is not a restriction of B+.

If k ∈ K in (4.5) is zero, then (4.6) yields the trivial solution f1 = f ′
1 = 0 (which is unique if λ belongs

to h0 ∩Ω′). In the next theorem we show that the nontrivial solutions of this “homogeneous” boundary

value problem are closely connected with the eigenvalues and eigenvectors of Ã.

Theorem 4.5 Let A, {Cn, Γ0, Γ1} and τ , T , {Cs, Γ′
0, Γ

′
1} be as in Theorem 4.3. Then the following

assertions hold.

(i) If λ ∈ h(τ ) ∩ Ω′ is an eigenvalue of the selfadjoint relation Ã in (4.3) and {f1, f2} ∈ ker(Ã − λ)

is a corresponding eigenvector, then the vector f̂1 =
(

f1

λf1

)
∈ A+ is a nontrivial solution of the

homogeneous boundary value problem

f ′
1 − λf1 = 0, τ (λ)Γ0f̂1 + Γ1f̂1 = 0,

(
f1

f ′
1

)
∈ A+. (4.23)
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(ii) If λ ∈ h(τ ) ∩ Ω′ and f̂1 =
( f1

f ′

1

)
∈ A+ is a nontrivial solution of the homogeneous boundary value

problem (4.23), then λ is an eigenvalue of the selfadjoint relation Ã in (4.3).

(iii) The symmetric relation B = {f̂1 ∈ A+ |πΓ0f̂1 = (SΓ0 + Γ1)f̂1 = 0} is an (n−s)-dimensional
extension of A, has defect s and the symmetric relation B × T in K × H has defect 2s. If Ms is

the function defined in (4.2) and λ ∈ h(Ms) ∩ h(τ ) ∩ Ω′ is an eigenvalue of Ã, then the dimension
of the corresponding eigenspace is not larger than s.

P r o o f. (i) Assume that λ ∈ h(τ ) ∩ Ω′ is an eigenvalue of

Ã =
{{

f̂1, f̂2

}
∈ A+× T+

∣∣ (1 − π)(SΓ0 + Γ1)f̂1 = 0,

π(SΓ0 + Γ1)f̂1 − Γ′
1f̂2 = πΓ0f̂1 + Γ′

0f̂2 = 0
} (4.24)

and let f̂1 =
(

f1

λf1

)
∈ A+, f̂2 =

(
f2

λf2

)
∈ T+ such that {f̂1, f̂2} ∈ Ã is a nontrivial element of Ã. Then

f̂1 6= 0, as otherwise (4.24) would imply

0 = π(SΓ0 + Γ1)f̂1 = Γ′
1f̂2 and 0 = −πΓ0f̂1 = Γ′

0f̂2,

but then we would have f̂2 ∈ ker Γ′
0 ∩ ker Γ′

1 = T . This is impossible since T0 is a minimal representing
relation for τ and therefore T is an operator without eigenvalues.

As {f̂1, f̂2} ∈ Ã, f̂2 ∈ N̂λ,T+ and τs is the Weyl function corresponding to the boundary triplet
{Cs, Γ′

0, Γ
′
1} the relations

(1 − π)(SΓ0 + Γ1)f̂1 = 0 (4.25)

and

τs(λ)πΓ0f̂1 = −τs(λ)Γ′
0f̂2 = −Γ′

1f̂2 = −π(SΓ0 + Γ1)f̂1 (4.26)

hold. Hence τ (λ)Γ0f̂1 + Γ1f̂1 = 0 (cf. (4.17)) and f̂1 =
(

f1

λf1

)
∈ A+ is a nontrivial solution of the

homogeneous boundary value problem (4.23).

(ii) Let f̂1 =
(

f1

λf1

)
∈ A+ be a nontrivial solution of (4.23). Then the relation τ (λ)Γ0f̂1 + Γ1f̂1 = 0 is

fulfilled and by (4.17) the relations (4.25) and (4.26) hold. As λ belongs to h(τ )∩Ω′ = ρ(T0)∩Ω′ we have

T+ = T0 +̂ N̂λ,T+ , where T0 = ker Γ′
0. Hence there exists a vector f̂2 ∈ N̂λ,T+ such that Γ′

0f̂2 = −πΓ0f̂1.

From (4.26), f̂2 ∈ N̂λ,T+ and the fact that τs is the Weyl function corresponding to the boundary triplet
{Cs, Γ′

0, Γ
′
1} we conclude

π(SΓ0 + Γ1)f̂1 = −τs(λ)πΓ0f̂1 = τs(λ)Γ′
0f̂2 = Γ′

1f̂2.

This relation, (4.25) and Γ′
0f̂2 = −πΓ0f̂1 imply {f̂1, f̂2} ∈ Ã. From f̂1 =

(
f1

λf1

)
and f̂2 =

(
f2

λf2

)
∈ N̂λ,T+

it follows that λ is an eigenvalue of Ã.
(iii) In part 1 of the proof of Theorem 4.3 we have already shown that {Cs, πΓ0|B+ , (SΓ0 +Γ1)|B+} is a
boundary triplet for B+. Therefore B has defect s and is an (n−s)-dimensional extension of A. Since
T is an operator of defect s it follows that B × T has defect 2s.

We have to show that for an eigenvalue λ ∈ h(Ms) ∩ h(τ ) ∩ Ω′ of Ã the dimension of the eigenspace
is less or equal to s. Assume that

{
f̂

(i)
1 , f̂

(i)
2

}
∈ Ã, f̂

(i)
1 =

(
f
(i)
1

λf
(i)
1

)
, f̂

(i)
2 =

(
f
(i)
2

λf
(i)
2

)
, i = 1, . . . , s + 1,

are linearly independent eigenvectors corresponding to λ ∈ σp(Ã). As in part (i) of the proof one verifies

f̂
(i)
1 6= 0 for i = 1, . . . , s+1. From Ã ⊂ B+×T+ we get f̂

(i)
1 ∈ N̂λ,B+ . Note that the set h(Ms) coincides
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with the resolvent set of B0 = ker(πΓ0|B+) (see (4.7)). Hence we have B+ = B0 +̂ N̂λ,B+ for λ ∈ h(Ms).

As each vector
{
f̂

(i)
1 , f̂

(i)
2

}
∈ Ã has the property

πΓ0f̂
(i)
1 = −Γ′

0f̂
(i)
2 , i = 1, . . . , s + 1,

we obtain Γ′
0f̂

(i)
2 6= 0 for i = 1, . . . , s + 1, as otherwise πΓ0f̂

(i)
1 = 0 would imply f̂

(i)
1 ∈ B0 ∩ N̂λ,B+ , i.e.

f̂
(i)
1 = 0. By T+ = T0 +̂ N̂λ,T+ , λ ∈ h(τ ) ∩ Ω′, we even have f̂

(i)
2 6= 0 for i = 1, . . . , s + 1.

Since the symmetric operator T has defect s and the vectors f̂
(i)
2 , i = 1, . . . , s + 1, belong to N̂λ,T+ ,

there exists k ∈ {1, . . . s + 1} and numbers αj ∈ C such that

f̂
(k)
2 =

s+1∑

j=1
j 6=k

αj f̂
(j)
2 (4.27)

holds. From πΓ0f̂
(i)
1 = −Γ′

0f̂
(i)
2 , i = 1, . . . , s + 1, we conclude

πΓ0f̂
(k)
1 = −Γ′

0f̂
(k)
2 = −

s+1∑

j=1
j 6=k

αjΓ
′
0f̂

(j)
2 = πΓ0

s+1∑

j=1
j 6=k

αj f̂
(j)
1

and from f̂
(k)
1 ∈ N̂λ,B+ and

∑
αj f̂

(j)
1 ∈ N̂λ,B+ we obtain that

f̂
(k)
1 −

s+1∑

j=1
j 6=k

αj f̂
(j)
1 ∈ N̂λ,B+

belongs to ker(πΓ0|B+). Again making use of B+ = B0 +̂ N̂λ,B+ , λ ∈ h(Ms), we find

f̂
(k)
1 =

s+1∑

j=1
j 6=k

αj f̂
(j)
1 (4.28)

and from (4.27) and (4.28) we conclude

{
f̂

(k)
1 , f̂

(k)
2

}
=

s+1∑

j=1
j 6=k

αj

{
f̂

(j)
1 , f̂

(j)
2

}
,

a contradiction to the assumption that the vectors {f̂
(i)
1 , f̂

(i)
2 }, i = 1, . . . , s+1, are linearly independent.

If the function τ in the boundary condition of (4.5) is strict, then in the assumptions of Theorem 4.3
we have s = n, S = 0, π = ICn and ι = ICn . In this case it can be shown that the assumptions on
the invertibility of the functions λ 7→ M(λ) + S = M(λ) and λ 7→ π(M(λ) + S)−1ι = M(λ)−1 can be
dropped and Theorem 4.3 reduces to the following theorem.

Theorem 4.6 Let A be a closed symmetric relation of finite defect n in the Krein space K and
assume that there exists a selfadjoint extension A0 of A which is definitizable over Ω. Let {Cn, Γ0, Γ1}
be a boundary triplet for A+, A0 = ker Γ0, and denote by γ and M the corresponding γ-field and Weyl
function, respectively.
Let τ be a strict L(Cn)-valued function which is definitizable in Ω, let Ω′ be a domain as Ω, Ω′ ⊂ Ω,
and choose a closed symmetric operator T in a Krein space H and a boundary triplet {Cn, Γ′

0, Γ
′
1} for

T+ such that τ is the corresponding Weyl function and T0 = ker Γ′
0 is a minimal representing relation

Copyright line will be provided by the publisher



24 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

for τ which is definitizable over Ω′. Assume that the sign types of τ and A0 are d-compatible in Ω, that
the function λ 7→ det(M(λ) + τ (λ)) is not identically equal to zero in Ω and set

h0 = h(M) ∩ h(τ ) ∩ h
(
(M + τ )−1

)
. (4.29)

Then the relation

Ã =
{{

f̂1, f̂2

}
∈ A+× T+

∣∣Γ1f̂1 − Γ′
1f̂2 = Γ0f̂1 + Γ′

0f̂2 = 0
}

(4.30)

is a selfadjoint extension of A in K×H which is definitizable over Ω′, the sign types of Ã are d-compatible

with the sign types of A0 and τ in Ω′ and Ã fulfils the minimality condition (4.4). The set Ω′\(R ∪ h0)
is finite. For every k ∈ K and every λ ∈ h0 ∩ Ω′ the unique solution of the λ-dependent boundary value
problem

f ′
1 − λf1 = k, τ(λ)Γ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ A+, (4.31)

is given by

f1 = PK(Ã − λ)−1{k, 0} = (A0 − λ)−1k − γ(λ)
(
M(λ) + τ (λ)

)−1
γ(λ)+k,

f ′
1 = λf1 + k,

(4.32)

where PK is the orthogonal projection onto the first component of K ×H.

The next theorem is a variant of Theorem 4.3 and Theorem 4.6 for the case that A has defect one.
Under the additional assumption K = clsp {Nλ,A+ |λ ∈ Ω} Theorem 4.7 was proved in [3].

Theorem 4.7 Let A be a closed symmetric relation of defect one in the Krein space K and assume
that there exists a selfadjoint extension A0 of A which is definitizable over Ω. Let {C, Γ0, Γ1} be a
boundary triplet for A+, A0 = kerΓ0, and denote by γ and M the corresponding γ-field and Weyl
function, respectively.
Let τ be a (scalar) locally definitizable function in Ω which is not equal to a constant, let Ω′ be a
domain as Ω, Ω′ ⊂ Ω, and choose a closed symmetric operator T in a Krein space H and a boundary
triplet {C, Γ′

0, Γ
′
1} for T+ such that τ is the corresponding Weyl function and T0 = ker Γ′

0 is a minimal
representing relation for τ which is definitizable over Ω′. Assume that the sign types of τ and A0 are
d-compatible in Ω, that the function M +τ is not identically equal to zero in Ω and let h0 be as in (4.29).

Then Ã in (4.30) is a selfadjoint extension of A in K×H which definitizable over Ω′, the sign types

of Ã are d-compatible with the sign types of A0 and τ in Ω′ and Ã fulfils the minimality condition
(4.4). The set Ω′\(R ∪ h0) is finite. For every k ∈ K and every λ ∈ h0 ∩ Ω′ the unique solution of the
λ-dependent boundary value problem (4.31) is given by (4.32).

We finish this section with some remarks concerning Theorem 4.3, Theorem 4.6 and Theorem 4.7.

Remark 4.8 Let A and Ã be as in Theorem 4.3. Assume that B̃ is a selfadjoint extension of A in

some Krein space K × H̃ which is definitizable over Ω′ such that the compression of the resolvent of

B̃ onto the Krein space K yields a solution of the boundary value problem (4.5) and that B̃ fulfils the

minimality condition (4.4) with K × H and ρ(Ã) ∩ Ω′ replaced by K × H̃ and ρ(B̃) ∩ Ω′, respectively.

Denote the local spectral functions of Ã and B̃ on Ω′ ∩ R by E eA
and E eB

, respectively (see [36] for the
definition and properties of the local spectral function).

There exists a densely defined closed isometric operator V from K×H into K×H̃ such that for each
closed connected set ∆ ⊂ Ω′ ∩ R, where E eA

(∆) (and hence also E eB
(∆)) is defined, V is reduced by

E eA
(∆)(K×H) × E eB

(∆)(K × H̃).

The closed isometric operator V1 := V ∩
(
E eA

(∆)(K ×H) × E eB
(∆)(K × H̃)

)
intertwines the resolvents

of

Ã1 := Ã ∩
(
E eA

(∆)(K ×H)
)2

and B̃1 := B̃ ∩
(
E eB

(∆)(K × H̃)
)2

,
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i.e. for λ ∈ ρ(Ã1) ∩ ρ(B̃1) ∩ Ω′ we have V1(Ã1 − λ)−1x = (B̃1 − λ)−1V1x for all x ∈ dom V1. In
particular, the ranks of positivity and negativity of the inner products [·, ·]K×H and [·, ·]K× eH on the

subspaces E eA
(∆)(K ×H) and E eB

(∆)(K × H̃) coincide.
If, in addition to the assumptions above, (E eA

(∆)(K × H), [·, ·]K×H) is a Pontryagin space, then

also E eB
(∆)(K × H̃) equipped with the inner product from K × H̃ is a Pontryagin space and by [31,

Theorem 6.2] the operator V1 is an isometric isomorphism of E eA
(∆)(K ×H) onto E eB

(∆)(K × H̃), i.e.

Ã1 and B̃1 are isometrically equivalent.

Remark 4.9 Let the assumptions be as in Theorem 4.3 and assume, in addition, that A is a densely

defined operator. Then the linearization Ã of the boundary value problem (4.5) is a selfadjoint operator
in K ×H.

In fact, let B+ be as in (4.9), let mul (B+× T+) be the multivalued part of B+ × T+ and let

N̂∞ :=

{(
0
h

) ∣∣∣h ∈ mul (B+× T+)

}
.

Let Γ̃0, Γ̃1 and Θ be as in (4.10)-(4.11) and (4.13), respectively. As A× T is an (in general not densely

defined) operator, by [14, Proposition 2.1] it is sufficient to show that (Γ̃0, Γ̃1)
⊤N̂∞ ∩ Θ = {0} holds.

Since B+ is a restriction of A+ and A+ is by our assumption an operator we find that mul (B+× T+)
coincides with {{0, f} | f ∈ mul T+} and therefore

N̂∞ =

{(
{0, 0}
{0, f}

) ∣∣∣ f ∈ mul T+

}
.

Hence we obtain
(

Γ̃0

Γ̃1

)
N̂∞ ∩ Θ =

{(
{0, Γ′

0(
0
f )}

{0, Γ′
1(

0
f )}

) ∣∣∣f ∈ mul T+

}
∩

{(
{u,−u}
{v, v}

) ∣∣∣u, v ∈ C
s

}

and it follows that Ã is an operator.

5 Boundary value problems with matrix-valued (local) generalized Nevan-
linna functions in the boundary condition

In this section we consider boundary value problems of the form (4.1) where an L(Cn)-valued local
generalized Nevanlinna function τ appears in the boundary condition. Theorem 5.1 below is a variant
of Theorem 4.3 and Theorem 4.6. For simplicity we consider only the case where τ is strict in this
theorem. By Theorem 3.3 τ is the Weyl function corresponding to a closed symmetric operator T in
some Krein space H and a boundary triplet {Cn, Γ′

0, Γ
′
1}, where ker Γ′

0 is a selfadjoint relation which
is locally of type π+. The proof of Theorem 5.1 is very similar to the proof of Theorem 4.6. Instead
of Theorem 2.2 on finite dimensional perturbations of locally definitizable selfadjoint relations here one
has to use [6, Theorem 2.4] on compact (and finite dimensional) perturbations of selfadjoint relations
which are locally of type π+.

Let again Ω be a domain in C symmetric with respect to the real axis such that Ω ∩ R 6= ∅ and the
intersections of Ω with the upper and lower open half-planes are simply connected.

Theorem 5.1 Let A be a closed symmetric relation of finite defect n in the Krein space K and
assume that there exists a selfadjoint extension A0 of A which is of type π+ over Ω. Let {Cn, Γ0, Γ1}
be a boundary triplet for A+, A0 = ker Γ0, and denote by γ and M the corresponding γ-field and Weyl
function, respectively.
Let τ be a strict L(Cn)-valued local generalized Nevanlinna function in Ω, let Ω′ be a domain as Ω,
Ω′ ⊂ Ω, and choose a closed symmetric operator T in a Krein space H and a boundary triplet {Cn, Γ′

0, Γ
′
1}

for T+ such that τ is the corresponding Weyl function and T0 = ker Γ′
0 is a minimal representing relation
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for τ which is of type π+ over Ω′. Assume that the function λ 7→ det(M(λ) + τ (λ)) is not identically
equal to zero in Ω and set

h0 = h(M) ∩ h(τ ) ∩ h
(
(M + τ )−1

)
.

Then the relation

Ã =
{{

f̂1, f̂2

}
∈ A+× T+

∣∣Γ1f̂1 − Γ′
1f̂2 = Γ0f̂1 + Γ′

0f̂2 = 0
}

is a selfadjoint extension of A in K×H which is of type π+ over Ω′ and Ã fulfils the minimality condition
(4.4). The set Ω′\(R ∪ h0) is finite. For every k ∈ K and every λ ∈ h0 ∩ Ω′ the unique solution of the
λ-dependent boundary value problem

f ′
1 − λf1 = k, τ(λ)Γ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ A+,

is given by

f1 = PK(Ã − λ)−1{k, 0} = (A0 − λ)−1k − γ(λ)
(
M(λ) + τ (λ)

)−1
γ(λ)+k,

f ′
1 = λf1 + k,

where PK is the orthogonal projection onto the first component of K ×H.

We remark that by the second example below Definition 4.1 here the assumption that the sign types
of τ and A0 are d-compatible in Ω from Theorem 4.3 and Theorem 4.6 is fulfilled. For the case that A
is of defect one Theorem 5.1 was proved in [7]. We do not formulate a variant of Theorem 4.7 for this
special case.

In the next theorem we consider the special case that K is a Pontryagin space (of finite rank of
negativity) and τ is a (in general non-strict) matrix-valued generalized Nevanlinna function. In contrast
to the previous theorems we assume that A is a densely defined operator. Then all canonical selfadjoint
extensions of A are operators in the Pontryagin space K and, in particular, their resolvent sets are
nonempty.

Theorem 5.2 Let A be a densely defined closed symmetric operator of defect n in the Pontryagin
space K. Let {Cn, Γ0, Γ1} be a boundary triplet for A+, A0 = ker Γ0, and denote by γ and M the
corresponding γ-field and Weyl function, respectively.
Let τ be an L(Cn)-valued generalized Nevanlinna function which is not equal to a constant. Choose
s ∈ 1, . . . , n, a strict L(Cs)-valued generalized Nevanlinna function τs and a selfadjoint S ∈ L(Cn) such
that

τ (λ) =

(
0 0
0 τs(λ)

)
+ S, S =

(
∗ ∗
∗ 0

)
,

holds with respect to the decomposition Cn = Cn−s⊕Cs (cf. Theorem 3.5). Let T be a closed symmetric
operator of defect s in a Pontryagin space H and let {Cs, Γ′

0, Γ
′
1} be a boundary triplet for T+ such that

τs is the corresponding Weyl function and T0 = kerΓ′
0 is a minimal representing relation for τs (cf.

Corollary 3.4).
Let π be the orthogonal projection in Cn onto Cs and let ι be the embedding of Cs in Cn. Then the
functions λ 7→ det(M(λ) + S) and λ 7→ det(π(M(λ) + S)−1ι) are not identically equal to zero. Let
Ms(λ) := (π(M(λ) + S)−1ι)−1, assume that the function λ 7→ det

(
Ms(λ) + τs(λ)

)
is not identically

equal to zero and set

h0 = h(Ms) ∩ h(τs) ∩ h
(
(Ms + τs)

−1
)
.

Then the operator

Ã =
{{

f̂1, f̂2

}
∈ A+× T+

∣∣ (1 − π)(SΓ0 + Γ1)f̂1 = 0,

π(SΓ0 + Γ1)f̂1 − Γ′
1f̂2 = πΓ0f̂1 + Γ′

0f̂2 = 0
}
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is a selfadjoint extension of A in the Pontryagin space K×H which fulfils the minimality condition (4.4).
The set C\(R ∪ h0) is finite. For every k ∈ K and every λ ∈ h0 the unique solution of the λ-dependent
boundary value problem

f ′
1 − λf1 = k, τ(λ)Γ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

f ′
1

)
∈ A+,

is given by

f1 = PK(Ã − λ)−1{k, 0} = (B0 − λ)−1k − γs(λ)
(
Ms(λ) + τs(λ)

)−1
γ+

s (λ)k,

f ′
1 = λf1 + k,

where

B0 =
{
f̂1 ∈ A+

∣∣πΓ0f̂1 = (1 − π)(SΓ0 + Γ1)f̂1 = 0
}

is a selfadjoint extension of A in K, γs is the analytic continuation of λ 7→ γ(λ)(M(λ) + S)−1ιMs(λ)
onto h(Ms) and PK is the orthogonal projection onto the first component of K ×H.

P r o o f. Here the selfadjoint extensions A0, B0 and B1 of A (cf. (4.7) and (4.8)) are selfadjoint
operators in the Pontryagin space K. Hence with the exception of finitely many points C\R belongs to
the resolvent set of A0, B0 and B1. From ρ(A0) ∩ ρ(B1) = h(M) ∩ h((M + S)−1) and

ρ(A0) ∩ ρ(B1) ∩ ρ(B0) = h(M) ∩ h
(
(M + S)−1

)
∩ h(Ms)

(see part 1 of the proof of Theorem 4.3) we find that the assumptions on the invertibility of the functions
λ 7→ M(λ) + S and λ 7→ π(M(λ) + S)−1ι from Theorem 4.3 are automatically fulfilled. It follows as in

Remark 4.9 that Ã is an operator. The remaining assertions follow from Theorem 4.3.

6 Indefinite Sturm-Liouville operators with eigenvalue depending interface
conditions

In this section we show that the general results from the previous sections can be applied to classes
of boundary value problems for singular indefinite Sturm-Liouville differential expressions on R of the
form

sgn (·)

(
−

d2

dx2
+ q

)
, (6.1)

where q ∈ L1
loc(R) is assumed to be a real valued function. For this equip L2(R) with the indefinite

inner product

[f, g] :=

∫

R

f(x)g(x) sgn (x)dx, f, g ∈ L2(R),

and denote the corresponding Krein space (L2(R), [·, ·]) by L2
sgn(R). As a fundamental symmetry in

L2
sgn(R) we choose (Jf)(x) := sgn (x)f(x), f ∈ L2

sgn(R); then [J ·, ·] coincides with the usual Hilbert

scalar product on L2(R).

Let us assume that the differential expression ℓ := − d2

dx2 +q is in the limit point case at both singular
endpoints ∞ and −∞, cf., e.g., [47]. Then it is well-known that the operator D0y := ℓ(y) defined on
the usual maximal domain

Dmax(R) =
{
y ∈ L2(R) : y, y′ ∈ AC(R), ℓ(y) ∈ L2(R)

}
, (6.2)

Copyright line will be provided by the publisher



28 Jussi Behrndt: Boundary value problems with eigenvalue depending boundary conditions

is selfadjoint in the Hilbert space L2(R), and hence

(A0y)(x) :=(JD0y)(x) = sgn (x)
(
−y′′(x) + q(x)y(x)

)
,

dom A0 =dom JD0 = Dmax(R),
(6.3)

is selfadjoint in the Krein space L2
sgn(R). Under the assumption that the limits limx→±∞ q(x) exist, the

regions of definitizability of A0 are characterized in the next theorem. In the present form Theorem 6.1
can be found in [5], see also [9, 12, 39, 40].

Theorem 6.1 Suppose that the limits

q∞ := lim
x→∞

q(x) and q−∞ := lim
x→−∞

q(x)

exist and that the functions x 7→ q(x)− q∞ and x 7→ q(x)− q−∞ belong to L1((b,∞)) and L1((−∞, a))
for some a, b ∈ R, respectively. Then the following holds.

(i) If q∞ ≤ −q−∞, then A0 is definitizable over C\[q∞,−q−∞].

(ii) If −q−∞ < q∞, then A0 is definitizable and σ(A0)∩ (−q−∞, q∞) consists of eigenvalues of A0 with
q∞ and −q−∞ as only possible accumulation points.

Furthermore, A0 is of type π+ over C\[−∞,−q−∞] and of type π− over C\[q∞,∞].

Let c ∈ R be fixed and let τ be an L(C2)-valued function which is definitizable over some domain Ω.
We will consider boundary value problems of the following form: For a given function k ∈ L2(R) and
λ ∈ h(τ ) find a function f1 ∈ Dmax((c,∞)) ×Dmax((−∞, c)) such that

sgn (x)
(
−f ′′

1 (x) + q(x)f1(x)
)
− λf1(x) = k(x), x ∈ R, (6.4)

and

τ (λ)

(
f1(c+) − f1(c−)
f ′
1(c+) − f ′

1(c−)

)
=

(
−f ′

1(c+)
f1(c−)

)
(6.5)

holds. Here the subsets Dmax((c,∞)) and Dmax((−∞, c)) of L2((c,∞)) and L2((−∞, c)), respectively,
are defined analogously to (6.2). With the help of the next lemma the λ-dependent boundary value
problem (6.4)-(6.5) can be rewritten in the general form (4.1). The proof of Lemma 6.2 is straightforward
and we leave it to the reader.

Lemma 6.2 The operator

(Af1)(x) = sgn (x)
(
−f ′′

1 (x) + q(x)f1(x)
)
,

dom A =
{
f1 ∈ Dmax(R) : f1(c) = f ′

1(c) = 0
}
,

is a densely defined closed symmetric operator of defect two in the Krein space L2
sgn(R) and the adjoint

operator A+ is given by

(A+f1)(x) = sgn (x)
(
−f ′′

1 (x) + q(x)f1(x)
)
, dom A+ = Dmax((c,∞))×Dmax((−∞, c)).

The triplet {C2, Γ0, Γ1}, where

Γ0f̂1 :=

(
f1(c+) − f1(c−)
f ′
1(c+) − f ′

1(c−)

)
, Γ1f̂1 :=

(
f ′
1(c+)

−f1(c−)

)
, f̂1 =

(
f1

A+f1

)
,

is a boundary triplet for A+, and the selfadjoint operator ker Γ0 coincides with the indefinite Sturm-
Liouville operator A0 in (6.3). Furthermore, the boundary value problem (6.4)-(6.5) is equivalent to

(A+ − λ)f1 = k, τ(λ)Γ0f̂1 + Γ1f̂1 = 0, f̂1 =

(
f1

A+f1

)
.
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In the sequel it will be assumed that ℓ = − d2

dx2 + q satisfies the conditions in Theorem 6.1 and that

q∞ ≤ −q−∞ holds, i.e., A0 is definitizable over C\[q∞,−q−∞]. Moreover, if τ is definitizable over some
domain Ω, Ω ⊂ C\[q∞,−q−∞] and the sign types of τ and A0 are d-compatible in Ω, then Theorem 4.3
or Theorem 4.6, respectively, can be applied. More precisely, if, e.g., τ is strict, Ω′ is a domain with the
same properties as Ω, Ω′ ⊂ Ω, T is a closed symmetric operator in a Krein space H and {C2, Γ′

0, Γ
′
1}

is a boundary triplet for T+ such that τ is the corresponding Weyl function, T0 = kerΓ′
0 is a minimal

representing relation for τ which is definitizable over Ω′, and the function λ 7→ det(M(λ) + τ (λ)) is not
identically equal to zero in Ω, where M is the Weyl function of {C2, Γ0, Γ1}, then

Ã =

{
{f̂1, f̂2} ∈ A+ × T+

∣∣∣
(

f ′
1(c+)

−f1(c−)

)
− Γ′

1f̂2 =

(
f1(c+) − f1(c−)
f ′
1(c+) − f ′

1(c−)

)
+ Γ′

0f̂2 = 0

}
(6.6)

is a selfadjoint extension of A in L2
sgn (R) × H which is definitizable over Ω′, the sign types of Ã are

d-compatible with the sign types of A0 and τ in Ω′, and for every λ ∈ h(M)∩ h(τ )∩ h((M + τ )−1)∩Ω′

the unique solution of the boundary value problem (6.4)-(6.5) is given by

f1 = PL2
sgn

(Ã − λ)−1{k, 0} = (A0 − λ)−1k − γ(λ)
(
M(λ) + τ (λ)

)−1
γ(λ)+k, (6.7)

cf. Theorem 4.6. Here γ denotes the γ-field corresponding to the boundary triplet {C2, Γ0, Γ1} from

Lemma 6.2. Note also that by Remark 4.9 here Ã is an operator,

Ã{f1, f2} =
{
sgn

(
−f ′′

1 + qf1

)
, f ′

2

}
,

dom Ã =

{
{f1, f2} ∈ Dmax(R) × dom T+

∣∣∣
(

f ′
1(c+)

−f1(c−)

)
− Γ′

1f̂2 = 0,

(
f1(c+) − f1(c−)
f ′
1(c+) − f ′

1(c−)

)
+ Γ′

0f̂2 = 0

}
,

(6.8)

where f̂2 =
( f2

f ′

2

)
∈ T+.

In the following three examples we briefly consider some special types of λ-dependent boundary
conditions of the form (6.5). Namely, first of all it is assumed that τ is the difference of two generalized
Nevanlinna functions, so that the sign types of A0 and τ become locally d-compatible, secondly a simple
situation of a non-strict function τ is discussed, and thirdly τ is assumed to be a generalized Nevanlinna
function.

Example 6.3 Assume that τ = G1−G2 is the difference of two L(C2)-valued generalized Nevanlinna
functions G1 and G2 such that

∆− := h(G1) ∩ (−∞, q∞) and ∆+ := h(G2) ∩ (−q−∞,∞)

are nonempty intervals. Suppose that τ is strict and that λ 7→ det(M(λ)+ τ (λ)) is not identically equal
to zero. It is not difficult to see that τ is definitizable over

Ω := (C\R) ∪ (∆− ∪ ∆+)

and that (C\R) ∪ ∆+ is of type π+ with respect to τ and (C\R) ∪ ∆− is of type π− with respect to τ .
Let Ω′ be a domain with the usual properties, Ω′ ⊂ Ω, and choose H, T ⊂ T+ and {C2, Γ′

0, Γ
′
1} as above.

Then the linearization Ã in (6.8) of the boundary value problem (6.4)-(6.5) is locally definitizable over

Ω′. Moreover, Ã is of type π+ over Ω′\∆− and of type π− over Ω′\∆+.

Example 6.4 Let α ∈ R and assume that τ has the form

τ (λ) =

(
α 0
0 τ22(λ)

)
=

(
0 0
0 τ22(λ)

)
+ S, S =

(
α 0
0 0

)
, (6.9)
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where τ22 is a scalar function which is definitizable over C\[q∞,−q−∞] and not equal to a constant.
It is assumed that the sign types of τ22 and A0 are d-compatible in C\[q∞,−q−∞]. Let Ω′ be a
domain with the usual properties, Ω′ ⊂ C\[q∞,−q−∞], let T be a closed symmetric operator of defect
one in a Krein space H and let {C, Γ′

0, Γ
′
1} be a boundary triplet for T+ such that τ coincides with

the corresponding Weyl function on Ω′ and T0 = ker Γ′
0 is a locally definitizable minimal representing

relation for τ22. Furthermore, suppose that the functions λ 7→ det(M(λ)+S) and λ 7→ ((M(λ)+S)−1)22
are not identically equal to zero in C\[q∞,−q−∞], let Ms(λ) = (((M(λ)+ S)−1)22)

−1 and suppose that

Ms +τ22 is also not identically equal to zero in C\[q∞,−q−∞]. Then the linearization Ã in (6.8) is given
by

Ã{f1, f2} =
{
sgn

(
−f ′′

1 + qf1

)
, f ′

2

}
,

dom Ã =



{f1, f2} ∈ Dmax(R) × dom T+

∣∣∣∣
α(f1(c+) − f1(c−)) = −f ′

1(c+),

α(f ′
1(c+) − f ′

1(c−)) − f1(c−) = Γ′
1f̂2,

f ′
1(c+) − f ′

1(c−) = −Γ′
0f̂2



 ,

where f̂2 =
( f2

f ′

2

)
∈ T+, and Ã is definitizable over Ω′, its sign types are d-compatible with the sign

types of A0, τ22 and τ , and for every λ ∈ h(Ms) ∩ h(τ22) ∩ h((Ms + τ22)
−1) ∩ Ω′ the unique solution f1

of (6.4)-(6.5) is given by

f1 = PL2
sgn

(Ã − λ)−1{k, 0} = (B0 − λ)−1k − γs(λ)
(
Ms(λ) + τ22(λ)

)−1
γs(λ)+k,

where

(B0f1)(x) = sgn (x)
(
−f ′′

1 (x) + q(x)f1(x)
)
,

dom B0 =

{
f1 ∈ Dmax((c,∞)) ×Dmax((−∞, c))

∣∣∣ f ′
1(c+) − f ′

1(c−) = 0,
α(f1(c+) − f1(c−)) = −f ′

1(c+)

}
,

is a selfadjoint extension of A in L2
sgn(R) which is definitizable over C\[q∞,−q−∞] and γs is the analytic

continuation of the function λ 7→ γ(λ)(M(λ) + S)−1
(

0
Ms(λ)

)
onto h(Ms).

Example 6.5 Let again τ be of the form (6.9) and assume that the function τ22 is a scalar generalized
Nevanlinna function which is not equal to a constant. Then τ22 is the Weyl function corresponding to
a boundary triplet {C, Γ′

0, Γ
′
1} of a closed symmetric operator T of defect one in a Pontryagin space

H. Suppose that λ 7→ M(λ) + S satisfies the conditions in Theorem 4.3 or Example 6.4, respectively.

Then the linearization Ã in Example 6.4 is definitizable over C\[−∞,−q−∞] and C\[−∞,−q−∞] is of

type π+ with respect to Ã. If, in addition, τ22 is holomorphic on (−∞, q∞) with the possible exception

of finitely many isolated poles, then Ã is definitizable over C\[q∞,−q−∞], C\[−∞,−q−∞] is of type π+

with respect to Ã and C\[q∞,∞] is of type π− with respect to Ã.
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