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Abstract

In the recent past Dirac operators with δ-shell interactions on surfaces have been of
special interest. The interest in these operators stems from theoretical physics since
Dirac operators are used to describe particles with spin 1/2 and also comply with
the theory of relativity. Additionally, δ-potentials are frequently applied in dealing
with highly localized potentials. However, so far, most publications assumed smooth
surfaces or at least C2 surfaces. The goal of this thesis is to study Dirac operators with
δ-shell interactions on Lipschitz and C1 surfaces. In the present thesis we discover
that for the case of C1 surfaces a majority of the results regarding self-adjointness,
spectrum and the resolvent of Dirac operators with δ-shell interactions can be proven.
Moreover, in a lot of cases the results can even be carried over to Lipschitz surfaces,
particularly including the confinement case and the case of purely Lorentz scalar δ-
shell interactions. The basis of the successful treatment of those operators comes from
studying integral operators on Lipschitz surfaces. Furthermore, the theory of quasi
boundary triples helps to connect integral operators and Dirac operators which allows
us to make use of the obtained properties for integral operators.

Zusammenfassung

In der jüngeren Vergangenheit waren Dirac Operatoren mit δ-Interaktionen auf Flächen
im Raum von besonderem Interesse. Dieses Interesse kommt aus der theoretischen
Physik, da Dirac Operatoren Partikel mit Spin 1/2 beschreiben und gleichzeitig mit
der Relativitätstheorie kompatibel sind. Des Weiteren werden δ-Potentiale verwendet,
um stark lokalisierte Potentiale zu modellieren. Bisher wurden dabei hauptsächlich
glatte Flächen oder zumindest C2 Flächen betrachtet. Ziel dieser Arbeit ist es, den
Fall von Lipschitz bzw. C1 Flächen zu analysieren. Wir finden heraus, dass ein Großteil
der aus dem C2 Fall bekannten Resultate bezüglich Selbstadjungiertheit, Spektrum und
Resolvente sich ebenso für C1 Flächen zeigen lässt. Außerdem können in vielen Fällen
diese Resultate auch für Lipschitz Flächen bewiesen werden. In diesen Fällen sind
Lorentz-Skalare Potentiale und der Fall des eingesperrten Partikels inkludiert. Der
Grundstein der erfolgreichen Behandlung von Dirac Operatoren mit δ-Interaktionen
auf Flächen wird durch das Studium von Integraloperatoren auf Lipschitz Flächen
gelegt. Dabei hilft uns die Theorie von Quasi Randtripel bei der Verbindung von
Integraloperatoren und Dirac Operatoren.
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Introduction

The Dirac operator plays an important role in modelling particles with spin 1/2. Dirac
successfully introduced this operator to describe particles in a quantum mechanical
framework that also takes the theory of relativity into account. From this point of
view the Dirac operator can be seen as a relativistic counterpart of the Schrödinger
operator. He also deduced that L2(R3;C4) is the fitting Hilbert space in this realm.
The Dirac operator in an external field has the general form

− i
3∑
l=1

αl
∂

∂xl
+mβ + V (0.1)

in natural units, where the reduced Planck constant and the speed of light equal
one, see [38]. Moreover, α1, α2, α3, β ∈ C4×4 are the self-adjoint Dirac matrices, their
explicit form can be found in Definition 2.30, m ∈ R represents the mass of the particle
and V denotes a potential which models the external field. In this thesis we focus on
singular potentials of the form

V = (ηI4 + τβ)δΣ (0.2)

with η, τ ∈ R and I4 denoting the identity matrix in C4×4. Here, the potential δΣ

represents a singular potential supported on a compact surface in R3 and the two in-
teraction strengths η and τ correspond to electrostatic and Lorentz-scalar potentials,
respectively. Such potentials are called δ-shell potentials and are used to approximate
strongly localized potentials. They are a standard tool in the context of Schrödinger
operators and are also valuable for Dirac operators, especially since [27, 36, 39] show
that Dirac operators with δ-shell potentials can be interpreted as limits of Dirac oper-
ators with squeezed potentials. Here, it is worth mentioning that [36, 39] consider the
one-dimensional Dirac operator and [27] treats the three-dimensional Dirac operator.

Dirac operators with δ-shell interactions have been studied in a wide range of publica-
tions, cf. [2, 3, 4, 6, 7, 9, 23], mostly focusing on the case of C2 surfaces. However, the
case of non-smooth surfaces did not get much attention in the literature. Noteworthy is
the paper of Arrizabalaga, Mas and Vega [2] where in Remark 3.4 it is mentioned that
the C2 restriction could be weakened to C1. Moreover, [25, 34] discuss two-dimensional
Dirac operators in domains with non-smooth boundaries. In [25] Dirac operators in
polygons with boundary conditions are treated and in [34] Dirac operators with δ-shell
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10 Introduction

interactions on piecewise C2 boundaries are considered.

The main goal in this thesis is to study three-dimensional Dirac operators with δ-
shell interactions on Lipschitz and C1 surfaces. In order to do so we apply the theory
of quasi boundary triples, which was introduced by Behrndt and Langer in [12, 13],
as framework. This theory allows us to reduce the problem of self-adjointness mainly
to the treatment of operators on boundaries which are in our case singular integral
operators on surfaces. The construction of a quasi boundary triple includes the choice
of fitting domains for Dirac operators. Roughly speaking, if we choose the domain of
the Dirac operator such that it is contained in a Sobolev space of order s, then the do-
main of the singular integral operators is contained in a Sobolev space of order s−1/2.
Since the singular integral operators are best understood, particularly for non-smooth
surfaces, in the context of L2 spaces analogous to [34] we choose s = 1/2. Hence, in
contrast to the most common choice s = 1, as for instance in [7, 10, 22, 23], we are not
able to use the classic trace theorem in our situation and therefore have to formulate
an appropriate trace theorem. For proving the trace theorem we use the ideas from
[8]. After rigorously defining Dirac operators with δ-shell interactions in (0.8) we once
more discuss the aspect regarding the Sobolev regularity in the domains from a differ-
ent point of view. To study the mentioned singular integral operators in L2 we use the
work of Coifman, McIntosh and Meyer [14] on Cauchy integrals on Lipschitz curves as
well as the work of Axelsson, Grognard, Hogan and McIntosh [5] concerning harmonic
analysis of Dirac operators on Lipschitz domains. Besides proving the self-adjointness
the quasi boundary triple also helps us to examine the spectrum of Dirac operators
with δ-shell interactions. Thereby, we mostly rely on methods which are well known
from the C2 case and can be found e.g. in [22].

Next, let us introduce and discuss the main objects of this thesis in more detail.
We assume Ω+ ⊂ R3 to be a Lipschitz domain with compact boundary, Ω− := R3 \Ω+

and Σ := ∂Ω+ = ∂Ω−. Then, the Dirac operator with δ-shell interactions is formally
given by

Aη,τ = −i(α · ∇) +mβ + (ηI4 + τβ)δΣ, (0.3)

where (α ·∇) =
∑3

l=1 αl
∂
∂xl

and δΣf = 1
2
(f+|Σ +f−|Σ). Here, f± denotes the restriction

of f to Ω±. In the rigorous definition of Aη,τ as an operator in L2(R3;C4) the δΣ-
interaction is modelled by jump conditions for functions in the domain of the operator
Aη,τ . In the following, we want to motivate these jump conditions. Interpreting Aη,τf
as a distribution yields for a test function g ∈ D(R3;C4)

〈Aη,τf, g〉 =

∫
R3

f · i(α ·∇)g+mf ·βg dx+

∫
Σ

(ηI4 +τβ)
1

2
(f+|Σ +f−|Σ) ·g dσ(x). (0.4)

On the contrary, since δΣ is only supported on Σ we have

Aη,τ = −i(α · ∇) +mβ in Ω±. (0.5)
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Hence, integration by parts gives us

〈Aη,τf, g〉 =

∫
Ω−∪Ω+

−i(α · ∇)f · g +mβf · g dx

=

∫
R3

f · i(α · ∇)g +mf · βg dx−
∫

Σ

i(α · ν)(f+|Σ − f−|Σ) · g dσ(x),

(0.6)

where ν denotes the unit outward normal vector of Ω+ and α · ν =
∑3

l=1 αlνl. Com-
paring (0.4) and (0.6) for all g ∈ D(R3;C4) shows

i(α · ν)(f+|Σ − f−|Σ) + (ηI4 + τβ)
1

2
(f+|Σ + f−|Σ) = 0 on Σ. (0.7)

Based on these heuristic considerations we rigorously define the Dirac operator with
δ-shell interactions through

domAη,τ :=
{
f = f+ ⊕ f− ∈ H1/2(Ω+;C4)⊕H1/2(Ω−;C4) :

(α · ∇)f± ∈ L2(Ω±;C4) and f fulfills (0.7)
}
⊂ L2(R3;C4)

Aη,τf := (−i(α · ∇) +mβ) f+ ⊕ (−i(α · ∇) +mβ) f− ∀f ∈ domAη,τ ,

(0.8)

where H1/2(Ω±;C4) denotes the Sobolev space of order 1/2 on Ω±. Historically, such
operators were firstly considered in 1989 by Dittrich, Exner and Šeba in [16] where they
studied Dirac operators with δ-shell interactions on spheres. There, they proved self-
adjointness for all η, τ ∈ R. After a twenty-five year long period with little progress,
Arrizabalaga, Mas and Vega successfully proved self-adjointness of Aη,τ for general C2

smooth surfaces and all η2 − τ 2 6= 4 in [2, 3]. Such a configuration of the interaction
strengths is called non-critical and the configuration η2 − τ 2 = 4 is called critical.
This distinction is made due to the fact that some theoretical tools fail to work in the
critical case. Moreover, on the basis of the results from [11], where two-dimensional
Dirac operators are considered, one can not expect the same spectral properties as well
as any Sobolev regularity in domAη,τ in the critical case. Due to these difficulties the
critical case has been excluded in most publications concerning Dirac operators with
δ-shell interactions, cf. [2, 3, 4, 6, 7, 23]. In general, the question of self-adjointness of
Aη,τ in the critical case is still open, even for smooth domains. However, in the last
few years this case got more attention and was examined in [9, 11, 32]. In the present
thesis the critical case is excluded.
Before we summarize the main results of this thesis, let us come back to the discussion
of the Sobolev space order in domAη,τ . For C2 surfaces one can show that in the non-
critical case the domain domAη,τ is contained in H1(Ω+;C4) ⊕ H1(Ω−;C4), see [22,
Definition 4.2.1 and Theorem 4.2.3]. Thus, changing the order of the Sobolev spaces
from 1/2 to 1 in (0.8) would not change the domain of Aη,τ . However, due to [25,
Theorem 1.2 (ii)] one can not expect this behaviour for interactions on non-smooth
surfaces and therefore it is necessary to work with Sobolev spaces of lower order.
Now, we turn to the discussion of the main results of the present thesis.
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Theorem 0.1. Let Ω+ be a Lipschitz domain. Then, there exists a constant M ≥ 1
4

such that for η2 − τ 2 /∈
[

1
M
, 16M

]
the following assertions hold:

(i) The operator Aη,τ is self-adjoint.

(ii) σess(Aη,τ ) = (−∞,− |m|] ∪ [|m| ,∞).

(iii) σdisc(Aη,τ ) is finite.

(iv) For λ ∈ C\R the difference (Aη,τ −λ)−4− (A0,0−λ)−4 belongs to the trace class,
i.e. the singular values of (Aη,τ − λ)−4 − (A0,0 − λ)−4 are summable.

Moreover, if Ω+ is a C1 domain, then M = 1
4
, i.e. the assertions hold for all η2−τ 2 6= 4.

The statements and proofs of Theorem 0.1 can be found in Theorem 5.8 and Theo-
rem 5.14. Theorem 0.1 answers the question of self-adjointness of Aη,τ and gives us
information about the spectrum of Aη,τ for a wide variety of interaction strengths.
Furthermore, item (iv) of Theorem 0.1 serves as a valuable basis in scattering theory.
We see that for C1 domains the self-adjointness can be shown for all non-critical inter-
action strengths. Hence, the results are similar to the results on smoother domains.
In order to stress the significance of Theorem 0.1 we formulate two corollaries, where
we consider two important special cases. Namely, the confinement case (η2−τ 2 = −4)
and the purely Lorentz-scalar case (η = 0). Let us start with the confinement case.

Corollary 0.2. Let Ω+ be a Lipschitz domain. If η2−τ 2 = −4, then the operator Aη,τ
is self-adjoint and the interface condition (0.7) can be decoupled into the two boundary
conditions (

±i(α · ν) +
1

2
(ηI4 + τβ)

)
f±|Σ = 0 on Σ. (0.9)

The proof of Corollary 0.2 is stated in Theorem 5.10. In such a configuration of the
interaction strengths, due to the decoupling of the interface condition, the boundary Σ
becomes impermeable for particles. This phenomenon is also discussed in [3, Section 5],
[22, Remark 4.2.2.] and [7, Lemma 3.1]. Dirac operators with boundary conditions as
in (0.9) are treated in [10, 22] and are used to describe relativistic particles in domains
as in the quark gluon confinement. Moreover, two-dimensional Dirac operators with
such boundary conditions are called quantum-dot operators and are used to describe
graphene, cf. [25, 34]. Corollary 0.2 directly implies the self-adjointness of Dirac
operators with boundary conditions as in (0.9).
The upcoming corollary considers the case of purely Lorentz-scalar interactions.

Corollary 0.3. Let Ω+ be a Lipschitz domain and τ ∈ R. Then, A0,τ is self adjoint
and, in addition to the assertions in Theorem 0.1, the following statements hold:

(i) λ ∈ σ(A0,τ ) if and only if −λ ∈ σ(A0,τ ).

(ii) The discrete eigenvalues of A0,τ have even multiplicity.

(iii) If τm ≥ 0, then σdisc(A0,τ ) = ∅.
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This corollary is shown in Theorem 5.12 and deals with potentials that can be writ-
ten in the form V = τβδΣ and therefore are invariant under Lorentz transformations.
Such potentials are considered in [23] for interactions on smooth surfaces in R3 and
in [34] for interactions on piecewise smooth closed curves in R2 in further detail. Our
main takeaway from Corollary 0.3 is that the Lorentz-scalar case is fully covered by
Theorem 0.1 for all τ ∈ R without assuming additional smoothness of the surface.

Finally, we give a short overview on this thesis. In the first chapter we introduce
necessary notations and theoretical tools which we apply in subsequent chapters. Af-
ter that, we study Sobolev spaces in Chapter 2. There, Sobolev spaces for Dirac
operators are to be highlighted. In this thesis they are the domains of Dirac operators
and allow us to state an extended trace theorem. Afterwards, in Chapter 3, we focus
on the significant topic of integral operators. We study singular integral operators on
Lipschitz and C1 boundaries. There, the compactness result of Theorem 3.18 is espe-
cially important. It allows us to imply that Dirac operators with δ-shell interactions
on C1 boundaries are self-adjoint for η2 − τ 2 6= 4 which is a similar result as known
for C2 domains. Chapter 4 deals with the free Dirac operator, i.e. the Dirac operator
without a potential, and the construction of a quasi boundary triple for Dirac opera-
tors with interactions on the boundary. This construction succeeds due to preliminary
work done in previous chapters. In the last chapter we use Fredholm theory in order
to prove self-adjointness of Aη,τ for Lipschitz and C1 domains. Finally, we discuss
special choices of the interaction strengths η and τ and deal with differences of powers
of resolvents which are important with respect to scattering theory.





1 Preliminaries

In this chapter we set the stage for this thesis. First, we introduce important nota-
tions, then we deal with different types of operators. Thereafter, we introduce quasi
boundary triples which are an important tool in finding self-adjoint extensions of sym-
metric operators. Last, we define Lipschitz domains and the non-tangential trace of
functions on Lipschitz domains.

1.1 Notations

We fix frequently occurring notations which may be not clear at first sight or deviate
from standard notations.
The natural number n ≥ 2 always denotes the space dimension of the vector space Rn.
With C > 0 we mean a generic constant which may change in-between lines.
For z ∈ C \ R+ we choose the square root such that Im z > 0.
The symbol |·| denotes the modulus of a scalar, the 2-norm of a column vector or the
matrix norm induced by the 2-vector norm. Moreover, |·|p for 1 ≤ p ≤ ∞ denotes the
p-norm of a column vector or the matrix norm induced by the p-vector norm. For two
column vectors a, b of the same length k we set the dot product to be a · b =

∑k
l=1 albl.

Furthermore, if a = (a1, a2, . . . , ak) is a tuple with values in a complex vector space,
a · b also represents the expression

∑k
l=1 albl.

Let V be a normed space. Then, we define V ∗ to be the dual of V and call the term

V ∗〈f, v〉V := f(v) the duality product of f ∈ V ∗ and v ∈ V . If W is an additional
normed space, we write V ×W for the Cartesian product of the two normed spaces

and endow this space with the norm ‖·‖V×W =
√
‖·‖2

V + ‖·‖2
W . Moreover, we write

L(V,W ) for the set of bounded linear operators mapping from V to W .
The expression (·, ·)H denotes the inner product of a Hilbert space H. Here, we assume
that (·, ·)H is antilinear in the first argument. If G is also a Hilbert space, then G ⊕H
expresses the outer orthogonal sum of G and H.
If we do not mention a specific measure in context of measure and integral theory, we
are talking about the Lebesgue measure.

15



16 1 Preliminaries

1.2 Fredholm Operators

We discuss Fredholm operators and state the Fredholm alternative in Theorem 1.3.
Furthermore, Theorem 1.2 shows that compact perturbations do not change the Fredhlom
index. For a deeper investigation on Fredholm operators, see [28, Chapter 2].
In this and in the two upcoming sections we assume H1, H2 and H3 to be Hilbert
spaces.

Definition 1.1. Let F : H1 → H2 be a linear and bounded operator. We call F a
Fredholm operator if

(i) ranF is closed in H2 as well as

(ii) dim(kerF ) <∞ and dim(H2/ranF ) <∞.

In this setting we define the Fredholm index as

index(F ) := dim(kerF )− dim(H2/ranF ). (1.1)

We make use of the next two theorems in this thesis.

Theorem 1.2. [28, Theroem 2.26] Let F : H1 → H2 be a Fredholm operator and
K : H1 → H2 be a linear compact operator. Then, F + K is also Fredholm and
index(F +K) = index(F ).

Another well known result corresponding to Fredholm operators is the Fredholm alter-
native. We state a form of the Fredholm alternative which is fitting for our applications.

Theorem 1.3. [28, Theroem 2.27] Assume that F : H1 → H2 is Fredholm with
index(F ) = 0. There are two mutually exclusive possibilities:

(i) The homogeneous equation Fu = 0 has only the trivial solution u = 0. Moreover,
in this case the operator F is bijective.

(ii) The homogeneous equation Fu = 0 has exactly p ∈ N linearly independent solu-
tions u1, u2, . . . , up.

1.3 Closed Operators and Their Spectra

In this section we recall some basic definitions regarding closed operators and their
spectra. Therefore, let us assume throughout this section that S : H1 ⊃ domS → H2

is a closed operator, i.e. G(S) := {(x, Sx) : x ∈ domS} is closed in H1 ×H2.

Definition 1.4. The set

ρ(S) :=
{
λ ∈ C : (S − λ)−1 ∈ L(H2,H1)

}
(1.2)

is said to be the resolvent set of S and σ(S) := C \ ρ(S) is called the spectrum of S.
Furthermore, we define the set of eigenvalues as the point spectrum σp(S) ⊂ σ(S).
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Next, we introduce the adjoint operator.

Definition 1.5. Let domS be dense in H1. Then, we define the adjoint operator

domS∗ :=
{
g ∈ H2 : ∃g∗ ∈ H1 such that (Sf, g)H2

= (f, g∗)H1
∀f ∈ domS

}
S∗g := g∗.

(1.3)

Moreover, if H = H1 = H2 and S ⊂ S∗, we call S symmetric and if S = S∗, we call S
self-adjoint.

In case of self-adjoint operators it is a well-known fact that the spectrum is real.
Furthermore, in this setting we present two further spectral sets.

Definition 1.6. Let S = S∗ be a linear operator in the Hilbert space H. Then,

σdisc(S) := {λ ∈ σp(S) : dim(ker (T − λ)) <∞ and λ is isolated in σ(S)} (1.4)

is the discrete spectrum of S and σess(S) := σ(S) \ σdisc(S) is called the essential
spectrum of S.

A relevant result concerning the essential spectrum reads as follows.

Theorem 1.7 ([35, Theorem 8.12]). Let A = A∗ and B = B∗ be self-adjoint operators
in H. If

(A− µ)−1 − (B − µ)−1 (1.5)

is compact for a µ ∈ ρ(A) ∩ ρ(B), then σess(A) = σess(B).

1.4 Schatten-von Neumann Ideals

In order to qualify compact operators, we use the so-called weak Schatten-von Neu-
mann ideals. Therefore, we assume K : H1 → H2 to be in the set of compact operators
from H1 to H2, S∞(H1,H2). Then, there exists a unique decreasing sequence of sin-
gular values s1(K) ≥ s2(K) ≥ s3(K) ≥ . . . . It is well known that

sl(K) =
√
sl(KK∗) =

√
sl(K∗K) = sl(K

∗) (1.6)

for l ∈ N . Here, N = {1, 2, . . . , k} in case of k ∈ N singular values and N = N in
case of infinetly many singular values. Before we introduce the Schatten-von Neumann
ideals we define the trace class.

Definition 1.8. We call the set

S1(H1,H2) :=

{
K ∈ S∞(H1,H2) :

∑
l∈N

sl(K) <∞

}
(1.7)

trace class. For K ∈ S1(H1,H2) we define the trace of K as

tr K :=
∑
l∈N

sl(K). (1.8)
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Definition 1.9. Let 0 < p < ∞. Then, we define the weak Schatten-von Neumann
ideal of order p

Sp,∞(H1,H2) :=
{
K ∈ S∞(H1,H2) : (l1/psl(K))l∈N is bounded

}
. (1.9)

We summarize some important properties of these ideals in the next theorem.

Theorem 1.10. Let 0 < p, q, r <∞. Then, the following assertions are true:

(i) The inclusion Sp,∞(H1,H2) ⊂ S∞(H1,H2) holds.

(ii) If p < 1, then Sp,∞(H1,H2) ⊂ S1(H1,H2).

(iii) If p ≤ q, then Sp,∞(H1,H2) ⊂ Sq,∞(H1,H2).

(iv) If S, T ∈ Sp,∞(H1,H2), then S + T ∈ Sp,∞(H1,H2).

(v) If 1
p
+ 1

q
= 1

r
, S ∈ Sp,∞(H2,H3) and T ∈ Sq,∞(H1,H2), then ST ∈ Sr,∞(H1,H3).

Proof. The first three assertions are trivial. Item (iv) and item (v) can be found in
[33, Theorem 2.2.5. and Theorem 2.2.9], respectively.

1.5 Quasi Boundary Triples

Quasi boundary triples are a useful tool in studying self-adjoint extensions of a sym-
metric operator and spectral properties of those extensions. They were introduced by
Behrndt and Langer in [12, 13] as a generalization of boundary triples and are mostly
applied on differential operators with boundary or interaction conditions. In this the-
sis we use the theory of quasi boundary triples to treat Dirac operators with singular
interactions on the interface.
Throughout this section S denotes a densely defined closed symmetric operator in the
Hilbert space H.

Definition 1.11. [13, Definition 6.10] A triple (G,Γ0,Γ1) is said to be a quasi bound-
ary triple for the operator S∗ if G is a Hilbert space and there exists an operator T
such that T = S∗ and Γ0,Γ1 : domT → G are linear mappings satisfying

(i) (Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G ∀f, g ∈ domT ,

(ii) ran (Γ0,Γ1)T is dense in G × G and

(iii) A0 := T � ker Γ0 is self-adjoint in H.

For λ ∈ ρ(A0) it is easy to see that domT can be decomposed into the direct sum

domT = domA0 u ker (T − λ) = ker Γ0 u ker(T − λ). (1.10)

In this case we can introduce two further operators.
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Definition 1.12. Let (G,Γ0,Γ1) be a quasi boundary triple for S∗ = T . The two
operator valued functions γ and M defined through

ρ(A0) 3 λ 7→ (Γ0 � ker (T − λ))−1

and ρ(A0) 3 λ 7→ Γ1γ(λ)
(1.11)

are called γ-field and Weyl function, respectively.

The γ-field and Weyl function are well defined due to (1.10). We note that γ(λ) is a
mapping from G0 := ran Γ0 to ker (T−λ) and M(λ) maps from G0 to G1 := ran Γ1. The
two upcoming theorems list properties of these two functions which are beneficial with
respect to this thesis. The proofs can be found in [26, Propostion 2.11 and Lemma
2.12].

Theorem 1.13. Let (G,Γ0,Γ1) be a quasi boundary triple for S∗ = T . Then, for
λ, µ ∈ ρ(A0) the following claims hold true:

(i) γ(λ) is a densely defined operator from G to H. Moreover, the adjoint of γ(λ)
satisfies the formula

γ(λ)∗ = Γ1(A0 − λ)−1. (1.12)

(ii) M(λ) is a densely defined operator in G, M(λ) ⊂M(λ)∗ and

(M(λ)−M(µ))ϕ = (λ− µ)γ(µ)∗γ(λ)ϕ ∀ϕ ∈ G0. (1.13)

Next, we focus on the differentiability properties of M and γ. Therefore, we introduce
the following notation. We say that a function A mapping from an open set O ⊂ C
to a separable Banach space V over C is holomorphic in λ ∈ O if the limit

lim
µ→λ

A(λ)− A(µ)

λ− µ
(1.14)

exists.

Theorem 1.14. Let (G,Γ0,Γ1) be a quasi boundary triple for S∗ = T . Then, the
mappings ρ(A0) 3 λ 7→ γ(λ)ϕ and ρ(A0) 3 λ 7→ M(λ)ϕ are holomorphic for all
ϕ ∈ G0. Furthermore, for λ ∈ ρ(A0) and k ∈ N the identities

(i) dk

dλkγ(λ)∗ = k!γ(λ)∗(A0 − λ)−k,

(ii) dk

dλkγ(λ)ϕ = k!(A0 − λ)−kγ(λ)ϕ ∀ϕ ∈ G0 and

(iii) dk

dλkM(λ)ϕ = k!Γ1(A0 − λ)−kγ(λ)ϕ ∀ϕ ∈ G0

are valid.
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In order to study self-adjoint extensions of S, we introduce the operator

AB := T � ker (Γ0 +BΓ1), (1.15)

where B denotes a linear operator in G. In the following theorem we state a version
of Krein’s resolvent formula and investigate the relationship between AB and B.

Theorem 1.15 ([6, Theorem 2.4.]). Let (G,Γ0,Γ1) be a quasi boundary triple for
S∗ = T and B be a linear operator in G. Then, for all λ ∈ ρ(A0) one has

ker(AB − λ) = {γ(λ)ϕ : ϕ ∈ ker(I −BM(λ))} (1.16)

and, in particular, λ ∈ σp(AB) if and only if −1 ∈ σp(BM(λ)). Furthermore, if
λ ∈ ρ(A0) is not an eigenvalue of AB, then the following assertions hold:

(i) g ∈ ran (AB − λ) if and only if Bγ(λ)∗g ∈ dom (I +BM(λ))−1.

(ii) For all g ∈ ran (AB − λ) we have

(AB − λ)−1g = (A0 − λ)−1g − γ(λ)(I +BM(λ))−1Bγ(λ)∗g. (1.17)

If B is a bounded self-adjoint operator and (I+BM(λ±))−1 ∈ L(G) for λ± ∈ C±, then
AB is a self-adjoint operator in H and (1.17) holds for all λ ∈ ρ(A0) ∩ ρ(AB) and all
g ∈ H.

1.6 Lipschitz Domains

As already mentioned, Lipschitz domains play an essential role in this thesis. There-
fore, we introduce them in this section. Let us start with some definitions.

Definition 1.16. Let ζ : Rn−1 → R be a Lipschitz continuous function. Then, Ω is a
Lipschitz hypograph if it can be written in the following form

Ω =

{
x =

(
x′

xn

)
, x′ ∈ Rn−1 : xn < ζ(x′)

}
. (1.18)

Definition 1.17. Let H be a hyperplane in Rn, ν the unit normal on H, τ > 0 and
r > 0. The open cylinder with center x0 ∈ H is defined as

Cr,τ (x0, ν) := {x ∈ Rn : x = x1 + tν, x1 ∈ H, |x1 − x0| < r, t ∈ (−τ, τ)}. (1.19)

Definition 1.18. We say Ω has Lipschitz character at x0 ∈ Σ := ∂Ω if there exists
a hyperplane H, x0 ∈ H, r > 0, τ > 0 and a Lipschitz function ζ̃ : H −→ R, with
Lipschitz constant L, such that

Cr,τ (x0, ν) ∩ Ω = {x = x1 + tν ∈ Cr,τ (x0, ν) : x1 ∈ H, t ∈ (−τ, τ), t < ζ̃(x1)} (1.20)
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and ζ̃(x0) = 0. Moreover, we call the rigid motion which maps Cr,τ (x0, ν) to Cr,τ (0, en)
κx0 and define the boundary function ζx0 : Rn−1 → R through

ζx0(x′) := ζ̃

(
κ−1
x0

(
x′

0

))
∀x′ ∈ Rn−1. (1.21)

Definition 1.19. Let Ω ( Rn be an open set in Rn and Σ = ∂Ω be compact. We call
Ω a Lipschitz domain if every x0 ∈ Σ has Lipschitz character.

Remark 1.20. If the boundary functions ζx0 : Rn−1 → R are Ck and all their derivatives
up to order k are bounded, then we call Ω a Ck domain.

The surface measure σ of Lipschitz domains is the (n − 1)-dimensional Hausdorff
measure Hn−1 restricted to Σ. On Cr,τ (x0, ν)∩Σ we can compute the surface measure
of V ⊂ Cr,τ (x0, ν) ∩ Σ with the formula

σ(V ) =

∫
Q(κx0 (V ))

√
1 + |∇ζx0(x′)|2 dx′. (1.22)

Here, Q maps x =
(
(x′)T , xn

)T ∈ Rn to x′ ∈ Rn−1. Moreover, for f ∈ L1(Σ) we can
calculate the integral via∫

V

f(x) dσ(x) =

∫
Q(κx0 (V ))

f

(
κ−1
x0

(
x′

ζx0(x′)

))√
1 + |∇ζx0(x′)|2 dx′. (1.23)

Another important property of the Lipschitz domains is the σ-a.e. existence of the
unit outward normal vector, which we denote ν.

1.7 Non-Tangential Trace

The non-tangential trace is an important concept with respect to traces of functions in
Lipschitz domains. First, we introduce the non-tangential neighbourhood as follows.

Definition 1.21. Let κ > 0 and Ω ⊂ Rn be a Lipschitz domain. Then, for x ∈ Σ

Γκ,Ω (x) := {z ∈ Ω : |x− z| < (1 + κ) dist(z,Σ)} (1.24)

denotes the non-tangential neighbourhood of x.

Now, we are able to define the non-tangential supremum as well as the non-tangential
trace.

Definition 1.22. Let κ > 0, r ∈ N, Ω ⊂ Rn be a Lipschitz domain and u : Ω → Cr

be an arbitrary function. Then, the non-tangential supremum is defined as

(Nκ,Ωu) (x) := sup
z∈Γκ,Ω(x)

|u(z)| for x ∈ Σ. (1.25)
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Definition 1.23. Let κ > 0, r ∈ N, Ω ⊂ Rn be a Lipschitz domain and u : Ω → Cr

be an arbitrary function. Then, the non-tangential trace is defined as

u|n.t.Σ (x) := lim
z→x

z∈Γκ,Ω(x)

u(z) for x ∈ Σ (1.26)

if the limit exists. Moreover, we say u|n.t.Σ exists σ-a.e. if there exists a κ > 0 such
that the limit in (1.26) exists for σ-a.e. x ∈ Σ.

Within this realm we have an extended version of the divergence theorem.

Theorem 1.24 ([29, Propositon 2.4.]). Let Ω ⊂ Rn be a bounded Lipschitz domain and
assume that U ∈ L1

loc(Ω,Cn) such that div U =
∑n

l=1 ∂lUl ∈ L1(Ω). If, in addition,
Nκ,ΩU ∈ L1(Σ) and U |n.t.Σ exists σ-a.e., then∫

Σ

ν(x) · U |n.t.Σ (x) dσ(x) =

∫
Ω

div U(x) dx. (1.27)



2 Sobolev Spaces

The main object of this thesis are partial differential operators. In such a setting
Sobolev spaces are indispensable. In the first part of this chapter we deal with classic
Sobolev spaces. Afterwards, we discuss certain Sobolev spaces which are important in
the context of this thesis.

2.1 Classic Sobolev Spaces

We present different types of Sobolev spaces on open domains. Here, we base our
presentation on [28, Chapter 3] and refer to that book for a broader and more in-
depth treatment of Sobolev spaces. We focus on definitions and statements which are
helpful with respect to this work. Let us start with Sobolev spaces defined via weak
derivatives.

Definition 2.1. Let r ∈ N0, p ∈ [1,∞] and Ω ⊂ Rn be open. Then,

W r
p (Ω) := {u ∈ Lp(Ω) : ∂au ∈ Lp(Ω) ∀a ∈ Nn

0 with |a|1 ≤ r} (2.1)

and the corresponding norm is defined by

‖u‖W r
p (Ω) :=

∑
|a|1≤r

‖∂au‖pLp(Ω)

1/p

(2.2)

in case of p <∞ and

‖u‖W r
p (Ω) := sup

|a|1≤r
‖∂au‖L∞(Ω) (2.3)

in case of p =∞.

Remark 2.2. The Sobolev spaces defined in Definition 2.1 are Banach spaces and if
p = 2, W s

p (Ω) is a Hilbert space. From now on, we omit the index p if p = 2.

There is also another way to introduce Sobolev spaces, namely with help of the Fourier
transform which is defined through

(Ff)(ξ) :=

∫
Rn
f(x)e−2πiξ·x dx ∀ξ ∈ Rn (2.4)

23
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for f ∈ L1(Rn). Moreover, the Fourier transform can be extended to the dual of
the Schwartz space S∗(Rn) and defines a unitary mapping in L2(Rn). We use the
same notation for the Fourier transform defined by (2.4) and its extension. The state-
ments about the Fourier transform can be found in section ”Fourier Transforms” of
[28, Chapter 3].

Definition 2.3. Let s ∈ R. We define the Sobolev space of order s

Hs(Rn) :=
{
u ∈ S∗(Rn) :

(
1 + |·|2

)s/2Fu ∈ L2(Rn)
}

(2.5)

and endow it with the scalar product

(u, v)Hs(Rn) :=
((

1 + |·|2
)s/2Fu, (1 + |·|2

)s/2Fv)
L2(Rn)

∀u, v ∈ Hs(Rn). (2.6)

Remark 2.4. It is worth mentioning thatH−s(Rn) is an isometric realization of (Hs(Rn))∗,
see [28, Eq. (3.22)].

For open subsets of Rn we present another class of Sobolev spaces.

Definition 2.5. Let s ∈ R and Ω ⊂ Rn be open. We define

Hs(Ω) := {u ∈ D∗(Ω) : ∃U ∈ Hs(Rn) such that U |Ω = u} (2.7)

and the corresponding norm

‖u‖Hs(Ω) := inf
U∈Hs(Rn)
U |Ω=u

‖U‖Hs(Ω). (2.8)

In many cases the following theorem shows that different approaches in defining
Sobolev spaces yield the same spaces with equivalent norms. It reads as follows.

Theorem 2.6. Let Ω ⊂ Rn either be a Lipschitz domain or Ω = Rn and r ∈ N0.
Then,

W r(Ω) = Hr(Ω) (2.9)

and their norms are equivalent.

Proof. The proof for Ω = Rn can be found in [28, Theorem 3.16]. If Ω is a Lipschitz
domain, combining Theorem 3.18 and Theorem A.4 from [28] proves the statement.

Theorem 2.6 comes in handy since, depending on the situation, both definitions prove
to be useful. It is well known that D(Rn) is densely contained in Hs(Rn), see e.g.
section ”Sobolev Spaces - First Definition” in [28, Chapter 3]. This property generally
does not hold for open sets, but we have the following density statement for Lipschitz
domains.
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Theorem 2.7. Let s ≥ 0 and Ω ⊂ Rn be a Lipschitz domain. Then, the set

D(Ω) := {u : ∃U ∈ D(Rn) such that U |Ω = u} (2.10)

is densely contained in Hs(Ω).

Proof. See [28, Theorem 3.21 (i)].

We introduce the spaces Hs
0(Ω) and W̊ r(Ω). They can be interpreted as Sobolev spaces

containing functions which vanish at the boundary.

Definition 2.8. Let s ∈ R and Ω ⊂ Rn be open. Then,

Hs
0(Ω) := D(Ω)

‖·‖Hs(Ω) . (2.11)

Moreover, for r ∈ N0 we define the space

W̊ r(Ω) := D(Ω)
‖·‖Ws(Ω) . (2.12)

Remark 2.9. Certainly, applying Theorem 2.6 gives us Hr
0(Ω) = W̊ r(Ω) for Lipschitz

domains and r ∈ N0.

The last classic Sobolev space on open domains we work with is defined as follows.

Definition 2.10. Let s ∈ R and Ω ⊂ Rn be open. Then,

H̃s(Ω) := D(Ω)
‖·‖Hs(Rn) . (2.13)

Remark 2.11. Although not explicitly mentioning it, all Sobolev spaces we introduced
are complete, making them Banach spaces or even Hilbert spaces. This is a well-known
fact and can be found in the sections ”Sobolev Spaces - First Definition” and ”Sobolev
Spaces - Second Definition” in Chapter 3 of [28].

In case of Lipschitz domains there exist interesting relations between the different
types of Sobolev spaces.

Theorem 2.12. Let s ∈ R and Ω ⊂ Rn be a Lipschitz domain. Then, the following
assertions hold true:

(i) The sets H̃s(Ω) and
{
u ∈ Hs(Rn) : suppu ⊂ Ω

}
are equal.

(ii) The mapping

H̃−s(Ω)→ (Hs(Ω))∗

u 7→ Fu
(2.14)

with Fu(v) :=H−s(Rn) 〈u, V 〉Hs(Rn), where V ∈ Hs(Rn) and V |Ω = v, is isometric.
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(iii) The mapping

H−s(Ω)→ (H̃s(Ω))∗

u 7→ Gu

(2.15)

with Gu(v) :=H−s(Rn)

〈
U, v

〉
Hs(Rn)

, where v ∈ H̃s(Rn) and U ∈ H−s(Rn) such

that U |Ω = u, is isometric.

Proof. Assertion (i) can be found in [28, Theorem 3.29 (ii)]. The remaining items
follow from combining (i) and [28, Theorem 3.14].

In the last part of this section we study the embedding of Hk
0 (Ω) in Hs(Ω) for bounded

Lipschitz domains with k ∈ N and s ∈ [0, 1). After reading [28, Theorem 3.27], we
know that this embedding is compact. However, it turns out that we can improve this
result in terms of Schatten-von Neummann ideals. To do so, we make some preliminary
considerations. Here, the fractional Laplacian plays a major role.

Definition 2.13. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then, we define the
Laplacian with Dirichlet boundary conditions as

dom −∆D :=
{
u ∈ H1

0 (Ω) : −∆u ∈ L2(Ω)
}

−∆Du := −∆u ∀u ∈ dom ∆D.
(2.16)

It is well known that −∆D is a positive definite self-adjoint operator in L2(Ω). More-
over, −∆D has a purely discrete spectrum with eigenvalues 0 ≤ λ1

D ≤ λ2
D ≤ . . . . These

results can be found e.g. in [35, Section 12.3]. The spectral root of −∆D has the do-
main H1

0 (Ω) and is associated with the quadratic form t[·, ·] = (∇(·),∇(·))L2(Ω,Cn), i.e.

t[u, v] =
(
(−∆D)1/2u, (−∆D)1/2v

)
L2(Ω)

= ((−∆D)u, v)L2(Ω) for all u ∈ dom −∆D and

v ∈ dom t = dom (−∆D)1/2, see [35, Section 10.6.1 and Proposition 10.4].
The two subsequent lemmas deal with the mapping properties of powers of the Lapla-
cian.

Lemma 2.14. Let k ∈ N and Ω ⊂ Rn be bounded Lipschitz domain. Then, the
mapping

T k : Hk
0 (Ω)→ L2(Ω)

u 7→ (−∆D)k/2u
(2.17)

is bounded.

Proof. First, we notice Hk
0 (Ω) ⊂ dom (−∆D)k/2. Hence, the definition in (2.17) is

valid. If k is even, the statement is trivial. Now, we assume k is odd and see

(−∆D)k/2u = (−∆D)1/2
(

(−∆D)
k−1

2 u
)
∀u ∈ Hk

0 (Ω). (2.18)



2.1 Classic Sobolev Spaces 27

Since k − 1 is even, it follows by definition that

(−∆D)
k−1

2 u ∈ H1
0 (Ω) and

∥∥∥(−∆D)
k−1

2 u
∥∥∥
H1(Ω)

≤ C‖u‖Hk(Ω) ∀u ∈ H
k
0 (Ω). (2.19)

Applying (2.19) yields∥∥(−∆D)ku
∥∥2

L2(Ω)
= t

[
(−∆D)

k−1
2 u
]
≤
∥∥∥(−∆D)

k−1
2 u
∥∥∥2

H1(Ω)
≤ C‖u‖Hk(Ω) (2.20)

for all u in Hk
0 (Ω). Therefore, the statement is also true for odd k ∈ N.

Lemma 2.15. Let s ∈ [0, 1] and Ω ⊂ Rn be a bounded Lipschitz domain. Then, the
mapping

T−s : L2(Ω)→ Hs(Ω)

u 7→ (−∆D)−s/2u
(2.21)

is well defined and bounded.

Proof. The resolvent set of −∆D contains zero. This yields 0 ∈ ρ((−∆D)s/2). Hence,
dom (−∆D)−s/2 = ran (−∆D)s/2 = L2(Ω). Moreover,

ran (−∆D)−s/2 = dom (−∆D)s/2 ⊂ Hs(Ω). (2.22)

Equation (2.22) is trivial for s = 0 and s = 1. For s ∈ (0, 1) it can be obtained from
[31, eq. (2.13)]. The boundedness remains to be proven. The case s = 0 is trivial
and in case of s = 1 the statement follows from the characterization of (−∆D)1/2 with
quadratic forms. From now on, we assume s ∈ (0, 1). Then, using [1, Proposition 2.1.]
gives us∥∥(−∆D)−s/2u

∥∥
Hs(Ω)

≤ C
∥∥(−∆D)s/2(−∆D)−s/2u

∥∥
L2(Ω)

= C‖u‖L2(Ω) ∀u ∈ H
s(Ω)

(2.23)
which concludes the proof.

Theorem 2.16. Let k ∈ N, s ∈ [0, 1) and Ω ⊂ Rn be a bounded Lipschitz domain.
Moreover, let ιk,s be the embedding operator mapping from Hk

0 (Ω) to Hs(Ω). Then,
ιk,s ∈ S n

k−s ,∞
(
Hk

0 (Ω), Hs(Ω)
)
.

Proof. We start by rewriting ιk,s as

ιk,s = T−sAk,sT k (2.24)

with

Ak,s : L2(Ω)→ L2(Ω)

u 7→ (−∆D)
s−k

2 u
. (2.25)
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Due to the two previous lemmas, we know that T k and T−s are bounded operators.
Thus, let us investigate Ak,s. Theorem 12.14 in [35] shows that there exists a C > 0
such that

λlD ≥ Cl2/n ∀l ∈ N. (2.26)

Hence, there exists a constant C > 0 with

sl((−∆D)
s−k

2 ) ≤ Cl
s−k
n ∀l ∈ N. (2.27)

This proves the statement.

Corollary 2.17. Let k ∈ N, s ∈ [0, 1), Ω ⊂ Rn be a bounded Lipschitz domain and A
be a bounded operator mapping from a Hilbert space K to the Sobolev space Hs(Ω). If
ranA ⊂ Hk

0 (Ω), then A ∈ S n
k−s ,∞ (K, Hs(Ω)).

Proof. We introduce the operator B : K → Hk
0 (Ω) with the values Bu := Au and see

that B can be factorized as the product

A = Bιk,s. (2.28)

With Theorem 2.16 in mind, it suffices to show B ∈ L(K, Hk
0 (Ω)). Due to the closed

graph theorem, it is sufficient to show that K × ranB is closed in K × Hk
0 (Ω). Let

(ul, Bul)l∈N be a convergent sequence in K × Hk
0 (Ω) with limit (u,w) ∈ K × Hk

0 (Ω).
Then, ul converges to u in K and Bul to w in Hk

0 (Ω). The boundedness of A implies
Bul → Bu in Hs(Ω). Moreover, Bul → w in Hk

0 (Ω) implies Bul → w in Hs(Ω). Now,
the uniqueness of the limit shows Bu = w. Therefore, (u,w) ∈ K × ranB. Hence,
K × ranB is closed and B ∈ L(K, Hk

0 (Ω)).

2.2 Sobolev Spaces on the Boundary

We define Sobolev spaces on the boundary of Lipschitz domains. First, we treat Lips-
chitz hypographs, afterwards we use a partition of unity in order to give a meaningful
definition on Lipschitz domains with compact boundary.
In view of Definition 2.18, we introduce

uζ(x
′) := u

((
x′

ζ(x′)

))
∀x′ ∈ Rn−1 (2.29)

for a function u defined on the boundary of a Lipschitz hypograph with boundary
function ζ.

Definition 2.18. Let Ω be a Lipschitz hypograph with boundary Σ, boundary func-
tion ζ and s ∈ [0, 1]. We define

Hs(Σ) := {u ∈ L2(Σ) : uζ ∈ Hs(Rn−1)} (2.30)

and endow Hs(Σ) with the scalar product

(u, v)Hs(Σ) := (uζ , vζ)Hs(Rn−1) ∀u, v ∈ H
s(Σ).
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Remark 2.19. If κ : Rn → Rn is a linear isometry and κ(Ω) a Lipschitz hypograph,

then Hs(Σ) can be defined analogously by defining uζ as u

(
κ−1

(
·
ζ(·)

))
.

Definition 2.20 (Partition of unity). A partition of unity for an open set O ⊆ Rn is
a finite or infinite sequence of functions ϕ1, ϕ2, · · · ∈ C∞(Rn) which satisfies

(i) ϕl(x) ≥ 0 ∀l,
(ii) every point in O has a neighbourhood intersecting only finitely many suppϕl,

and

(iii)
∑

l≥1 ϕl(x) = 1 for all x ∈ O.

For non-open sets we denote a sequence of functions a partition of unity if it is a
partition of unity for an open neighbourhood of O. If additionally W is an open
covering of O such that for every l exists W ∈ W with suppϕl ⊂ W , we call ϕ1, ϕ2, . . .
a partition of unity subordinate to W .

Theorem 2.21 ([28, Corollary 3.22 (ii)]). Given any countable open cover {W1,W2, . . . }
of a set O ⊂ Rn, there exists a partition of unity ϕ1, ϕ2, . . . for S having the property
that suppϕl ⊂ Wl for each l ≥ 1.

Now, let Ω be a Lipschitz domain with a compact boundary Σ = ∂Ω. Then, due to the
definition of Lipschitz domains, cf. Definition 1.18 and Definition 1.19, there exist for
every x0 ∈ Σ sets Ωx0 and Cr,τ (x0, ν) such that Cr,τ (x0, ν)∩Ω = Cr,τ (x0, ν)∩Ωx0 , where
Ωx0 can be transformed into a Lipschitz hypograph by the rigid motion κx0 : Rn → Rn.
This family of cylinders is an open cover of Σ and since Σ is compact, there exists a
finite sub-cover of Σ, i.e. we can find finitely many open bounded sets W1,W2, . . .Wp

and Ω1,Ω2, . . .Ωp with the following properties:

(i)
p⋃
l=1

Wl ⊃ Σ.

(ii) Wl ∩ Ω = Wl ∩ Ωl for all l ∈ {1, 2, . . . p}.
Applying Theorem 2.21 yields a partition of unity (ϕl)l∈{1,2,...p} for Σ subordinate to
(Wl)l∈{1,2,...,p} with suppϕl ⊂ Wl for all l ∈ {1, 2, . . . , p}. We write Σl for the boundary
of Ωl. Moreover, for u ∈ L2(Σ) we define

ul(x) :=

{
ϕl(x)u(x) if x ∈ Σ ∩Wl = Σl ∩Wl

0 if x ∈ Σl \ (Σ ∩Wl) = Σl \Wl

(2.31)

for all l ∈ {1, 2, . . . , p}. After this preliminary work, we are ready to define Sobolev
spaces on the boundary of Lipschitz domains.

Definition 2.22. Let Ω ⊂ Rn be a Lipschitz domain with boundary Σ and s ∈ [0, 1].
Then, we define the Hilbert space

Hs(Σ) :=
{
u ∈ L2(Σ) : ul ∈ Hs(Σl) ∀l ∈ {1, 2, . . . p}

}
. (2.32)
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The corresponding scalar product is defined by

(u, v)Hs(Σ) :=

p∑
l=1

(ul, vl)Hs(Σl) for u, v ∈ Hs(Σ). (2.33)

Remark 2.23. With the help of [28, Theorem 3.20] and [28, Theorem 3.23], one can
show that different choices of Wl and ϕl yield the same space with equivalent norms.

Remark 2.24. If Ω ⊂ Rn is a Ck domain for k ∈ N, one can define Sobolev spaces in
the same way for 0 ≤ s ≤ k.

At this moment, we are able to state an important result regarding the trace of func-
tions in Hs(Ω).

Theorem 2.25. Let Ω ⊂ Rn be a Lipschitz domain with boundary Σ and 1
2
< s < 3

2
.

Then, the operator tΣ : D(Ω)→ D(Σ) defined by

tΣu := u|Σ (2.34)

has a unique extension to a bounded linear operator

tΣ : Hs(Ω)→ Hs−1/2(Σ). (2.35)

Moreover, if s ≤ 1, then tΣ has a continuous right inverse.

Proof. See Theorem 3.37 and Theorem 3.38 in [28].

We use the following lemma to prove Theorem 2.27 which states an interesting com-
pactness result.

Lemma 2.26. Let Ω ⊂ Rn be a Lipschitz hypograph or a Ck hypograph with boundary
Σ and W ⊂ Rn be a bounded Borel set. If Ω is a Lipschitz hypograph, let 0 ≤ s < t ≤ 1,
and if Ω is a Ck hypograph, let 0 ≤ s < t ≤ k. Then, the inclusion{

u ∈ H t(Σ) : u|Σ\W = 0σ-a.e.
}
⊂
{
u ∈ Hs(Σ) : u|Σ\W = 0σ-a.e.

}
(2.36)

is compact.

Proof. We choose a bounded sequence (ur)r∈N in
{
u ∈ H t(Σ) : u|Σ\W = 0

}
. Then,

the sequence (urζ)r∈N is also a bounded sequence in H t(Rn−1). Moreover, since W is
bounded, there exists a compact set K such that suppurζ ⊂ K for all r ∈ N. Now,
we can employ [28, Theorem 3.27 (i)] which guarantees the existence of a subsequence
(u

rq
ζ )q∈N which converges to some wζ in Hs(Rn−1). Defining w(x) := wζ(x

′) for all

x =
(
(x′)T , xn

)T ∈ Σ, yields that (urq)q∈N converges to w in Hs(Σ). Indeed, since
ur|Σ\W = 0 for all r ∈ N, also w|Σ\W has to be zero. This concludes the proof.
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Theorem 2.27. Let Ω ⊂ Rn be a Lipschitz or a Ck domain with boundary Σ. If Ω is
a Lipschitz domain, let 0 ≤ s < t ≤ 1 and if Ω is a Ck domain, let 0 ≤ s < t ≤ k.
Then, the inclusion

H t(Σ) ⊂ Hs(Σ) (2.37)

is compact.

Proof. Assume that (ur)r∈N is a bounded sequence in H t(Σ). We define urj in the
same way as in (2.31). Then, the sequences (url )r∈N are bounded sequences in the set{
u ∈ H t(Σl) : u|Σl\W = 0

}
for all l = 1, . . . , p by definition. Employing Lemma 2.26

gives us the existence of a subsequence (ulq)q∈N such that (u
rq
l )q∈N converges in Hs(Σl)

for all l = 1, . . . , p. Thus, the sequences (u
rq
l )q∈N are Cauchy sequences in Hs(Σl).

Therefore, also (urq)q∈N is a Cauchy sequence in Hs(Σ). Since Hs(Σ) is complete,
(urq)q∈N converges to a limit u ∈ Hs(Σ).

2.3 Sobolev Spaces for Laplace and Dirac

Operators

We introduce two further spaces. These two spaces are Sobolev spaces where certain
differential expressions possess a higher regularity than generally guaranteed. We use
the Sobolev spaces for Dirac operators as the domain of certain Dirac operators. An
important result concerning Sobolev spaces for Dirac operators is that the domain of
the trace operator can be extended to the case s = 1/2. This is proven in Theorem
2.36. The main ingredient of the proof is the trace theorem regarding Sobolev spaces
for Laplace operators. Therefore, we start by introducing Sobolev spaces for Laplace
operators.

Definition 2.28. Let s1, s2 ∈ R and Ω ⊂ Rn be open. We define Hs1,s2(Ω) through

Hs1,s2
∆ (Ω) := {u ∈ Hs1(Ω) : ∆u ∈ Hs2(Ω)}. (2.38)

Furthermore, we endow Hs1,s2
∆ (Ω) with the norm

‖u‖Hs1,s2
∆ (Ω) := ‖u‖Hs1 (Ω) + ‖∆u‖Hs2 (Ω). (2.39)

.

In such spaces it is possible to formulate an extended trace theorem.

Theorem 2.29. Assume that Ω ⊂ Rn is a Lipschitz domain with boundary Σ and fix
an arbitrary 1 ≥ ε > 0. Then, the restriction of the boundary trace operator defined in
Theorem 2.25 to the space Hs,s−2+ε

∆ (Ω), originally considered for s ∈
(

1
2
, 3

2

)
, induces a

well-defined linear continuous operator

tΣ : Hs,s−2+ε
∆ (Ω) −→ Hs−1/2(Σ) ∀s ∈

[
1

2
,
3

2

]
(2.40)
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which continues to be compatible with the trace operator tΣ defined in Theorem 2.25,
when s ∈

(
1
2
, 3

2

)
. Thus, the defined Dirichlet trace operator enjoys the following prop-

erties:

(i) The Dirichlet boundary operator (2.40) is compatible with the pointwise non-
tangential trace in the sense that: if u ∈ Hs,s−2+ε

∆ (Ω) for some s ∈
[

1
2
, 3

2

]
and

1 ≥ ε > 0, and if u|n.t.Σ exists σ-a.e. on Σ, then

u|n.t.Σ = tΣu ∈ Hs−1/2(Σ). (2.41)

(ii) For each s ∈
[

1
2
, 3

2

]
and 1 ≥ ε > 0 the Dirichlet boundary trace operator satisfies

tΣ(wu) = (w|Σ)tΣu at σ-a.e. point on Σ (2.42)

for all u ∈ Hs,s−2+ε
∆ (Ω) and all w ∈ D(Ω).

Proof. If Ω is bounded, the statement immediately follows from [8, Theorem 3.6].
Next, assume Ω is unbounded with compact boundary. We choose R1 and R2 such
that R2 > R1 > 0 and Σ ⊂ B(0, R1). Note that Ω ∩ B(0, R2) is a bounded Lipschitz
domain. Moreover, there exists a function g ∈ C∞(Rn) which satisfies 0 ≤ g ≤ 1,
g = 1 on B(0, R1) and supp g ⊂ B(0, R2). Since ε ≤ 1, there holds

∆(ug) = (∆u)g + 2
n∑
l=1

∂u

∂xl

∂g

∂xl
+ u(∆g) ∈ Hs−2+ε(Ω) (2.43)

for u ∈ Hs,s−2+ε
∆ (Ω). Hence, if u ∈ Hs,s−2+ε

∆ (Ω), then ug ∈ Hs,s−2+ε
∆ (Ω) and therefore

also ug ∈ Hs,s−2+ε
∆ (Ω ∩B(0, R2)). Now, all the claims follow by defining

tΣu :=
(
t∂(Ω∩B(0,R2))ug

)
|Σ ∀u ∈ Hs,s−2+ε

∆ (Ω) (2.44)

and applying the case of bounded Lipschitz domains. In particular, the definition is
independent of the special choice of g due to assertion (ii) for the case of bounded
domains.

After this short detour to Sobolev spaces for Laplace operators, let us introduce Dirac
operators and Sobolev spaces for Dirac operators. We consider these spaces only for
n = 3. Moreover, we work with vector-valued functions. The definitions of vector-
valued Sobolev spaces should be clear, see for instance section ”Vector-Valued Func-
tions” in [28, Chapter 3]. Moreover, all the statements concerning Sobolev spaces we
have stated so far stay true for vector-valued functions by applying the scalar-valued
analogon elementwise.

Definition 2.30. We define α as follows

α = (α1, α2, α3) ∈ C4×4 × C4×4 × C4×4 with αl =

(
0 σl
σl 0

)
∈ C4×4. (2.45)
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The σl’s denote the Pauli matrices, which are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
. (2.46)

Moreover, we set

β =

(
I2 0
0 −I2

)
. (2.47)

The matrices α1, α2, α3 and β are self-adjoint and satisfy the equations

αkαl + αlαk = 2δklI4 and αlβ + βαl = 0 for k, l ∈ {1, 2, 3}. (2.48)

Remark 2.31. If v ∈ C3, then

(α · v) :=
3∑
l=1

αlvl and (α · ∇) :=
3∑
l=1

αl∂l. (2.49)

An easy computation shows (α · v)2 = I4 |v|2 for v ∈ R3. In this case (α · v) is
self-adjoint.

Definition 2.32. We call the differential operator

− i(α · ∇) +mβ (2.50)

a Dirac operator for m ∈ R. For an open set Ω ⊂ R3 and s1, s2 ∈ R we define the
Sobolev space

Hs1,s2
α (Ω) := {u ∈ Hs1(Ω;C4) : (α · ∇)u ∈ Hs2(Ω;C4)}. (2.51)

Furthermore, we endow Hs1,s2
α (Ω) with the norm

‖u‖Hs1,s2
α (Ω) := ‖u‖Hs1 (Ω;C4) + ‖(α · ∇)u‖Hs2 (Ω;C4). (2.52)

.

The two following lemmas state important facts about Hs1,s2
α (Ω) and have correspond-

ing counterparts concerning Hs1,s2
∆ (Ω). Nevertheless, we only prove the Hs1,s2

α (Ω) cases
since these are important with respect to this work.

Lemma 2.33. Let s1, s2 ∈ R and u ∈ Hs1,s2
α (R3). Then, there holds

u ∈ Hmax{s1,s2+1}(R3;C4) as well as ‖u‖Hmax{s1,s2+1}(R3;C4) ≤ C‖u‖Hs1,s2
α (R3). (2.53)
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Proof. If s1 = max{s1, s2 + 1}, the statement is trivial. Therefore, let us assume
s1 < s2 + 1 and choose a u ∈ Hs1,s2

α (R3). We can write ‖(α · ∇)u‖Hs2 (R3;C4) in the
following way

‖(α · ∇)u‖2
Hs2 (R3;C4) =

∫
R3

(1 + |ξ|2)s2 |(F(α · ∇)u) (ξ)|2 dξ

=

∫
R3

(1 + |ξ|2)s2 |ξ|2 |(Fu) (ξ)|2 dξ.
(2.54)

Simple approximations show the existence of a constant C > 0 which satisfies

(1 + |ξ|2)s2+1 ≤ C
(
(1 + |ξ|2)s1 + (1 + |ξ|2)s2|ξ|2

)
∀ξ ∈ R3. (2.55)

Mulitplying (2.55) with (Fu) (ξ) and integrating over R3 yields the statement.

We already know D(Ω) is densely contained in Hs(Ω). Theorem 2.34 states that this
also holds for Hs1,s2

α (Ω). The proof is based on the proof of [8, Lemma 2.13].

Theorem 2.34. Let Ω ⊂ R3 be a Lipschitz domain and s1, s2 ∈ R. Then, D(Ω;C4)
is a dense subset of Hs1,s2

α (Ω).

Proof. If s1 − s2 ≥ 1, the inclusion Hs2(Ω;C4) ⊃ Hs1−1(Ω;C4) holds and therefore
Hs1,s2
α (Ω) = Hs1(Ω;C4). Since D(Ω;C4) is dense in Hs1(Ω;C4), the statement is true.

It remains to verify the statement in the case s1 − s2 < 1. Hence, let s1 − s2 < 1. We
study the embedding

ι : Hs1,s2
α (Ω) −→ Hs1(Ω;C4)⊕Hs2(Ω;C4)

ι(u) := (u, (α · ∇)u) ∀u ∈ Hs1,s2
α (Ω).

Note that ran(ι) = ι (Hs1,s2
α (Ω)) is a closed subspace of Hs1(Ω;C4) ⊕ Hs2(Ω;C4).

Moreover, ι : Hs1,s2
α (Ω) → ran(ι) is an isomorphism. We denote the inverse operator

ι−1 : ran(ι) → Hs1,s2
α (Ω). Let Λ : Hs1,s2

α (Ω) → C be an arbitrary continuous linear
functional. Then, Λ ◦ ι−1 is a continuous linear functional on ran(ι). Now, Hahn-
Banach guarantees the existence of an extension of Λ ◦ ι−1

Λ̂ ∈
(
Hs1(Ω;C4)⊕Hs2(Ω;C4)

)∗
=
(
Hs1(Ω;C4)

)∗ ⊕ (Hs2(Ω;C4)
)∗
. (2.56)

According to Theorem 2.12 (Hs(Ω;C4))∗ = H̃−s(Ω;C4). Therefore,

Λ̂ ∈ H̃−s1(Ω;C4)⊕ H̃−s2(Ω;C4) (2.57)

and Λ can be represented by

Λ(u) = Λ ◦ ι−1(ιu) = Λ̂(ιu)

= H−s1 (R3;C4)〈h1, F 〉Hs1 (R3;C4) + H−s2 (R3;C4)〈h2, G〉Hs2 (R3;C4),
(2.58)
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where h1 ∈ H̃−s1(Ω;C4) and h2 ∈ H̃−s2(Ω;C4). F and G are chosen such that F |Ω = u
and G|Ω = (α · ∇)u. For the next step we choose an arbitrary ϕ ∈ D(R3;C4). By
setting u = ϕ|Ω, F = ϕ and G = (α · ∇)ϕ we obtain

Λ(ϕ|Ω) = Λ(u) =
H−s1 (R3;C4)

〈
h1, F

〉
Hs1 (R3;C4)

+
H−s2 (R3;C4)

〈
h2, G

〉
Hs2 (R3;C4)

=
H−s1 (R3;C4)

〈
h1, ϕ

〉
Hs1 (R3;C4)

+
H−s2 (R3;C4)

〈
h2, (α · ∇)ϕ

〉
Hs2 (R3;C4)

= D∗(R3;C4)

〈
h1, ϕ

〉
D(R3;C4)

+ D∗(R3;C4)

〈
h2, (α · ∇)ϕ

〉
D(R3;C4)

= D∗(R3;C4)

〈
h1, ϕ

〉
D(R3;C4)

−
D∗(R3;C4)

〈
(α · ∇)h2, ϕ

〉
D(R3;C4)

=
D∗(R3;C4)

〈
h1 − (α · ∇)h2, ϕ

〉
D(R3;C4)

.

(2.59)

Let us assume

Λ(v) = 0 ∀v ∈ D(Ω;C4). (2.60)

If this implies

Λ(u) = 0 ∀u ∈ Hs1,s2
α (Ω), (2.61)

then D(Ω;C4) is a dense subset of Hs1,s2
α (Ω). Combining (2.59) and (2.60) yields

h1 − (α · ∇)h2 = 0 (2.62)

in the sense of distributions. Therefore, (α · ∇)h2 ∈ H−s1(R3;C4). Furthermore,

Lemma 2.33 shows h2 ∈ H−s1+1(R3;C4). Moreover, since h2 ∈ H̃−s2(Ω;C4), we get

supph2 ⊂ Ω through Theorem 2.12 (i) and thus also h2 ∈ H̃−s1+1(Ω;C4). By definition

D(Ω;C4) is densely contained in H̃−s1+1(Ω;C4). Hence, we can find a sequence (ϕl)l∈N
with ϕl ∈ D(Ω;C4) such that

ϕ̃l
l→∞−→ h2 in H−s1+1(R3;C4). (2.63)

Here, ϕ̃l denotes the zero extension of ϕl. We observe

(α · ∇) (ϕ̃l) = ˜(α · ∇)ϕl
l→∞−→ (α · ∇)h2 = h1 in H−s1(R3;C4). (2.64)

In addition, since −s2 < −s1 + 1,

ϕ̃l
l→∞−→ h2 in H−s2(R3;C4). (2.65)
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With previous considerations in mind, there holds for u ∈ Hs1,s2
α (Ω)

Λ(u) =
H−s1 (R3;C4)

〈
h1, F

〉
Hs1 (R3;C4)

+
H−s2 (R3;C4)

〈
h2, G

〉
Hs2 (R3;C4)

= lim
l→∞

{
H−s1 (R3;C4)

〈
˜(α · ∇)ϕl, F

〉
Hs1 (R3;C4)

+
H−s2 (R3;C4)

〈
ϕ̃l, G

〉
Hs2 (R3;C4)

}

= lim
l→∞

{
D∗(R3;C4)

〈
F, ˜(α · ∇)ϕl

〉
D(R3;C4)

+
D∗(R3;C4)

〈
G, ϕ̃l

〉
D(R3;C4)

}

= lim
l→∞

{
D∗(Ω;C4)

〈
F |Ω, (α · ∇)ϕl

〉
D(Ω;C4)

+ D∗(Ω;C4)
〈G|Ω, ϕl〉D(Ω;C4)

}
= lim

l→∞

{
D∗(Ω;C4)

〈
u, (α · ∇)ϕl

〉
D(Ω;C4)

+ D∗(Ω;C4)
〈(α · ∇)u, ϕl〉D(Ω;C4)

}
= lim

l→∞

{
−D∗(Ω;C4)

〈(α · ∇)u, ϕl〉D(Ω;C4) + D∗(Ω;C4)
〈(α · ∇)u, ϕl〉D(Ω;C4)

}
= 0.

(2.66)

We see Λ(u) = 0 for all u ∈ Hs1,s2
α (Ω), concluding the proof of the theorem.

Lemma 2.35. Let s1, s2 ∈ R and Ω ⊂ R3 be a Lipschitz domain. Then, Hs1,s2
α (Ω) is

contained in Hs1,s2−1
∆ (Ω;C4) holds and

‖u‖
H
s1,s2−1
∆ (Ω;C4)

≤ ‖u‖Hs1,s2
α (Ω) ∀u ∈ Hs1,s2

α (Ω). (2.67)

Proof. Let u ∈ Hs1,s2
α (Ω). Moreover, let ε > 0. The definition of Hs1,s2

α (Ω) yields
(α·∇)u ∈ Hs2(Ω;C4). Thus, there exists U ∈ Hs2(R3;C4) such that U |Ω = (α·∇)u and
‖(α · ∇)u‖Hs2 (Ω;C4) ≥ ‖U‖Hs2 (R3;C4)−ε. It is easy to see that (α ·∇)U ∈ Hs2−1(R3;C4)

and ((α · ∇)U)|Ω = (α · ∇)(α · ∇)u = ∆u. Hence, ∆u ∈ Hs2−1(Ω;C4). Furthermore,
we can estimate the norm

‖∆u‖Hs2−1(Ω;C4) = inf
∆u=W |Ω,

W∈Hs2−1(R3;C4)

‖W‖Hs2−1(R3;C4) ≤ ‖(α · ∇)U‖Hs2−1(R3;C4)

≤ ‖U‖Hs2 (R3;C4) ≤ ‖(α · ∇)u‖Hs2 (Ω;C4) + ε.

(2.68)

Noticing that (2.68) holds for arbitrary small ε > 0 finishes the proof.

Theorem 2.36. Assume that Ω ⊂ R3 is a Lipschitz domain with boundary Σ and fix
an arbitrary 1 ≥ ε > 0. Then, the restriction of the boundary trace operator defined in
Theorem 2.25 to the space Hs,s−1+ε

α (Ω), originally considered for s ∈
(

1
2
, 3

2

)
, induces a

well-defined linear continuous operator

tΣ : Hs,s−1+ε
α (Ω) −→ Hs−1/2(Σ;C4) ∀s ∈

[
1

2
,
3

2

]
(2.69)

which continues to be compatible with the trace operator tΣ defined in Theorem 2.25,
when s ∈

(
1
2
, 3

2

)
. Thus, the defined Dirichlet trace operator enjoys the following prop-

erties:
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(i) The Dirichlet boundary operator in (2.69) is compatible with the pointwise non-
tangential trace in the sense that: if u ∈ Hs,s−1+ε

α (Ω) for some s ∈
[

1
2
, 3

2

]
and

ε > 0, and if u|n.t.Σ exists σ-a.e. on Σ, then

u|n.t.Σ = tΣu ∈ Hs−1/2(Σ;C4). (2.70)

(ii) The Dirichlet boundary trace operator tΣ in (2.69) is the unique extension by
continuity and density of the mapping D(Ω;C4) 3 f 7→ f |Σ.

(iii) For each s ∈
[

1
2
, 3

2

]
and 1 ≥ ε > 0 the Dirichlet boundary trace operator satisfies

tΣ(wu) = (w|Σ)tΣu at σ-a.e. point on Σ (2.71)

for all u ∈ Hs,s−1+ε
α (Ω) and all w ∈ D(Ω) or w ∈ D(Ω;C4 × C4).

Proof. All claims follow directly from combining Theorem 2.29, Theorem 2.34 and
Lemma 2.35.

Corollary 2.37. Let Ω ⊂ R3 be a Lipschitz domain with boundary Σ and ν be the
unit outward normal vector of Ω. Then,

((α · ν)tΣu, tΣv)L2(Σ;C4) = ((α · ∇)u, v)L2(Ω;C4) + (u, (α · ∇)v)L2(Ω;C4) (2.72)

for all u, v ∈ H1/2,0
α (Ω).

Proof. The divergence theorem and product rule show the statement for u, v ∈ D(Ω;C4).

Since D(Ω;C4) is densely contained in H
1/2,0
α (Ω) by Theorem 2.34, the statement also

holds for u, v ∈ H1/2,0
α (Ω) by continuity of the scalar product and the boundary trace

operator tΣ.

Corollary 2.38. Let Ω ⊂ R3 be a Lipschitz domain with boundary Σ and let us assume
u ∈ H1/2,0

α (Ω). If tΣu = 0, then u ∈ H1
0 (Ω;C4).

Proof. We choose u ∈ H1/2,0
α (Ω) which satisfies tΣu = 0 and denote with tilde the zero

extensions of the respective functions. Applying Corollary 2.37 gives us(
˜(α · ∇)u, v

)
L2(R3;C4)

+ (ũ, (α · ∇)v)L2(R3;C4)

= ((α · ∇)u, v)L2(Ω;C4) + (u, (α · ∇)v)L2(Ω;C4) = ((α · ν)tΣu, tΣv)L2(Σ;C4)

= 0 ∀v ∈ D(R3;C4).

(2.73)

Therefore, (α ·∇)ũ = ˜(α · ∇)u ∈ L2(R3;C4) which implies ũ ∈ H1(R3;C4), cf. Lemma
2.33. Thus, u ∈ H1(Ω;C4) and since tΣu = 0, [28, Theorem 3.40] shows u ∈ H1

0 (Ω;C4).





3 Integral Operators

In this chapter we treat integral operators with singular kernels. At first, we consider
intgeral operators on Rn−1 and subsets of Rn−1. Afterwards, we use the obtained
results in order to consider integral operators on the boundary of Lipschitz domains.
Before we start with those two topics, we state a general helpful theorem, often referred
to as the Schur test.

Theorem 3.1. Let (X,A, µ) and (Y,B, ν) be complete and σ-finite measure spaces.
Moreover, we assume that t = t1t2, where t, t1 and t2 are µ⊗ ν-measurable functions.
If the two conditions∫

X

|t1(x, y)|2 dµ(x) ≤ γ1 <∞ ν-a.e. and

∫
Y

|t2(x, y)|2 dν(y) ≤ γ2 <∞ µ-a.e. (3.1)

are fulfilled, then the integral

(Tf)(x) :=

∫
Y

t(x, y)f(y) dν(y) exists for µ-a.e. x ∈ X and f ∈ L2(Y, ν). (3.2)

Furthermore, T is a bounded linear operator from L2(Y, ν) to L2(X,µ) with
‖T‖L2(Y,ν)→L2(X,µ) ≤

√
γ1γ2.

Proof. Let us choose f ∈ L2(Y, ν). Our goal is to prove the estimate∫
X

(∫
Y

|t(x, y)| |f(y)| dν(y)

)2

dµ(x) ≤ γ1γ2‖f‖2
L2(Y,ν). (3.3)

Then, the rest is a consequence of Fubini, c.f. [17, Theorem 2.4]. We start by estimat-
ing (∫

Y

|t(x, y)| |f(y)| dν(y)

)2

≤
(∫

Y

|t2(x, y)| |t1(x, y)| |f(y)| dν(y)

)2

≤
∫
Y

|t2(x, y)|2 dν(y)

∫
Y

|t1(x, y)|2 |f(y)|2 dν(y)

≤ γ2

∫
Y

|t1(x, y)|2 |f(y)|2 dν(y) for µ-a.e. x ∈ X.

(3.4)

39
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We use (3.4) and apply Fubini in order to obtain∫
X

(∫
Y

|t(x, y)| |f(y)| dν(y)

)2

dµ(x) ≤ γ2

∫
X

∫
Y

|t1(x, y)|2 |f(y)|2 dν(y) dµ(x)

= γ2

∫
Y

(∫
X

|t1(x, y)|2 dµ(x)

)
|f(y)|2 dν(y)

≤ γ1γ2

∫
Y

|f(y)|2 dν(y).

(3.5)

3.1 Integral Operators in Rn−1

The groundwork for all results concerning integral operators in this thesis is layed in
the framework of integral operators in Rn−1. We start this essential section by defining
integral kernels and integral operators.

Definition 3.2. Let O ⊂ Rn−1 be open and k be a measurable function on O × O.
Then, we call k a kernel on O and define

(Kf)(x) :=

∫
O

k(x, y)f(y) dy for x ∈ O and f ∈ L2(O) (3.6)

if the integral exists.

The next theorem gives a sufficient condition under which Kf exists a.e. and K
defines a bounded operator. Before that, we introduce a notation which helps classify
singular kernels.

Definition 3.3. Let O ⊂ Rn−1 be open 0 < a ≤ n− 1 and k be a kernel on O. Then,
we call k a kernel of order a if

k(x, y) = A(x, y) |x− y|−a ∀x, y ∈ O ×O (3.7)

with A ∈ L∞(O ×O).

Theorem 3.4. We assume k to be a kernel of order a on O. If O is bounded and
a < n − 1, then the operator defined by (3.6) is well defined, linear, bounded and
compact.

Proof. We start with the well-definedness and boundedness. Therefore, we employ
Theorem 3.1 with t1 =

√
|k| and t2 = k√

|k|
. Let R > 0 such that R > diam(O).
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Then, we observe O ⊂ B(y,R) for all y ∈ O and by using spherical coordinates we
can estimate∫

O

|t1(x, y)|2 dx =

∫
O

|k(x, y)| dx ≤ ‖A‖L∞(O×O)

∫
O

|x− y|−a dx

≤ ‖A‖L∞(O×O)

∫
B(y,R)

|x− y|−a dx

≤ ‖A‖L∞(O×O)C

∫ R

0

rn−2−a dr

≤ ‖A‖L∞(O×O)C
Rn−1−a

n− 1− a
<∞ ∀y ∈ O.

(3.8)

Now, it is obvious that the same holds for t2. Hence, K : L2(O) → L2(O) is well
defined and bounded. The compactness follows from [20, (3.11.) Proposition].

This is a satisfying result for the cases a < n− 1. However, later on in this thesis we
also have to deal with integral kernels of order n− 1. Thus, we must investigate these
types of integrals.

Definition 3.5. Let k be a kernel of the form as in (3.7). For ε > 0 we introduce the
cut-off kernel

kε(x, y) := k(x, y)1{z∈Rn−1:|z|>ε}(x− y). (3.9)

The definition shows that kε has no singularities and therefore induces a well-defined
linear bounded operator Kε. Moreover, we set

(K̂f)(x) := sup
ε>0
|(Kεf)(x)| for f ∈ L2(O) and ∀x ∈ O. (3.10)

Theorem 3.6. Let F : Rn−1 → C as well as g : Rn−1 → R be Lipschitz continuous
functions and k have the special form

k(x, y) =
F (x)− F (y)

(|x− y|2 + (g(x)− g(y))2)n/2
. (3.11)

Then,
(Kf)(x) := lim

ε↘0
(Kεf)(x) (3.12)

exists a.e. on Rn−1 and there exists a constant C > 0 independent of F such that
‖K‖L2(Rn−1)→L2(Rn−1) ≤ C‖∇F‖L∞(Rn−1;Cn−1).

Proof. Theoreme IX and Theoreme XI in [14] show

(a) limε↘0(Kεf)(x) = (Kf)(x) exists for a.e. x ∈ Rn−1,

(b) K is a bounded operator in L2(Rn−1) and
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(c)
∥∥∥K̂f∥∥∥

L2(Rn−1)
≤ C‖f‖L2(Rn−1) for f ∈ L2(Rn−1).

Thus, it remains to prove the norm estimate. In order to prove the statement, we
proceed in the same manner as in [19, Lemma 1.1] via the method of rotations. Let
us fix f ∈ L2(Rn−1) and ε > 0. We see

(Kεf)(x) =

∫
|x−z|>ε

k(x, z)f(z) dz =

∫
|z|>ε

k(x, x+ z)f(x+ z) dz

=
1

2

∫
|z|>ε

(k(x, x+ z)f(x+ z) + k(x, x− z)f(x− z)) dz

(3.13)

for x ∈ Rn−1. Changing to spherical coordinates yields

(Kεf)(x)

=

∫
∂B(0,1)

∫ ∞
ε

1

2
(k(x, x+ rw)f(x+ rw) + k(x, x− rw)f(x− rw))rn−2 dr︸ ︷︷ ︸

=:(Kw
ε f)(x)

dθ(w),

(3.14)

where θ denotes the surface measure of the (n − 2)-dimensional sphere. For a fixed
w we can choose v1, v2, . . . , vn−2 such that w, v1, v2, . . . , vn−2 is an orthogonal basis of
Rn−1. Moreover, we can write x ∈ Rn−1 in the form

x = tw + s1v1 + · · ·+ sn−2vn−2︸ ︷︷ ︸
v

with t, s1, s2, . . . sn−2 ∈ (−∞,∞). (3.15)

Next, we observe

(Kw
ε f)(x) =

1

2

∫ ∞
ε

(k(tw + v, (t+ r)w + v)f((t+ r)w + v)

+ k(tw + v, (t− r)w + v)f((t− r)w + v))rn−2 dr

=
1

2

∫ ∞
t+ε

k(tw + v, rw + v)f(rw + v)(r − t)n−2 dr

+
1

2

∫ t−ε

−∞
k(tw + v, rw + v)f(rw + v)(t− r)n−2 dr

=

∫
|t−r|>ε

F (tw + v)− F (rw + v)(
1 +

(
g(tw+v)−g(rw+v)

t−r

)2
)n/2 f(rw + v)

(t− r)2
dr.

(3.16)

Let (Kw,v
ε f)(t) := (Kw

ε f)(tw + v). Then, [14, Lemme 4.] and [15, Chapitre IV,
Proposition 3.] show

(a) limε↘0(Kw,v
ε f)(t) = (Kw,vf)(t) exists for a.e. t ∈ R,
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(b) Kw,v is a bounded operator in L2(R) with ‖Kw,v‖L2(R)→L2(R) ≤ C‖∇F‖L∞(Rn−1;Cn−1)

and

(c)
∥∥∥K̂w,vh

∥∥∥
L2(R)

≤ C‖h‖L2(R)

(
1 + ‖∇F‖L∞(Rn−1;Cn−1)

)
for h ∈ L2(R),

where C > 0 is independent of F , w and v. With these properties in mind, we apply
Fubini, the dominated convergence theorem and a change of coordinates in order to
get

‖Kf‖2
L2(Rn−1) = lim

ε↘0
‖Kεf‖2

L2(Rn−1) = lim
ε↘0

∫
Rn−1

|Kεf(x)|2 dx

= lim
ε↘0

∫
Rn−1

∣∣∣∣∫
|x−z|>ε

k(x, z)f(z) dz

∣∣∣∣2 dx
= lim

ε↘0

1

2

∫
Rn−1

∣∣∣∣∫
∂B(0,1)

Kw
ε (x) dθ(w)

∣∣∣∣2 dx
≤ C lim

ε↘0

∫
Rn−1

∫
∂B(0,1)

|Kw
ε (x)|2 dθ(w) dx

= C lim
ε↘0

∫
∂B(0,1)

∫
Rn−2

∫ ∞
−∞
|Kw,v

ε (t)|2 dt ds dθ(w) (3.17)

= C

∫
∂B(0,1)

∫
Rn−2

lim
ε↘0
‖Kw,v

ε f‖2
L2(R) ds dθ(w)

=

∫
∂B(0,1)

∫
Rn−2

‖Kw,vf‖2
L2(R) ds dθ(w)

≤ C‖∇F‖2
L∞(Rn−1;Cn−1)

∫
∂B(0,1)

∫
Rn−1

∥∥∥∥∥f
(

(·)w +
n−2∑
l=1

slvl

)∥∥∥∥∥
2

L2(R)

ds dθ(w)

= C‖∇F‖2
L∞(Rn−1;Cn−1)

∫
∂B(0,1)

‖f‖2
L2(Rn−1) dθ(w)

≤ C‖∇F‖2
L∞(Rn−1;Cn−1)‖f‖

2
L2(Rn−1).

We apply the previous theorem in Section 3.3 on integral operators on boundaries of
Lipschitz domains. In order to succeed with this approach, we need Theorem 3.7. In
view of Theorem 3.7 we call a function Υ : Rn → R positive homogeneous of degree
r ∈ R if Υ(tx) = trΥ(x) for all t > 0 and x ∈ Rn \ {0}.

Theorem 3.7. Let k be the kernel from (3.11), j : Rn−1 → R be a Lipschitz continuous

function and f ∈ L2(Rn−1). Moreover, we assume k̃ : Rn → R to be a function which
is antisymmetric, differentiable, positive homogeneous of degree −n+ 1 and satisfies

k(x, y) = k̃

((
x− y

g(x)− g(y)

))
∀x 6= y ∈ Rn−1. (3.18)
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Then, if

(K ′εf)(x) =

∫
|x−y|2+(j(x)−j(y))2>ε2

k(x, y)f(y) dy ∀x ∈ Rn−1, (3.19)

there holds

(Kf)(x) = lim
ε↘0

(Kεf)(x) = lim
ε↘0

(K ′εf)(x) =: (K ′f)(x) for a.e. x ∈ Rn−1, (3.20)

with Kε as defined in Definition 3.5.

Proof. The ideas of the proof can be found in [30, Appendix C]. First, we prove the
statement for f ∈ D(Rn−1). Due to density arguments, we drop the assumption at the
end. Thus, we choose f ∈ D(Rn−1) and x ∈ Rn−1 such that (Kf)(x) exists. Since f
is Lipschitz continuous, we see that k(x, y)(f(y)− f(x)) has order n− 2 and therefore

lim
ε↘0

∫
R>|x−y|>ε

k(x, y)(f(y)− f(x)) dy

= lim
ε↘0

∫
|x−y|2+(j(x)−j(y))2>ε2

R>|x−y|

k(x, y)(f(y)− f(x)) dy

=

∫
R>|x−y|

k(x, y)(f(y)− f(x)) dy

(3.21)

for a fixed R > 0. Hence, it suffices to show

lim
ε↘0

∫
R>|x−y|>ε

k(x, y) dy = lim
ε↘0

∫
|x−y|2+(j(x)−j(y))2>ε2

R>|x−y|

k(x, y) dy. (3.22)

The functions j and g are Lipschitz continuous, therefore due to Rademacher’s theo-
rem, c.f. [18, Chapter 3, Theorem 2], j and g are a.e. differentiable in Rn−1. Since we
only prove equality a.e., we can assume that g and j are differentiable at x. Thus,

j(y) = j(x) +∇j(x) · (y − x) + o(|y − x|) and

g(y) = g(x) +∇g(x) · (y − x) + o(|y − x|)
(3.23)

with limε↘0 o(ε)/ε = 0. If

y ∈ Aε =
{
y : |x− y|2 + (j(x)− j(y))2 > ε2

}
\
{
y : |x− y|2 + (∇j(x) · (x− y))2 > ε2

}
,

(3.24)

then y ∈ B(x, ε). Moreover, we observe for y ∈ Aε

|x− y|2 + (j(x)− j(y))2 = |x− y|2 + (∇j(x) · (x− y))2 + o(ε2) > ε2

as well as |x− y|2 + (∇j(x) · (x− y))2 ≤ ε2.
(3.25)
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Therefore, Aε ⊂
{
y : ε−o(ε)√

1+(∇j(x)·w(y))2
< r(y) ≤ ε√

1+(∇j(x)·w(y))2

}
with the spherical co-

ordinates r(y) := |x− y| and w(y) := x−y
|x−y| . We are able to estimate the Lebesgue

measure of Aε by

|Aε| ≤
∫
∂B(0,1)

∫ ε√
1+(∇j(x)·w(y))2

ε−o(ε)√
1+(∇j(x)·w(y))2

rn−2 dr dθ(w)

=

∫
∂B(0,1)

εn−1 − (ε− o(ε))n−1

(n− 1) (1 + (∇j(x) · w(y))2)(n−1)/2
dθ(w)

=

∫
∂B(0,1)

o(εn−1) dθ(w) ≤ o(εn−1).

(3.26)

A similar argument yields

y ∈ Bε :=
{
y : |x− y|2 + (∇j(x) · (x− y))2 > ε2

}
\
{
y : |x− y|2 + (j(x)− j(y))2 > ε2

}
= o(εn−1).

(3.27)

Thus, |Aε4Bε| = o(εn−1) and |k(x, y)| ≤ C |x− y|−n+1 imply

lim
ε↘0

∫
|x−y|2+(j(x)−j(y))2>ε2

R>|x−y|

k(x, y) dy −
∫
|x−y|2+(∇j(x)·(x−y))2>ε2

R>|x−y|

k(x, y) dy

 = 0. (3.28)

Let

Cε :=
{
y : |x− y|2 + (∇j(x) · (x− y))2 > ε2

}
. (3.29)

Then, Rn−1 \B(x, ε) ⊂ Cε and

Cε \
(
Rn−1 \B(x, ε)

)
= Cε ∩B(x, ε) ⊂

{
y :

ε

1 + Lj
≤ |x− y| ≤ ε

}
, (3.30)

where Lj ≥ 0 denotes the Lipschitz constant of j. We apply the antisymmetry and
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the positive homogeneity of k̃ in order to obtain∫
Cε∩B(x,ε)

k(x, y) dy =

∫
Cε∩B(x,ε)

k̃

((
x− y

g(x)− g(y)

))
dy

≤
∫

ε
1+Lj

≤|x−y|≤ε
k̃

((
x− y

g(x)− g(y)

))
dy

=
1

2

∫
ε

1+Lj
≤|z|≤ε

k̃

((
z

g(x)− g(x+ z)

))
dz

+

∫
ε

1+Lj
≤|z|≤ε

k̃

((
−z

g(x)− g(x− z)

))
dz

 (3.31)

=
1

2

∫
ε

1+Lj
≤|z|≤ε

k̃

((
z

g(x)− g(x+ z)

))
− k̃

((
z

−g(x) + g(x− z)

))
dz

≤ Cε−n+1

∫
ε

1+Lj
≤|z|≤ε

∣∣∣∣∣k̃
((

z
|z|

g(x)−g(x+z)
|z|

))
− k̃

((
z
|z|

−g(x)+g(x−z)
|z|

))∣∣∣∣∣ dz
≤ Cε−n+1 sup

|p|=1,s∈R

∣∣∣∣∇k̃((ps
))∣∣∣∣ ∫

ε
1+Lj

≤|z|≤ε

|g(x)− g(x+ z) + g(x)− g(x− z)|
|z|

dz

= Cε−n+1

∫
ε

1+Lj
≤|z|≤ε

|∇g(x) · z +∇g(x) · (−z) + o(|z|)|
|z|

dz ≤ o(ε)

ε

ε→0→ 0.

Combining the results (3.28) and (3.31) yields

lim
ε↘0

∫
|x−y|2+(j(x)−j(y))2>ε2

R>|x−y|

k(x, y) dy = lim
ε↘0

∫
|x−y|2+(∇j(x)·(x−y))2>ε2

R>|x−y|

k(x, y) dy

= lim
ε↘0

∫
R>|x−y|>ε

k(x, y) dy.

(3.32)

Hence, the statement holds for f ∈ D(Rn−1).
Now, let us drop the assumption f ∈ D(Rn−1). It is easy to see{

y : |x− y|2 + (j(x)− j(y))2 > ε2
}

=

{
y : |x− y|2 > ε2

1 + L2
j

}
\
{
y : |x− y|2 > ε2

1 + L2
j

, |x− y|2 + (j(x)− j(y))2 ≤ ε2

}
∀x ∈ Rn−1.

(3.33)

Therefore,

|(K ′εf)(x)| ≤
∣∣∣∣(K ε√

1+L2
j

f)(x)

∣∣∣∣+ LF ε
−n+1

∫
|x−y|≤ε

|f(y)| dy (3.34)
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for all x ∈ Rn−1 with LF denoting the Lipschitz constant of F , implying

(K̂ ′f)(x) ≤ (K̂f)(x) + LF |B(0, 1)| (Mf)(x) ∀x ∈ Rn−1 (3.35)

with the maximal operator defined by (Mf)(x) := supε>0
1

|B(x,ε)|

∫
|x−y|≤ε |f(y)| dy for

x ∈ Rn−1. We know from [37, Chapter 1, Theorem 1.] and from the proof of Theorem

3.6 that M and K̂ define bounded operators in L2(Rn−1), respectively. Due to the den-

sity of D(Rn−1) in L2(Rn−1), the boundedness of M,K and K̂, (a) from the beginning
of the proof of Theorem 3.6 and [17, Chapter 6, 2.7 Korollar], there exists a sequence
(fl)l∈N of smooth functions and a measurable set Ef which fulfil the conditions

(a) |Rn−1 \ Ef | = 0,

(b) (M(f − fl))(x)
l→∞−−−→ 0 ∀x ∈ Ef ,

(c) (K̂(f − fl))(x)
l→∞−−−→ 0 ∀x ∈ Ef ,

(d) (K(f − fl))(x)
l→∞−−−→ 0 ∀x ∈ Ef and

(e) (Kεfl)(x)
ε→0−−→ (Kfl)(x) ∀x ∈ Ef , l ∈ N.

Let us fix x ∈ Ef and η > 0. We use the stated properties (a)-(e) to conclude the
existence of a jη ∈ N such that

LF |B(0, 1)| (M(f − flη))(x) ≤ η

4
, (K̂(f − flη))(x) ≤ η

4
and

(K(f − flη))(x) ≤ η

4
.

(3.36)

Furthermore, we choose εη > 0 such that∣∣(K ′εflη)(x)− (Kflη)(x)
∣∣ ≤ η

4
∀ε ≤ εη. (3.37)

Employing the inequalities (3.35), (3.36) and (3.37) gives us

|(K ′εf)(x)− (Kf)(x)|
≤
∣∣(K ′ε(f − flη)(x)

∣∣+
∣∣(K ′εflη)(x)− (Kflη)(x)

∣∣+
∣∣(K(f − flη))(x)

∣∣
≤ LF |B(0, 1)|

∣∣M(f − flη)(x)
∣∣+
∣∣∣K̂(f − flη)(x)

∣∣∣
+
∣∣(K ′εflη)(x)− (Kflη)(x)

∣∣+
∣∣(K(f − flη))(x)

∣∣
≤ η

4
+
η

4
+
η

4
+
η

4
= η.

(3.38)

This shows (3.20) holds true for all f ∈ L2(Rn−1).
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Corollary 3.8. Let α be defined as in Definition 2.30, j : R2 → R be a Lipschitz
continuous function, B ∈ R3×3 an orthogonal matrix and the integral kernel kα,B be

kα,B(x, y) :=

(
α ·B

(
x− y

j(x)− j(y)

))
(
|x− y|2 + (j(x)− j(y))2

)3/2
∀x 6= y ∈ R2. (3.39)

Then, the induced integral operator Kα,B, which is defined analogously to the scalar-
valued case, see Definition 3.5 and (3.12), is a bounded linear operator mapping from
L2(R2;C4) to L2(R2;C4) with ‖Kα,B‖L2(R2;C4)→L2(R2;C4) ≤ C‖∇j‖L∞(R2;R2) for a C > 0

independent of j. Moreover, there holds K ′α,B = Kα,B, i.e.

lim
ε↘0

∫
|x−y|2+(j(x)−j(y))2>ε2

kα,B(x, y)f(y) dy = lim
ε↘0

∫
|x−y|>ε

kα,B(x, y)f(y) dy (3.40)

for a.e. x ∈ R2 and for all f ∈ L2(R2;C4).

Proof. The proof follows by applying Theorem 3.6 and Theorem 3.7 elementwise.

The next theorem states a crucial compactness result regarding singular integrals con-
nected to Dirac operators and helps us prove the self-adjointness of certain Dirac
operators. The proof is inspired by [19, Theorem 1.2. (c)] and [2, Remark 3.6.].

Corollary 3.9. We make the same assumptions as in the previous corollary. Addi-

tionally, let j ∈ C1
0(R2) and n(z) :=

(
−∇j(z)

1

)
for z ∈ R2. Then, for all R > 0 the

operator induced by the kernel

a(x, y) = (α ·Bn(x))kα,B(x, y) + kα,B(x, y)(α ·Bn(y)) ∀x 6= y ∈ R2 (3.41)

is a bounded and compact linear operator in L2(B(0, R);C4).

Proof. Let R > 0. The boundedness is trivial after applying Corollary 3.8. Simple
algebraic calculations lead us to the identity

(α · v)(α · w) = −(α · v)(α · w) + 2(v · w)I4 ∀v, w ∈ R3. (3.42)

With (3.42) and the orthogonality of B in mind, we can write the kernel of A in the
following way

a(x, y) =−

(
α ·B

(
x− y

j(x)− j(y)

))
|x− y|2 + (j(x)− j(y))2)3/2

(α ·B(n(x)− n(y)))

+ 2
j(x)− j(y)−∇j(x) · (x− y)

(|x− y|2 + (j(x)− j(y)2)3/2
I4 ∀x 6= y ∈ R2.

(3.43)
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Now, let (jl)l∈N be a sequence of functions with jl ∈ D(R2) and

jl(x)
l→∞−→ j(x) and ∇jl(x)

l→∞−→ ∇j(x) uniformly for all x ∈ R2. (3.44)

We define

klα,B(x, y) :=

(
α ·B

(
x− y

jl(x)− jl(y)

))
|x− y|2 + (j(x)− j(y))2)3/2

∀x 6= y ∈ R2

and nl(x) = B

(
−∇jl(x)

1

)
∀x ∈ R2

(3.45)

as well as

al(x, y) :=−

(
α ·B

(
x− y

jl(x)− jl(y)

))
|x− y|2 + (j(x)− j(y))2)3/2

(α ·B(nl(x)− nl(y)))

+ 2
jl(x)− jl(y)−∇jl(x) · (x− y)

(|y − y|2 + (j(x)− j(y)2)3/2
I4 ∀x 6= y ∈ R2.

(3.46)

Due to jl ∈ D(R2), the al’s have order one. Using Theorem 3.4 elementwise shows that
the operator Al defined by al is compact in L2(B(0, R);C4). Furthermore, Theorem 3.6
implies

∥∥K l
α,B −Kα,B

∥∥
L2(R2;C4)→L2(R2;C4)

≤ C‖∇(jl − j)‖L∞(R2;R2). Since ∇jl → ∇j
uniformly, also nl → n uniformly. These considerations lead to

‖A− Al‖L2(R2;C4)→L2(R2;C4)

=
∥∥(α · n)Kα,B +Kα,B(α · n)− (α · nl)K l

α,B −K l
α,B(α · nl)

∥∥
L2(R2;C4)→L2(R2;C4)

≤ C
(

(‖nl‖L∞(R2,R3)

∥∥Kα,B −K l
α,B

∥∥
L2(R2;C4)→L2(R2;C4)

+‖n− nl‖L∞(R2;R3)‖Kα,B‖L2(R2;C4)→L2(R2;C4)

)
≤ C‖∇(j − jl)‖L∞(R2,R2)

l→∞−→ 0.

(3.47)

Hence, also ‖A− Al‖L2(O;C4)→L2(O;C4)

l→∞−→ 0 which proves the compactness of A in

L2(B(0, R);C4).

3.2 Integral Operators on Lipschitz Boundaries

Before we can investigate integral operators corresponding to Drirac operators, we
need to transfer the results of the previous section to Lipschitz boundaries. Theorem
3.10 helps us when making this transfer. In advance, we have to recall and fix some
notations.
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From now on Ω = Ω+ ⊂ Rn always denotes a Lipschitz domain with boundary Σ.
Moreover, we set Ω− := Rn \ Ω+. We recall some notations from Section 2.2. The

open bounded sets W1,W2, . . .Wp are chosen such that Σ ⊂
p⋃
l=1

Wl. Furthermore,

for l = 1, 2, . . . , p there holds Ω ∩ Wl = Ωl ∩ Wl, where Ωl is a set which can be
transformed by a rigid motion κl into a Lipschitz hypograph with boundary function
ζl, i.e. κl(Ωl) is a Lipschitz hypograph and κl consists of a translation and a rotation.
From the equation above and by setting Σl = ∂Ωl we also have Σl ∩Wl = Σl ∩Σ. The
functions ϕ1, ϕ2, . . . ϕp are a partition of unity for Σ subordinate to {W1,W2, . . . ,Wp}.
For f ∈ L2(Σ) we define fl,ζl = (fl)ζl ∈ L2(Rn−1) analogously to (2.29) and (2.31).

Theorem 3.10. Let Σ ⊂ Rn be a boundary of a Lipschitz domain. Furthermore, let
ζ1, ζ2, . . . , ζp be the boundary functions and ϕ1, ϕ2, . . . , ϕp be the partition of unity for
Σ, as discussed above. Moreover, we assume κl to be the map which transforms Ωl

to the Lipschitz hypograph κl(Ωl), r ∈ N and R > 0 to be chosen in such a way that
{x′ ∈ Rn−1 : ((x′)T , ζl(x

′))T ∈ κl(Wl)} ⊂ B(0, R) for l = 1, 2, . . . , p. Then, for a
measurable function k : Rn × Rn → Cr×r which is continuous for all x 6= y ∈ Rn the
following assertions hold:

(i) If for l = 1, 2, . . . p

(Klf)(x′)

:= lim
ε↘0

∫
|x′−y′|2+(ζl(x

′)−ζl(y′))2>ε2

|y′|<R

k

(
κ−1
l

(
x′

ζl(x
′)

)
, κ−1

l

(
y′

ζl(y
′)

))
f(y′) dy′ (3.48)

exists for a.e. x′ in B(0, R) and for all f ∈ L2(B(0, R);Cr), then

(Kf)(x) := lim
ε↘0

∫
|x−y|>ε

k(x, y)f(y) dσ(y) exists for σ-a.e. x ∈ Σ (3.49)

for all f ∈ L2(Σ;Cr).

(ii) If assertion (i) is satisfied and Kl is bounded in L2(B(0, R),Cr) for l = 1, 2, . . . p,
then K is bounded in L2(Σ;Cr).

(iii) If assertion (i) is satisfied and Kl is compact in L2(B(0, R),Cr) for l = 1, 2, . . . p,
then K is compact in L2(Σ;Cr).

Proof. We start with assertion (i) by fixing f ∈ L2(Σ;Cr). Via partition of unity we
can write

lim
ε↘0

∫
|x−y|>ε

k(x, y)f(y) dσ(y) =

p∑
l=1

lim
ε↘0

∫
|x−y|>ε
y∈Σl∩Wl

k(x, y)fl(y) dσ(y) for x ∈ Σ (3.50)
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if the integrals on the right-hand side exist. Let us fix an arbitrary l ∈ {1, 2, . . . k}.
For x ∈ Σ \ Σl we can bound k(x, y)fl(y) with bl |fl(y)|, where

bl := sup
(x,y)∈suppϕl×(Σ∩WC

l )

|k(x, y)| <∞. (3.51)

Thus, for all x ∈ Σ \ Σl the integral as well as the limit

lim
ε↘0

∫
|x−y|>ε
y∈Σl∩Wl

k(x, y)fl(y) dσ(y) =

∫
y∈Σl∩Wl

k(x, y)fl(y) dσ(y) (3.52)

exist. Now, let us assume x ∈ Σl. In this situation we can represent x through

x = x(x′) = κ−1
l

((
x′

ζl(x
′)

))
with x′ ∈ Rn−1. We use the integral formula (1.23) in

order to obtain for all ε > 0∫
|x−y|>ε
y∈Σl∩Wl

k(x, y)fl(y) dσ(y) =

∫
|κl(x)−y|>ε
y∈κl(Σl∩Wl)

k(x, κ−1
l (y))fl(κ

−1
l (y)) dσ(y)

=

∫
|x′−y′|2+(ζl(x

′)−ζl(y′))2>ε2

|y′|<R

k (x(x′), y(y′)) fl,ζl(y
′)

√
|∇ζl(y′)|2 + 1 dy′.

(3.53)

We notice fl,ζl

√
|∇ζl(·)|2 + 1 ∈ L2(B(0, R);C4). Taking the limit and applying as-

sumption (i) shows us that (3.53) exists for a.e. x′ ∈ B(0, R). Hence, (3.52) also exists
for σ-a.e x = x(x′) ∈ Σl ∩Wl. Combining these considerations for all l ∈ {1, 2, . . . , p}
yields item (i).
Next, we prove assertion (ii) and (iii). We can do this simultaneously. Again, we
choose an arbitrary l ∈ {1, 2, . . . , p} and define Kl and Kl,j through

(Klf)(x) := lim
ε↘0

∫
|x−y|>ε
y∈Σl∩Wl

k(x, y)fl(y) dσ(y) for σ-a.e. x ∈ Σ (3.54)

Kl,jf :=

{
(Klf)|Σl∩Wl

for l = j

(Klf)|(Σj\Σl)∩Σ for l 6= j
. (3.55)

If we can proveKl,j is bounded or compact, thenK is bounded or compact, respectively.
Let us start with j = l. We introduce two further operators, specifically

Tl : L2(Σ;Cr)→ L2(B(0, R);Cr)

f 7→ fl,ζl

√
|∇ζl(·)|2 + 1

(3.56)

and

Ql : L2(B(0, R);Cr)→ L2(Σl ∩Wl;Cr)

f 7→ f




(κl(·))1

(κl(·))2

. . .
(κl(·))n−1


 .

(3.57)
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These operators are bounded. Moreover, by looking at (3.53) we notice

Kl,l = QlKlTl. (3.58)

This shows that the boundedness or compactness of Kl,l follows from the boundedness
or compactness of Kl, respectively. We turn to the case j 6= l. Therefore, we assume

x ∈ (Σj \ Σl) ∩ Σ ⊂ Σj ∩Wj. Then, x = x(x′) = κ−1
j

((
x′

ζj(x
′)

))
with x′ ∈ B(0, R).

With this in mind, we can write

(Klf)(x(x′))

= lim
ε↘0

∫
|x(x′)−y(y′)|>ε

|y′|<R

χ(Σj\Σl)∩Σ)(x(x′))k(x(x′), y(y′))χsuppϕl(y(y′))︸ ︷︷ ︸
:=k′l,j(x

′,y′)

fl,ζl(y
′)

√
|∇ζl(x′)|2 + 1 dy′.

(3.59)

A similar argumentation as in proof of (i) shows that k′l,j is bounded on the set

B(0, R)×B(0, R). Thus, Theorem 3.4 proves that the operator

K ′l,j : L2(B(0, R);Cr)→ L2(B(0, R);Cr) (3.60)

induced by k′l,j is bounded and compact. Furthermore, the limit in (3.59) exists and
equals (K ′l,jTlf)(x(x̃′)). The operator Kl,j can be represented as

Kl,jf = Pl,jK
′
l,jTlf. (3.61)

Hereby, Pl,j is the bounded operator

Pl,j : L2(B(0, R);Cr)→ L2((Σj \ Σl) ∩ Σ;Cr)

f 7→ f




(κj(·))1

(κj(·))2

. . .
(κj(·))n−1


 .

(3.62)

Therefore, Kl,j is compact for j 6= l.

3.3 Integral Operators Corresponding to the Dirac

Operator

After this preliminary work, we are ready to treat those integral operators which are
important with respect to Dirac operators. Hereby, we work with the fundamental
solution of the equation

− i(α · ∇) + (mβ − λ)I4 = δ0I4, (3.63)
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where m ∈ R and λ ∈ C. We denote the fundamental solution Gλ. The explicit form
is given by

Gλ(z) =

(
λI4 +mβ +

(
1− i

√
λ2 −m2 |z|

) i(α · z)

|z|2

)
ei
√
λ2−m2|z|

4π |z|
(3.64)

for z ∈ R3 \ {0}. The formula (3.64) can be found in [38, eq. (1.263)].
We start with a simple theorem.

Theorem 3.11. Let λ ∈ C \ ((−∞,− |m|] ∪ [|m| ,∞)). The operator defined by

Gλ ∗ f for f ∈ L2(R3;C4) (3.65)

is a bounded linear operator in L2(R3;C4).

Proof. We prove this theorem by applying Theorem 3.1. In order to do so, let us
choose t1(x, y) = Gλ(x − y) |x− y| eµ2 |x−y| and t2(x, y) = 1

|x−y|e
−µ

2
|x−y|. Thereby, µ is

defined as µ := Im
√
λ2 −m2 > 0. We observe that there exits a constant C > 0 such

that

|Gλ(z)| ≤ C
1

|z|2
e−µ|z| ∀z 6= 0 ∈ R3. (3.66)

Rough estimations yield∫
R3

|t1(x, y)|2 dx ≤ C

∫
R3

|Gλ(x− y)|2 |x− y|2 eµ|x−y| dx

≤ C

∫
R3

e−µ|z|

|z|2
dz ≤ C

∫ ∞
0

e−µr dr <∞.
(3.67)

The same holds for t2 which concludes the proof.

Next, we consider the convolution on Lipschitz boundaries.

Theorem 3.12. Let λ ∈ C \ ((−∞,− |m|] ∪ [|m| ,∞)) and Σ be the boundary of a
Lipschitz domain Ω ⊂ R3. The operators defined by

(Φλf)(x) :=

∫
Σ

Gλ(x− y)f(y) dσ(y) for a.e. x ∈ R3 and f ∈ L2(Σ;C4)

and (Φ∗λg)(x) :=

∫
R3

Gλ(x− y)g(y) dy for σ-a.e x ∈ Σ and g ∈ L2(R3;C4)

(3.68)

are bounded linear operators which map from L2(Σ;C4) to L2(R3;C4) and from L2(R3;C4)
to L2(Σ;C4), respectively. Moreover, Φ∗λ is the adjoint of Φλ.
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Proof. Again, we apply Theorem 3.1. We set t1(x, y) = Gλ(x − y) |x− y|3/4 eµ2 |x−y|
and t2(x, y) = 1

|x−y|3/4
e−

µ
2
|x−y| with µ = Im

√
λ2 −m2 > 0. As in (3.66), we find C > 0

such that

|Gλ(z)| ≤ C
1

|z|2
e−µ|z| ∀z 6= 0 ∈ R3. (3.69)

We compute ∫
R3

|t1(x, y)|2 dx ≤ C

∫
R3

|Gλ(x− y)|2 |x− y|3/2 e−µ|x−y| dx

≤ C

∫
R3

e−µ|z|

|z|5/2
dz ≤ C

∫ ∞
0

e−µr√
r
dr <∞.

(3.70)

We assume Σl, ζl and κl to be defined as in the beginning of this section and set

y(y′) = κ−1
l

((
y′

ζl(y
′)

))
for y′ ∈ R2. Then, we obtain

∫
Σ

|t2(x, y)|2 dσ(y) =

∫
Σ

e−µ|x−y|

|x− y|3/2
dσ(y) ≤

p∑
l=1

∫
Σl

e−µ|x−y|

|x− y|3/2
dσ(y)

≤
p∑
l=1

∫
R2

e−µ|x−y(y′)|

|x− y(y′)T |3/2
√

1 + |∇ζl(y′)|2 dy′

≤ C

∫ ∞
0

e−µr√
r
dr <∞.

(3.71)

Thus, the conditions of Theorem 3.1 are satisfied. This proves the existence and
boundedness of Φλ. For Φ∗λ this can be justified analogously by considering Gλ instead
of Gλ. It remains to prove the statement about the adjoint operator. Here, we apply
Fubini and see that Φ∗λ from (3.68) satisfies

(f,Φ∗λg)L2(Σ;C4) =

∫
Σ

(
f(x),

∫
R3

Gλ(x− y)g(y) dy

)
C4

dσ(x)

=

∫
R3

∫
Σ

(f(x), Gλ(x− y)g(y))C4 dσ(x) dy

=

∫
R3

∫
Σ

(Gλ(y − x)f(x), g(y))C4 dσ(x) dy

=

∫
R3

(∫
Σ

Gλ(y − x)f(x) dσ(x), g(y)

)
C4

dy

= (Φλf, g)L2(R3;C4)

(3.72)

for all f ∈ L2(Σ;C4) and g ∈ L2(R3;C4). Hence, Φ∗λ is the adjoint of Φλ.
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We are able to show an even stronger result. Namely, Φλ is also bounded as a mapping
from L2(Σ;C4) to H1/2(Ω+;C4) ⊕ H1/2(Ω−;C4). In order to prove this result, we
introduce the fundamental solution of the Helmholtz equation

ρr(z) :=
eir|z|

4π |z|
∀z ∈ R3 \ {0}, (3.73)

where r ∈ C.

Lemma 3.13. Let Ω ⊂ R3 be a bounded Lipschitz domain and r ∈ C. Then, the
single layer potential of the Helmholtz equation

Sr : L2(Σ) 7→ H3/2(Ω)

f → ρr ∗ f,
(3.74)

where ρr ∗ f is defined as

(ρr ∗ f)(x) :=

∫
Σ

ρr(x− y)f(y) dσ(y) ∀x ∈ Ω, (3.75)

is bounded.

Proof. Let f ∈ L2(Σ). There holds

(Srf)(x) =

∫
Σ

ρ0(x− y)f(y) dσ(y) +

∫
Σ

eir|x−y| − 1

4π |x− y|
f(y) dσ(y)

= (S0f)(x) +

∫
Σ

eir|x−y| − 1

4π |x− y|︸ ︷︷ ︸
=$(|x−y|)

f(y) dσ(y) ∀x ∈ Ω
(3.76)

with

$(t) :=
e−irt − 1

4πt
∀t ∈ R. (3.77)

The equation (2.127) in [21] states that S0 is a bounded mapping from L2(Σ) to
H3/2(Ω). We see $ ∈ C∞(R),

∇$(|z|) = $′(|z|) z
|z|

and

∇2$(|z|) = $′′(|z|)zz
T

|z|2
+$′(|z|)I3 |z|2 − zzT

|z|3
(3.78)

for all z ∈ R3 \ {0}. Applying the dominated convergence theorem yields

(∇(Sr−S0)f)(x) = (∇$(|·|)∗f)(x) and (∇2(Sr−S0)f)(x) = (∇2$(|·|)∗f)(x) (3.79)

for x ∈ Ω. Furthermore, (3.78) shows |∇$(|z|)| = O(1) and |∇2$(|z|)| = O(1/ |z|)
for z → 0. It is also easy to see that |$(|z|)| = O(1) for z → 0. Thus, using the
boundedness of Ω and standard considerations lead to ‖$(|·|) ∗ f‖H2(Ω) ≤ C‖f‖L2(Σ).
This proves the desired result.
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Lemma 3.14. Let Ω ⊂ Rn be a Lipschitz domain and Ω1 ⊂ Rn be an open set such
that Ω∩Ω1 is also a Lipschitz domain. Moreover, let ε > 0, F ⊂ F +B(0, ε) ⊂ Ω1 be
closed and s ≥ 0. If f ∈ L2(Ω) ∩ Hs(Ω ∩ Ω1) and supp f ⊆ F , then f ∈ Hs(Ω) and
there exists a C > 0 independent of f such that

‖f‖Hs(Ω) ≤ C‖f‖Hs(Ω∩Ω1). (3.80)

Proof. Due to [28, Theorem 3.6], there exists a function χε ∈ C∞(Rn) with the prop-
erties

χε(x) = 1 if x ∈ F,
0 ≤ χε(x) ≤ 1 and |∂aχε(x)| ≤ Cε−|a| if 0 ≤ dist(x, F ) < ε and a ∈ Nn

0 , (3.81)

χε(x) = 0 if dist(x, F ) ≥ ε.

To prove the statement of Lemma 3.14, it is sufficient to show the boundedness of

Mε : Hs(Ω ∩ Ω1)→ Hs(Ω)

u 7→ χεũ.
(3.82)

Here, ũ denotes the zero extension of u. At first, we assume s ∈ N0. Furthermore, let
u ∈ Hs(Ω ∩ Ω1) and

ga :=

{
∂a(uχε) on Ω ∩ Ω1

0 on Ω \ Ω1

(3.83)

for all mutltiindices a ∈ Nn
0 with |a|1 ≤ s. We observe (∂aχε)h ∈ D(Ω ∩ Ω1) for
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h ∈ D(Ω). Therefore, we obtain for all h ∈ D(Ω)∫
Ω

ga(x)h(x) dx =

∫
Ω∩Ω1

ga(x)h(x) dx =

∫
Ω∩Ω1

∂a(uχε)(x)h(x) dx

=
∑
b≤a

(
a

b

)∫
Ω∩Ω1

(∂bu)(x)(∂a−bχε)(x)h(x)) dx

=
∑
b≤a

(
a

b

)
(−1)|b|1

∫
Ω∩Ω1

u(x)∂b((∂a−bχε)h)(x) dx

=
∑
b≤a

∑
c≤b

(
a

b

)
(−1)|b|1

(
b

c

)∫
Ω∩Ω1

u(x)(∂a−cχε)(x)∂ch(x) dx (3.84)

=
∑
c≤a

∫
Ω∩Ω1

u(x)(∂a−cχε)(x)∂ch(x) dx
∑
c≤b≤a

(
a

b

)
(−1)|b|1

(
b

c

)
=
∑
c≤a

∫
Ω∩Ω1

u(x)(∂a−cχε)(x)∂ch(x) dx

(
a

c

)
(−1)|c|1

∑
c≤b≤a

(
a− c
b− c

)
(−1)|b−c|1

=
∑
c≤a

∫
Ω∩Ω1

u(x)(∂a−cχε)(x)∂ch(x) dx(−1)|c|1
(
a

c

) ∑
0≤b≤a−c

(
a− c
b

)
(−1)|b|1︸ ︷︷ ︸

=δa,c

= (−1)|a|1
∫

Ω∩Ω1

u(x)χε(x)(∂ah)(x)) dx = (−1)|a|1
∫

Ω

ũ(x)χε(x)(∂ah)(x)) dx.

Thus, ∂a(ũχε) = ga ∈ L2(Ω) and

‖∂a(ũχε)‖L2(Ω) = ‖∂a(uχε)‖L2(Ω∩Ω1) ≤ C‖u‖Hs(Ω∩Ω1). (3.85)

This shows the boundedness for s ∈ N0. Applying the interpolation theorem, see [28,
Theorem B.8], one can show the boundedness for s ≥ 0.

Theorem 3.15. Let Ω ⊂ R3 be a Lipschitz domain, λ ∈ C \ ((−∞,−m] ∪ [m,∞))
and Φλ be as defined in (3.68). Then, ran Φλ ⊂ H1/2(Ω+;C4)⊕H1/2(Ω−;C4) and

‖Φλf‖H1/2(Ω+;C4)⊕H1/2(Ω−;C4) ≤ C‖f‖L2(Σ;C4) ∀f ∈ L2(Σ;C4). (3.86)

Proof. We assume w.l.o.g. that Ω+ is bounded and Ω− is unbounded. In the first part
of the proof we show ‖Φλf‖H1/2(Ω+;C4) ≤ C‖f‖L2(Σ;C4) for all f ∈ L2(Σ;C4). Let us

choose f ∈ L2(Σ;C4) and set r =
√
λ2 −m2. We note

Gλ(z) = (−i(α·∇)+mβ+λI4)
ei
√
λ2−m2|z|

4π |z|
= (−i(α·∇)+mβ+λI4)ρr(z) ∀z ∈ R3\{0}.

(3.87)



58 3 Integral Operators

By applying the dominated convergence theorem we get

(Φλf)(x) = (Gλ ∗ f)(x) = ((−i(α · ∇) +mβ + λI4)ρr) ∗ f) (x)

= ((−i(α · ∇) +mβ + λI4)Srf) (x) ∀x ∈ Ω+.
(3.88)

The triangle inequality and Lemma 3.13 show

‖Φλf‖H1/2(Ω+;C4) ≤ C
(
‖(−i(α · ∇) +mβ)Srf‖H1/2(Ω+;C4) + ‖Srf‖H1/2(Ω+;C4)

)
≤ C‖Srf‖H3/2(Ω+;C4) ≤ C‖f‖L2(Σ;C4).

(3.89)

This concludes the first part of the proof.
For the second part we choose R2 > R1 > 0 such that Ω+ ( B(0, R1). We consider
Φλf on R3 \B(0, R1) at first. Elementary calculations show∣∣∣∣∂Gλ

∂zj
(z)

∣∣∣∣ ≤ C
(
|z|−1 + |z|−2 + |z|−3) e−µ|z| ∀z ∈ R3 \ {0}, (3.90)

where µ = Im r and j ∈ {1, 2, 3}. We use the dominated convergence theorem and
the Cauchy-Schwarz inequality to estimate∣∣∣∣∂Φλf

∂xj
(x)

∣∣∣∣2 =

∣∣∣∣∫
Σ

∂Gλ

∂xj
(x− y)f(y) dσ(y)

∣∣∣∣2 ≤ ∫
Σ

∣∣∣∣∂Gλ

∂xj
(x− y)

∣∣∣∣2 dσ(y)

∫
Σ

|f(y)|2 dσ(y)

≤ C

(
3∑
l=1

(dist(∂B(0, R1),Ω+))−l

)2

‖f‖2
L2(Σ;C4)

∫
Σ

e−2µ|x−y| dσ(y) (3.91)

≤ C‖f‖2
L2(Σ;C4)

∫
Σ

e−2µ|x−y| dσ(y) ∀x ∈ R3 \B(0, R1).

Integrating and applying Fubini yields∫
R3\B(0,R1)

∣∣∣∣∂Φλf

∂xj
(x)

∣∣∣∣2 dx ≤ C‖f‖2
L2(Σ;C4)

∫
R3\B(0,R1)

∫
Σ

e−2µ|x−y|dσ(y) dx

≤ C‖f‖2
L2(Σ;C4)

∫
R3

∫
Σ

e−2µ|x−y| dσ(y) dx

= C‖f‖2
L2(Σ;C4)

∫
Σ

∫
R3

e−2µ|x−y| dx dσ(y)

= C‖f‖2
L2(Σ;C4)

∫
Σ

∫
R3

e−2µ|z| dz dσ(y) ≤ C‖f‖2
L2(Σ;C4).

(3.92)

Consequently,

∂Φλf

∂xj
∈ L2(R3 \B(0, R1);C4) and

∥∥∥∥∂Φλf

∂xj

∥∥∥∥
L2(R3\B(0,R1);C4)

≤ C‖f‖L2(Σ;C4) (3.93)
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for j ∈ {1, 2, 3}. We already know from Theorem 3.12 ‖Φλf‖L2(R3;C4) ≤ C‖f‖L2(Σ;C4).
Hence, our considerations imply

Φλf ∈ H1(R3 \B(0, R1);C4) and ‖Φλf‖H1(R3\B(0,R1);C4) ≤ C‖f‖L2(Σ;C4). (3.94)

Next, we note that

Φλf ∈ H1/2(Ω− ∩B(0, R2);C4) and ‖Φλf‖H1/2(Ω−∩B(0,R2);C4) ≤ C‖f‖L2(Σ;C4). (3.95)

The proof is analogous to the first part of the proof if we consider the bounded Lipschitz
domain Ω− ∩B(0, R2) instead of Ω+.
In the last step we use the obtained results in order to prove (3.86). Therefore, we
choose R2−R1

4
> ε > 0 and a function g ∈ D(R3) such that

0 ≤ g ≤ 1, g(x) = 1 for x ∈ B(0, R1 + 2ε) and supp g ⊆ B(0, R2 − 2ε). (3.96)

Moreover, supp (1 − g) ⊆ R3 \ B(0, R1 + 2ε), Φλf ∈ H1/2(Ω− ∩ B(0, R2);C4) and
also Φλf ∈ H1/2(R3 \ B(0, R1);C4). Now, by setting Ω = Ω−, Ω1 = B(0, R2) and
F = B(0, R2 − 2ε), as well as Ω = Ω−, Ω1 = R3\B(0, R1) and F = R3\B(0, R1+2ε) in
Lemma 3.14 we get gΦλf ∈ H1/2(Ω−;C4) and (1−g)Φλf ∈ H1/2(Ω−;C4), respectively.
Thus,

Φλf = gΦλf + (1− g)Φλf ∈ H1/2(Ω−;C4). (3.97)

We use Lemma 3.14 and [28, Theorem 3.20] in order to estimate the norm

‖Φλf‖H1/2(Ω−;C4) = ‖gΦλf + (1− g)Φλf‖H1/2(Ω−;C4)

≤ ‖gΦλf‖H1/2(Ω−;C4) + ‖(1− g)Φλf‖H1/2(Ω−;C4)

≤ C
(
‖gΦλf‖H1/2(Ω−∩B(0,R2);C4) + ‖(1− g)Φλf‖H1/2(R3\B(0,R1);C4)

)
≤ C

(
‖g‖W 1

∞(R3)‖Φλf‖H1/2(Ω−∩B(0,R2);C4) +
(

1 + ‖g‖W 1
∞(R3)

)
‖Φλf‖H1/2(R3\B(0,R1);C4)

)
≤ C

(
‖Φλf‖H1/2(Ω−∩B(0,R2);C4) + ‖Φλf‖H1/2(R3\B(0,R1);C4)

)
≤ C

(
‖Φλf‖H1/2(Ω−∩B(0,R2);C4) + ‖Φλf‖H1(R3\B(0,R1);C4)

)
≤ C‖f‖L2(Σ;C4).

(3.98)

Combining (3.89) and (3.98) yields (3.86).

Theorem 3.16. Let λ ∈ C \ ((−∞,− |m|] ∪ [|m| ,∞)) and Σ ⊂ R3 be the boundary
of a Lipschitz domain Ω ⊂ R3. The values of the boundary operators defined by

(Cλf)(x) := lim
ε↘0

∫
|x−y|>ε

Gλ(x− y)f(y) dσ(y) and

(P±λ f)(x) := lim
Ω±3z

n.t.−−→x

(Φλf)(z) for x ∈ Σ and f ∈ L2(Σ;C4)
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exist σ-a.e. on Σ. Moreover, the operators are bounded from L2(Σ;C4) to L2(Σ;C4)
and there exists a κ > 0 such that the non-tangential supremum, see Definition 1.22,
satisfies

∥∥Nκ,Ω±Φλf
∥∥
L2(Σ;C4)

≤ C‖f‖L2(Σ;C4) for all f ∈ L2(Σ;C4). Additionally, the

following assertions hold:

(i) P±λ = ∓ i
2
(α · ν) + Cλ.

(ii) For every bounded subset S of C \ ((−∞,− |m|] ∪ [|m| ,∞)) the operators Cλ and
P±λ are uniformly bounded with respect to λ.

(iii) The difference Kα − Cλ, where

kα(x, y) :=
i(α · z)

|z|3
for z ∈ R3 \ {0} and (3.99)

(Kαf)(x) := lim
ε↘0

∫
|x−y|>ε

kα(x− y) dσ(y) for σ-a.e. x ∈ Σ and f ∈ L2(Σ;C4),

(3.100)

is compact in L2(Σ;C4).

(iv) −4(Cλ(α · ν))2 = I4.

Proof. The operator Kα is well defined σ-a.e. on Σ due to Corollary 3.8 and Theorem
3.10. We define the operator

(Ψαf)(x) :=

∫
Σ

kα(x− y)f(y) dσ(y) ∀x ∈ R3 \ Σ. (3.101)

Then, [5, Proposition 4.3. and Theorem 4.4.] state that there exists a κ > 0 such that∥∥Nκ,Ω±Ψαf
∥∥
L2(Σ;C4)

≤ C‖f‖L2(Σ;C4) for all f ∈ L2(Σ;C4), the non-tangential limits of

Ψαf exist σ-a.e. on Σ and

lim
Ω±3z

n.t.−−→x

(Ψαf)(z) = ∓ i
2

(α · ν(x))f(x) + (Kαf)(x) for σ-a.e. x ∈ Σ. (3.102)

Now, we want to transfer the properties of Kα and Ψα to Cλ and Φλ, respectively.
Therefore, we study the difference of their kernels

ωλ(z) := Gλ(z)− kα(z) ∀z ∈ R3 \ {0}. (3.103)

We fix a bounded set S ⊂ C \ ((−∞,− |m|] ∪ [|m| ,∞)) and choose R > 0 such that
B(0, R) ⊂ Σ. Then, there exists a constant C > 0 such that

|ωλ(z)| ≤ C
1

|z|
∀z 6= 0 ∈ B(0, 2R) (3.104)
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for all λ ∈ S. Applying Theorem 3.1 by setting t1 = ωλ
√
|·| and t2 = 1√

|·|
yields

ω ∗ f exists σ-a.e. on Σ and ‖ω ∗ f‖L2(Σ;C4) ≤ C‖f‖L2(Σ;C4) (3.105)

for all f ∈ L2(Σ;C4) and λ ∈ S. Let x ∈ Σ such that (ω∗f)(x) exists and ωε := χ|z|>εω.
Then,

ωε(x− y)f(y)
ε→0−−→ ω(x− y)f(y) ∀y ∈ Σ \ {x},

|ωε(x− y)f(y)| ≤ |ω(x− y)f(y)| and |ω(x− ·)f( · )| ∈ L1(Σ).
(3.106)

Hence, dominated convergence guarantees (ωε ∗ f)(x)
ε→0−−→ (ω ∗ f)(x). Therefore,

lim
ε↘0

∫
|x−y|>ε

ω(x− y)f(y) = (ω ∗ f)(x) for σ-a.e. x ∈ Σ. (3.107)

Next, we consider the non-tangential limit of ω ∗ f . For this purpose we choose x ∈ Σ

such that
(

1
|·| ∗ |f |

)
(x) and (ω ∗ f)(x) exist. Here, κ > 0 denotes the constant from

the non-tangential neighbourhood Γκ,Ω±(x) of x, see Definition 1.21. For all y ∈ Σ
and z ∈ Γκ,Ω±(x) the estimates

|y − x| ≤ |y − z|+ |z − x| ≤ |y − z|+ (1 + κ)dist(z,Σ) ≤ (2 + κ) |z − y| (3.108)

and |ω(z − y)f(y)| ≤ C
1

|z − y|
|f(y)| ≤ C

1

|x− y|
|f(y)| (3.109)

hold. Thus, C 1
|x−·| |f | is an integrable majorant for ω(z−·)f . Furthermore, there holds

ω(z − y)f(y)→ ω(x− y)f(y) for z → x and y 6= x. Applying dominated convergence
yields

lim
Ω±3z

n.t.−−→x

(ω ∗ f)(z) = lim
ε↘0

∫
|x−y|>ε

ω(x− y)f(y)

= (ω ∗ f)(x) for σ-a.e. x ∈ Σ.

(3.110)

Combining (3.110), (3.103) and (3.102) proves assertion (i). Next, we show the bound-
edness of the non-tangtenial supremum. The equations (3.108) and (3.109) give us

(Nκ,Ω±(ω ∗ f))(x) ≤ C

(
1

|·|
∗ |f |

)
(x) for σ-a.e. x ∈ Σ. (3.111)

Therefore, Theorem 3.1 yields
∥∥Nκ,Ω±(ω ∗ f)

∥∥
L2(Σ;C4)

≤ C‖f‖L2(Σ;C4) for f ∈ L2(Σ;C4).

Furthermore, (ii) follows from (3.105) and (3.110).
Item (iii) and (iv) are left to be proven. We start with (iii) by realizing that

ωλ

(
κ−1
l

(
x′ − y′

ζl(x
′)− ζl(y′)

))
with x′ 6= y′ ∈ R2 defines a kernel of order −1. Conse-

quently, Theorem 3.4 and Theorem 3.10 (ii) imply ωλ ∗ (·) : L2(Σ;C4)→ L2(Σ;C4) is
compact, proving assertion (iii).
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It remains to show item (iv). This part of the proof is based on the proof of Lemma
3.3.(ii) in [2]. W.l.o.g. we assume that Ω+ is bounded and Ω− is unbounded. First, we
prove for f ∈ C∞(Ω+), such that the non-tangential limit of f exists, Nκ,Ω+f ∈ L2(Σ),
−i(α · ∇)f + βf = λf , and (α · ∇)f ∈ L2(Ω+), the reproducing formula

f(x) =

∫
Σ

Gλ(x− y)i(α · ν(y))f(y) dσ(y) ∀x ∈ Ω+. (3.112)

Let us fix x ∈ Ω+ and choose ε > 0 such that B(x, ε) ( Ω+. To simplify notation, we
define Ω+,ε := Ω+ \B(x, ε) and Σ+,ε = ∂Ω+,ε. We apply Theorem 1.24 and obtain

∫
Σ+,ε

Gλ(x− y)i(α · ν(y))f(y) dσ(y) =

∫
Σ+,ε

3∑
j=0

Gλ(x− y)iαj(y)f(y)νj dσ(y)

=

∫
Ω+,ε

3∑
j=0

∂ (Gλ(x− y)iαj(y)f(y))

∂yj
dy

=

∫
Ω+,ε

(
3∑
j=0

∂Gλ(x− y)

yj
iαjf(y) dy +Gλ(x− y)iαj

∂f

∂yj
(y)

)
dy

=

∫
Ω+,ε

(
3∑
j=0

∂Gλ(x− y)

∂yj
iαjf(y)

)
+Gλ(x− y)i(α · ∇)f(y) dy

=

∫
Ω+,ε

Gλ(x− y)(λI4 −mβ)f(y)−Gλ(x− y)(λI4 −mβ)f(y) dy = 0.

(3.113)

Therefore,

∫
Σ

Gλ(x−y)i(α ·ν(y))f(y) dσ(y) = −
∫
∂B(x,ε)

Gλ(x−y)i(α ·ν(y))f(y) dσ(y). (3.114)

Transforming to spherical coordinates, defining w(θ, φ) := −

 sin(θ) sin(φ)
sin(θ) cos(φ)

cos(θ)

 with
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θ ∈ [0, π] and φ ∈ [0, 2π), and applying the dominated convergence theorem yields∫
∂B(x,ε)

Gλ(x− y)i(α · ν(y))f(y) dσ(y)

=

∫ π

0

∫ 2π

0

Gλ(εw(θ, φ))i(α · w(θ, φ))f(x− εw(θ, φ)) sin(θ)ε2 dφ dθ

=

∫ π

0

∫ 2π

0

(
O(1)ε+ iα · w(θ, φ)

ei
√
λ2−m2ε

4π

)
i(α · w(θ, φ))f(x− εw(θ, φ)) sin(θ) dφ dθ

ε→0−−→
∫ π

0

∫ 2π

0

i(α · w(θ, φ))
1

4π
i(α · w(θ, φ))f(x) sin(θ) dφ dθ = −f(x).

(3.115)

Thus, by inserting in (3.114) and taking the limit we get (3.112). Now, let us choose
g ∈ L2(Σ;C4). Then, Φλi(α · ν)g satisfies the necessary conditions regarding the
reproducing formula. Hence,

(Φλi(α · ν)g)(x) = (Φλi(α · ν)P+
λ i(α · ν)g)(x) ∀x ∈ Ω+ (3.116)

which implies

P+
λ i(α · ν)g = P+

λ i(α · ν)P+
λ i(α · ν)g. (3.117)

We use (i) and (3.117) in order to show

1

2
g + Cλi(α · ν)g = −1

2
i(α · ν)i(α · ν)g + Cλi(α · ν)g = P+

λ i(α · ν)g

= P+
λ i(α · ν)P+

λ i(α · ν)g =
1

2
P+
λ i(α · ν)g + Cλi(α · ν)P+

λ i(α · ν)g

=
1

4
g +

1

2
Cλi(α · ν)g +

1

2
Cλi(α · ν)g + (Cλi(α · ν)g)2.

Hence, (iv) holds true.

We state two further results which come in handy when proving the self-adjointness
of certain Dirac operators.

Corollary 3.17. The operator Kα, which is defined in (3.100), is self-adjoint.

Proof. One can use similar statements as in Theorem 3.10 and (c) in the beginning of

the proof of Theorem 3.6 in order to show K̂α, defined through

K̂αf(x) := sup
ε>0

∣∣∣∣∫
|x−y|>ε

kα(x− y)f(y) dσ(y)

∣∣∣∣ for x ∈ Σ and f ∈ L2(Σ;C4), (3.118)
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is a bounded mapping from L2(Σ;C4) to L2(Σ;C4). Due to the boundedness of K̂α
and the dominated convergence theorem∫

|(·)−y|>ε
k((·)− y)f(y) dσ(y)

ε→0−−→ Kαf in L2(Σ) ∀f ∈ L2(Σ;C4). (3.119)

Now, let us fix f and g in L2(Σ;C4). We obtain

(Kαf, g)L2(Σ;C4) =

∫
Σ

lim
ε↘0

(∫
|x−y|>ε

(kα(x− y)f(y), g(x))C4 dσ(y)

)
dσ(x)

= lim
ε↘0

∫
Σ

∫
|x−y|>ε

(f(y), kα(y − x)g(x))C4 dσ(y) dσ(x)

= lim
ε↘0

∫
Σ

∫
Σ

χ|x−y|>ε(y)(f(y), kα(y − x)g(x))C4 dσ(y) dσ(x)

= lim
ε↘0

∫
Σ

∫
Σ

χ|x−y|>ε(x)(f(y), kα(y − x)g(x))C4 dσ(x) dσ(y)

=

∫
Σ

(
lim
ε↘0

∫
Σ

χ|x−y|>ε(x)(f(y), kα(y − x)g(x))C4 dσ(x)

)
dσ(y)

= (f,Kαg)L2(Σ;C4)

(3.120)

which concludes the proof.

Last, we are able to formulate a consequential theorem which is based on Corollary 3.9.
The result plays an important role in proving the self-adjointness of Dirac operators
on C1 surfaces.

Theorem 3.18. If Σ is a C1 boundary and λ ∈ C \ ((−∞,− |m|] ∪ [|m| ,∞)), then

(α · ν)Cλ + Cλ(α · ν) (3.121)

is a compact operator in L2(Σ;C4).

Proof. Corollary 3.9 and Theorem 3.10 imply the compactness of the linear operator
(α · ν)Kα +Kα(α · ν). From Theorem 3.16 (iii) we know that the difference of Cλ−Kα
is compact. Consequently, also (α · ν)Cλ + Cλ(α · ν) is compact.



4 The Free Dirac Operator and a
Quasi Boundary Triple for the
Dirac Operator

In this chapter we use the obtained results in order to construct a quasi boundary
triple for the Dirac operator. However, prior to that we study the free Dirac operator
which describes a free spin 1/2 particle and constitutes the basis in constructing the
quasi boundary triple.

4.1 The Free Dirac Operator

In this section we introduce the free Dirac operator A0, prove its self-adjointness and
study its spectrum.

Definition 4.1. Let m ∈ R. Then, the free Dirac operator is defined by

domA0 := H1(R3;C4)

A0f := −i(α · ∇)f +mβf.
(4.1)

We define an auxiliary multiplication operator which proves to be valuable in studying
the free Dirac operator.

Definition 4.2. Let m ∈ R. Then, we define the operator

domM :=
{
f ∈ L2(R3;C4) : (1 + |·|2)1/2f ∈ L2(R3;C4)

}
Mf := 2π(α · (·))f +mβf.

(4.2)

Lemma 4.3. The two operators A0 andM are unitary equivalent, i.e. F−1MF = A0,
where F denotes the Fourier transform given by (2.4).

Proof. Let us check the equality of the domains at first. Let f ∈ domA0 = H1(R3;C4).
Equivalently,

(1 + |·|2)1/2Ff ∈ L2(R3;C4)⇔ Ff ∈ domM⇔ f ∈ domF−1MF . (4.3)

65
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It remains to prove A0f = F−1MFf , which is equivalent to FA0f = MFf , for all
f ∈ domA0 = domF−1MF . Through applying the differentiation rule regarding the
Fourier transform, cf. [28, eq. (3.17)], we get

(FA0f)(ξ) = F(−i(α · ∇)f +mβf)(ξ)

= (2π(α · (·))Ff +mβFf)(ξ) = (MFf)(ξ) ∀ξ ∈ R3 (4.4)

and f ∈ domA0 which concludes the proof.

Due to Lemma 4.3, we can carry over the self-adjointness and the spectral properties
of M to A0. Hence, we examine M in the next theorem.

Theorem 4.4. The operator M is self-adjoint in L2(R3;C4) and

σ(M) = σess(M) = (−∞,− |m|] ∪ [|m| ,∞) . (4.5)

Proof. This proof is based on [40, Satz 20.1], where the statement is proven for m > 0.
We begin with the self-adjointness of M. The symmetry of M immediately follows
from the self-adjointness of β and (α · ξ) for all ξ ∈ R3. Thus, we have to prove
M∗ ⊂M. Let g ∈ domM∗, then for all f ∈ domM holds

(Mf, g)L2(R3;C4) =

∫
R3

(2π(α · ξ)f(ξ) + βf(ξ), g(ξ))C4 dξ

=

∫
R3

(f(ξ), 2π(α · ξ)g(ξ) + βg(ξ))C4 dξ

= (f,M∗g)L2(R3;C4) =

∫
R3

(f(ξ), (M∗g)(ξ))C4 dξ.

(4.6)

Since D(R3) ⊂ domM, we can apply [28, Theorem 3.7] and see

2π(α · (·))g +mβg =M∗g ∈ L2(R3;C4) (4.7)

which leads to (α · (·))g ∈ L2(R3;C4). Moreover, Remark 2.31 yields∫
R3

|ξ|2 |g(ξ)|2 dξ =

∫
R3

((α · ξ)g(ξ), (α · ξ)g(ξ))C4dξ

=

∫
R3

(
(α · ξ)2g(ξ), g(ξ)

)
C4dξ

=

∫
R3

|(α · ξ)g(ξ)|2 dξ <∞.

(4.8)

Hence, g ∈ domM and M∗g = Mg. This shows M = M∗. Now, we study the
spectrum of M . We see

2π(α · ξ) +mβ = 2π


m
2π

0 ξ3 ξ1 − iξ2

0 m
2π

ξ1 + iξ2 −ξ3

ξ3 ξ1 − iξ2 −m
2π

0
ξ1 + iξ2 −ξ3 0 −m

2π

 (4.9)
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is a self-adjoint matrix for all ξ ∈ R3. We compute the eigenvalues and obtain

λ1(ξ) = λ2(ξ) =

√
m2 + 4π2 |ξ|2 as well as λ3(ξ) = λ4(ξ) = −

√
m2 + 4π2 |ξ|2.

(4.10)
The corresponding normalized orthogonal eigenvectors are

u1(ξ) = p(ξ)


0
1

−2π(ξ1−iξ2)
m+λ1(ξ)
2πξ3

m+λ1(ξ)

 , u2(ξ) = p(ξ)


1
0

− 2πξ3
m+λ1(ξ)

−2π(ξ1+iξ2)
m+λ1(ξ)



u3(ξ) = p(ξ)


−2π(ξ1−iξ2)

m+λ1(ξ)
2πξ3

m+λ1(ξ)

0
1

 and u4(ξ) = p(ξ)


− 2πξ3
m+λ1(ξ)

−2π(ξ1+iξ2)
m+λ1(ξ)

1
0


(4.11)

with the normalizing factor p(ξ) = 1/
√

4π2|ξ|2
(m+λ1(ξ))2 + 1. Now, let us introduce the

unitary matrix U(ξ) := (u1(ξ)|u2(ξ)|u3(ξ)|u4(ξ)) ∈ C4×4 and the diagonal matrix
D(ξ) := diag(λ1(ξ), λ2(ξ), λ3(ξ), λ4(ξ)). Moreover, we define the mappings

MD : L2(R3;C4) ⊃ domM→ L2(R3;C4), MU : L2(R3;C4)→ L2(R3;C4)

f 7→ Df f 7→ Uf (4.12)

and MU∗ : L2(R3;C4)→ L2(R3;C4)

f 7→ U∗f.

Trivial observations show that MU is a unitary operator in L2(R3;C4) which satis-
fies (MU)∗ = MU∗ , M is unitary equivalent to MD, i.e. M = MUMDMU∗ , and
σ(MD) = σess(MD) = (−∞,− |m|] ∪ [|m| ,∞). The unitary equivalence of the oper-
ators yields σ(M) = σess(M) = (−∞,− |m|] ∪ [|m| ,∞).

As a consequence of the two previous statements, we are in the position to describe
the spectrum of the free Dirac operator.

Corollary 4.5. The free Dirac operator A0 is self-adjoint and

σ(A0) = σess(A0) = (−∞,− |m|] ∪ [|m| ,∞) . (4.13)

Proof. Combining Lemma 4.3 and Theorem 4.4 proves the statement.

In Theorem 4.6 we show a resolvent formula for the free Dirac operator in terms of
the fundamental solution Gλ, which is given by (3.64).
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Theorem 4.6. The resolvent of A0 is a bounded linear operator from L2(R3;C4) to
H1(R3;C4) which is given by(

(A0 − λ)−1f
)

(x) =

∫
R3

Gλ(x− y)f(y) dy for f ∈ L2(R3;C4) (4.14)

for λ ∈ ρ(A0) = C \ ((−∞,− |m|] ∪ [|m| ,∞)).

Proof. Foremost, we assume g ∈ D(R3;C4). One sees by applying the monotone
convergence theorem, simple algebraic transformations, the divergence theorem and
similar arguments as in Theorem 3.16 (iv)∫

R3

Gλ(x− y)(A0 − λ)g(y) dy =

∫
R3

Gλ(x− y)((−i(α · ∇) +mβ − λI4)g)(y) dy

= lim
ε↘0

∫
R3\B(x,ε)

Gλ(x− y)((−i(α · ∇) +mβ − λI4)g)(y) dy

= lim
ε↘0

∫
∂B(x,ε)

Gλ(x− y)(−i(α · ν(y))g(y) dσ(y) (4.15)

+

∫
R3\B(x,ε)

(i
3∑
l=1

∂

∂yl
Gλ(x− y)αl +Gλ(x− y)(mβ − λI4))︸ ︷︷ ︸

=0

g(y) dy

= lim
ε↘0

∫
∂B(x,ε)

Gλ(x− y)(−i(α · ν(y))g(y) dσ(y) = g(x) ∀x ∈ R3.

Thus, Gλ ∗ ((A0 − λ)g) = g for all g ∈ D(R3;C4). Next, let us choose a function
g ∈ domA0 = H1(R3;C4). Since D(R3;C4) is dense in H1(R3;C4), there exists a
sequence (gl)l∈N such that gl ∈ D(R3;C4) for all l ∈ N and gl converges to g in
H1(R3;C4). Thus, (A0 − λ)gl converges to (A0 − λ)g in L2(R3;C4). The L2(R3;C4)-
continuity of the mapping defined by L2(R3;C4) 3 f 7→ Gλ ∗ f , see Theorem 3.11,
leads to

Gλ ∗ ((A0 − λ)g) = g ∀g ∈ domA0. (4.16)

Moreover, since (A0 − λ)−1f ∈ domA0 for all f ∈ L2(R3;C4), we obtain

Gλ ∗ f = Gλ ∗
(
(A0 − λ)(A0 − λ)−1f

)
= (A0 − λ)−1f ∀f ∈ L2(R3;C4). (4.17)

This proves the resolvent formula (4.14). In order to show the boundedness from
L2(R3;C4) to H1(R3;C4), we prove the closedness of (A0 − λ)−1 as a mapping from
L2(R3;C4) to H1(R3;C4). Therefore, we assume L2(R3;C4) 3 fl → f in L2(R3;C4)
and H1(R3;C4) 3 (A0 − λI4)−1fl → g in H1(R3;C4). The resolvent (A0 − λ)−1 is
bounded as a mapping in L2(R3;C4) which shows

g = lim
l→∞

(A0 − λ)−1fl = (A0 − λ)−1 lim
l→∞

fl = (A0 − λ)−1f in L2(R3;C4).
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Hence, g = (A0 − λ)−1f ∈ H1(R3;C4) and therefore

(A0 − λ)−1 : L2(R3;C4)→ H1(R3;C4) (4.18)

is closed and also bounded.

4.2 A Quasi Boundary Triple Corresponding to the

Dirac Operator

In this section we construct a quasi boundary triple for the Dirac operator which we
use to study Dirac operators with singular interactions in Chapter 5. We start this
section by introducing new operators.

Definition 4.7. Let Ω = Ω+ ⊂ R3 be a Lipschitz domain, Ω− be the Lipschitz domain
R3 \ Ω and m ∈ R. The linear operator Tmax is defined by

domTmax :=
{
f ∈ L2(R3;C4) : −i(α · ∇)f± ∈ L2(Ω±;C4)

}
= H0,0

α (Ω+)⊕H0,0
α (Ω−)

Tmaxf := (−i(α · ∇)f+ +mβf+)⊕ (−i(α · ∇)f− +mβf−) ∀f ∈ domTmax,

(4.19)

where f± denotes the restriction of f to the domain Ω±.

Remark 4.8. By taking a closer look at the definition of Tmax and H0,0
α (Ω±) we realize

that the graph norm of Tmax is equivalent to the H0,0
α (Ω+)⊕H0,0

α (Ω−)-norm.

Definition 4.9. Let T := Tmax � H
1/2,0
α (Ω+)⊕H1/2,0

α (Ω−), i.e.

domT = H1/2,0
α (Ω+)⊕H1/2,0

α (Ω−)

Tf = (−i(α · ∇) +mβ) f+ ⊕ (−i(α · ∇) +mβ) f− ∀f ∈ domT.
(4.20)

In this setting we are able to use the trace operator due to Theorem 2.36. Thus, we
can introduce the two boundary mappings Γ0,Γ1 : domT → L2(Σ;C4) given by

Γ0f := i(α · ν) (tΣf+ − tΣf−) and Γ1f :=
1

2
(tΣf+ + tΣf−) for f ∈ domT. (4.21)

Remark 4.10. We defined T in a different way as Holzmann in [22, eq. (4.1)] where C2

domains were considered and the domain of T was chosen as H1(Ω+;C4)⊕H1(Ω−;C4).
However, for Lipschitz domains one can not expect the existence of self-adjoint exten-
sions because of [25]. There, it is shown in Theorem 1.2. that in non-convex sectors
the two-dimensional Dirac operator with boundary conditions does not admit a self-
adjoint extension in Sobolev spaces of order one.
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Our next goal is to show that (L2(Σ;C4),Γ0,Γ1) is a quasi boundary triple for S∗,
where S := T � (ker Γ0 ∩ ker Γ1). Lemma 4.11 shows the triple (L2(Σ;C4),Γ0,Γ1)
satisfies (i) and (ii) in Definition 1.11.

Lemma 4.11. The three operators T , Γ0 and Γ1 fulfil Green’s identity

(Tf, g)L2(R3;C4) − (f, Tg)L2(R3;C4) = (Γ1f,Γ0g)L2(Σ;C4) − (Γ0f,Γ1g)L2(Σ;C4) (4.22)

for all f, g ∈ domT . Furthermore,

ran (Γ0,Γ1)T ⊃ H1/2(Σ;C4)×H1/2
α (Σ) (4.23)

with H
1/2
α (Σ) :=

{
h ∈ L2(Σ;C4) : (α · ν)h ∈ H1/2(Σ;C4)

}
.

Proof. First, we prove Green’s identity. Corollary 2.37 yields

(Tf, g)L2(R3;C4) =i((α · ∇)f+, g+)L2(Ω+;C4) + (mβf+, g+)L2(Ω+;C4)

+ i((α · ∇)f−, g−)L2(Ω−;C4) + (mβf−, g−)L2(Ω−;C4)

=− i(f+, (α · ∇)g+)L2(Ω+;C4) + i((α · ν)tΣf+, tΣg+)L2(Σ;C4)

+ (f+,mβg+)L2(Ω+;C4)

− i(f−, (α · ∇)g−)L2(Ω−;C4) − i((α · ν)tΣf−, tΣg−)L2(Σ;C4)

+ (f−,mβg−)L2(Ω−;C4)

=(f, Tg)L2(R3;C4) + i((α · ν)tΣf+, tΣg+)L2(Σ;C4)

− i((α · ν)tΣf−, tΣg−)L2(Σ;C4)

(4.24)

for all f, g ∈ domT . Moreover, simple calculations and the self-adjointness of (α · ν)
show

(Γ1f,Γ0g)L2(Σ;C4) − (Γ0f,Γ1g)L2(Σ;C4)

=
1

2

(
(tΣf+, i(α · ν)tΣg+)L2(Σ;C4) − (tΣf+, i(α · ν)tΣg−)L2(Σ;C4)

+ (tΣf−, i(α · ν)tΣg+)L2(Σ;C4) − (tΣf−, i(α · ν)tΣg−)L2(Σ;C4)

)
− 1

2

(
(i(α · ν)tΣf+, tΣg+)L2(Σ;C4) + (i(α · ν)tΣf+, tΣg−)L2(Σ;C4)

− (i(α · ν)tΣf−, tΣg+)L2(Σ;C4) − (i(α · ν)tΣf−, tΣg−)L2(Σ;C4)

)
= i((α · ν)tΣf+, tΣg+)L2(Σ;C4) − i((α · ν)tΣf−, tΣg−)L2(Σ;C4)

(4.25)

for all f, g ∈ domT . Thus, (4.22) holds true.

Now, let us prove (4.23). We choose ψ ∈ H1/2(Σ;C4) and ϕ ∈ H1/2
α (Σ). Therefore,

(α · ν)ϕ ∈ H1/2(Σ;C4) and Theorem 2.25 imply the existence of f ∈ H1(Ω+;C4) with

tΣf = −i(α · ν)ϕ. (4.26)
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Moreover, using Theorem 2.25 and [28, Theorem A.4] yields the existence of a function
g ∈ H1(R3;C4) such that

tΣg = ψ − 1

2
tΣf. (4.27)

Defining u := (f + g+)⊕ g− ∈ H1(Ω+;C4)⊕H1(Ω−;C4) ⊂ domT leads to

Γ0u =i(α · ν) (tΣu+ − tΣu−) = i(α · ν) (tΣ(f + g+)− tΣg−) = i(α · ν)tΣf = ϕ and

Γ1u =
1

2
(tΣu+ + tΣu−) =

1

2
(tΣ(f + g+) + tΣg−) =

1

2

(
tΣf + ψ − 1

2
tΣf + ψ − 1

2
tΣf
)

=ψ

(4.28)

which concludes the proof.

Obviously, (i) in Definition 1.11 is valid. Since H1/2(R2) is dense in L2(R2), one can
see by the construction of H1/2(Σ;C4) that H1/2(Σ;C4) is also densely contained in

L2(Σ;C4). Furthermore, H
1/2
α (Σ) is also densely contained in L2(Σ;C4) due to the

properties of (α · ν). All in all, (ii) in Definition 1.11 is fulfilled.

Lemma 4.12. The identity

ker Γ0 = H1(R3;C4) (4.29)

holds.

Proof. The inclusion H1(R3;C4) ⊂ ker Γ0 is obvious. In order to prove the inclusion
ker Γ0 ⊂ H1(R3;C4), we choose f ∈ ker Γ0. We employ Green’s identity and observe

(Tf, g)L2(R3) − (f, Tg)L2(R3) = 0 ∀g ∈ D(R3). (4.30)

This is equivalent to

D∗(R3)〈(α · ∇)f+ ⊕ (α · ∇)f−, g〉D(R3;C4) + D∗(R3)〈f, (α · ∇)g〉D(R3) = 0 (4.31)

for all g ∈ D(R3;C4). Therefore, (α · ∇)f = (α · ∇)f+⊕ (α · ∇)f− ∈ L2(R3;C4). Now,
Lemma 2.33 shows f ∈ H1(R3;C4).

Due to Lemma 4.12, we observe T � ker Γ0 = A0 where A0, the free Dirac operator,
is self-adjoint. This implies (iii) in Definition 1.11. Through Green’s identity one
notices S := T � (ker Γ0 ∩ ker Γ1) is a symmetric operator. Simple considerations
and Corollary 2.38 lead to domS = H1

0 (Ω+;C4) ⊕ H1
0 (Ω−;C4). Moreover, due to

Lemma 2.33, it is easy to see that the graph norm of S is equivalent to the norm
corresponding to domS = H1

0 (Ω+;C4) ⊕ H1
0 (Ω−;C4). Therefore, S is closed. To

conclude that (L2(Σ;C4),Γ0,Γ1) is a quasi boundary triple, we still need to show that
S is densely defined, closed and S∗ = T .
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Lemma 4.13. The linear operator S := T � (ker Γ0∩ker Γ1) is densely defined, closed
and symmetric in L2(R3;C4). Moreover, S∗ = T = Tmax, with Tmax and T defined in
Definition 4.7 and Definition 4.9, respectively.

Proof. We already know that S is closed and symmetric from the above comments.
The inclusion D(Ω+;C4) ⊕ D(Ω−;C4) ⊂ H1

0 (Ω+;C4) ⊕ H1
0 (Ω−;C4) = domS shows

that S is densely defined in L2(R3;C4). It remains to prove S∗ = Tmax. Let us start
with S∗ ⊂ Tmax. We choose f ∈ domS∗. Then,

(Sg, f)L2(R3;C4) = (g, S∗f)L2(R3;C4) ∀g ∈ domS = H1
0 (Ω+;C4)⊕H1

0 (Ω−;C4). (4.32)

Consequently,

((Sg)±, f±)L2(Ω±;C4) = (g±, (S
∗f)±)L2(Ω±;C4) ∀g ∈ H

1
0 (Ω±;C4) (4.33)

which leads to

D∗(Ω±;C4)〈(α · ∇)g±, f±〉∈D(Ω±;C4) =D(Ω±;C4) 〈g±,−i(S∗f)± + imβf±〉D(Ω±;C4) (4.34)

for all g ∈ D(Ω±;C4). This yields (α · ∇)f± = i(S∗f)± − imβf± ∈ L2(Ω±;C4).
Therefore, f ∈ domTmax and (S∗f)± = −i(α · ∇)f± + mβf± = (Tmaxf)±. Hence,
S∗f = Tmaxf . Now, let us take f ∈ domTmax. Then,

((α · ∇)±f, g±)L2(Ω±;C4) = −(f±, (α · ∇)±g)±)L2(Ω±;C4) ∀g ∈ D(Ω±;C4) (4.35)

and by density also

((α · ∇)f±, g±)L2(Ω±;C4) = −(f±, (α · ∇)g±)L2(Ω±;C4) ∀g ∈ H
1
0 (Ω±;C4). (4.36)

Elementary transformations lead to

(Tmaxf, g)L2(R3;C4) = (f, Tmaxg)L2(R3;C4)

= (f, Sg)L2(R3;C4) ∀g ∈ H
1
0 (Ω+;C4)⊕H1

0 (Ω−;C4) = domS

(4.37)

which shows S∗ ⊃ Tmax. In order to prove T = Tmax, we apply Theorem 2.34 to obtain

H
1/2,0
α (Ω+)⊕H1/2,0

α (Ω−)
‖·‖

H
0,0
α (Ω+)⊕H0,0

α (Ω−)

= C∞0 (Ω+;C4)⊕ C∞0 (Ω−;C4)
‖·‖

H
0,0
α (Ω+)⊕H0,0

α (Ω−) = H0,0
α (Ω+)⊕H0,0

α (Ω−).

(4.38)

Together with domT = H
1/2,0
α (Ω+) ⊕ H

1/2,0
α (Ω−) and Remark 4.8 equation (4.38)

verifies T = Tmax.

Finally, we are able to prove that (L2(Σ;C4),Γ0,Γ1) is indeed a quasi boundary triple.
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Theorem 4.14. The triple (L2(Σ;C4),Γ0,Γ1) is a quasi boundary triple for

Tmax = S∗ = T . (4.39)

Proof. With Lemma 4.11, Lemma 4.12, Lemma 4.13 and the properties of the free
Dirac operator A0 in mind, we see that the requirements of Definition 1.11 are met.

After constructing the quasi boundary triple (L2(Σ;C4),Γ0,Γ1), we study two operator-
valued functions, namely the γ-field and the Weyl function M . Recalling Definition
1.12, we see if λ ∈ ρ(A0), then

domT = domA0+̇ker (T − λ) = ker Γ0+̇ker (T − λ) (4.40)

as well as

γ(λ) := (Γ0 � ker (T − λ))−1 and M(λ) := Γ1γ(λ) = Γ1 (Γ0 � ker (T − λ))−1 . (4.41)

Theorem 4.15 shows γ(λ) and M(λ) are bounded operators which are closely related
to Φλ and Cλ, respectively. The definitions of Φλ and Cλ can be found in Theorem 3.12
and Theorem 3.16.

Theorem 4.15. Let (L2(Σ;C4),Γ0,Γ1) be the quasi boundary triple for S∗ = Tmax,
λ ∈ ρ(A0) = C\((−∞,− |m|] ∪ [|m| ,∞)) and Gλ be the integral kernel of the resolvent
of the free Dirac operator. Then, the following statements hold:

(i) The values of the γ-field coincide with Φλ. Furthermore, the adjoint γ(λ)∗ = Φ∗λ
is bounded from L2(R3;C4) to H1/2(Σ;C4).

(ii) The values of the Weyl function M coincide with Cλ.

Proof. We start proving γ(λ) = Φλ by choosing f ∈ L2(Σ;C4) and observe that
g := Φλf ∈ domT = dom Γ0 due to Theorem 3.15 and (3.63). Theorem 2.36 (i) and
Theorem 3.16 (i) give us

Γ0g = i(α · ν)(tΣg+− tΣg−) = i(α · ν)(P+
λ f −P

−
λ f) = i(α · ν)(−i)(α · ν)f = f. (4.42)

Thus, ran Γ0 = L2(Σ;C4) and consequently dom γ(λ) = L2(Σ;C4). Furthermore, due
to

(−i(α · ∇) +mβ − λI4)Gλ(z) = 0 ∀z ∈ R3 \ {0}, (4.43)

we conclude g = Φλf ∈ ker(T − λ) for f ∈ L2(Σ;C4). Therefore, we can apply γ(λ)
in equation (4.42) and obtain

Φλf = g = γ(λ)Γ0g = γ(λ)f ∀f ∈ L2(Σ;C4). (4.44)

Hence, γ(λ) = Φλ and γ(λ)∗ = Φ∗λ.
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We note that γ(λ)∗ = Γ1(A0 − λ)−1, see Theorem 1.13 (i). Thus, γ(λ)∗ is a bounded
mapping from L2(R3;C4) to H1/2(Σ;C4).
Last, we prove (ii). Applying Theorem 2.36 (i) and Theorem 3.16 (i) again yields

M(λ)f = Γ1γ(λ)f =
1

2

(
tΣ (γ(λ)f)+ + (tΣγ(λ)f)−

)
=

1

2

(
tΣ (Φλf)+ + tΣ (Φλf)−

)
=

1

2

(
P+
λ f + P−λ f

)
= Cλf ∀f ∈ L2(Σ;C4).

(4.45)

.



5 Dirac Operators with δ-Shell
Interactions on the Boundary

In this chapter we discuss the main object of this thesis. This is the Dirac operator
with δ-shell interactions, which is formally given by

Aη,τ = −i(α · ∇) +mβ + (ηI4 + τβ)δΣ (5.1)

with δΣf = 1
2
(f+|Σ + f−|Σ). It describes a Dirac operator with δ-shell interactions

supported on Lipschitz surfaces. The first section of this chapter deals with the self-
adjointness of Aη,τ and concludes with Theorem 5.8, which states sufficient conditions
for the self-adjointness, gives us a resolvent formula for Aη,τ and lists properties of the
spectrum of Aη,τ . Then, in Section 5.2 we examine two special cases which are covered
by Theorem 5.8 without assuming additional smoothness of the interface. Finally,
in the last section we study the qualitative properties of powers of resolvents. As
discussed in the introduction the rigorous definition of Aη,τ looks as follows.

Definition 5.1. Let η ∈ R and τ ∈ R. Then, we define the operator

Aη,τ := T � ker(Γ0 + (ηI4 + τβ)Γ1) (5.2)

with T , Γ0 and Γ1 from Definition 4.9. Moreover, we can rewrite the definition in the
explicit form

domAη,τ :=
{
f = f+ ⊕ f− ∈ H1/2(Ω+;C4)⊕H1/2(Ω−;C4) : (α · ∇)f± ∈ L2(Ω±;C4)

and f fulfils i(α · ν)(tΣf+ − tΣf−) + (ηI4 + τβ)
1

2
(tΣf+ + tΣf−) = 0

}
Aη,τf := (−i(α · ∇) +mβ) f+ ⊕ (−i(α · ∇) +mβ) f− ∀f ∈ domAη,τ .

(5.3)

5.1 Self-Adjointness and Spectral Properties of Aη,τ

Our goal is to show that Aη,τ is self-adjoint and to study its spectral properties. Using
Green’s identity and the self-adjointness of ηI4 + τβ, we see

(Aη,τf, g)L2(R3;C4) − (f, Aη,τg)L2(R3;C4) = (Γ1f,Γ0g)L2(Σ;C4) − (Γ0f,Γ1g)L2(Σ;C4)

= −(Γ1f, (ηI4 + τβ)Γ1g)L2(Σ;C4) + ((ηI4 + τβ)Γ1f,Γ1g)L2(Σ;C4) = 0
(5.4)

75
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for all f, g ∈ domAη,τ . Hence, Aη,τ is symmetric. For the purpose of studying the
self-adjointness of Aη,τ it is crucial to study the operator M(λ)2 − kI4 with M(λ)
introduced in (4.41).

Definition 5.2. Let A0 be the free Dirac operator introduced in Definition 4.1. Then,
we define the set

F0 :=
{
k ∈ C : index(M(λ)2 − kI4) = 0 ∀λ ∈ ρ(A0)

}
. (5.5)

Remark 5.3. In order to show k ∈ F0, it suffices to prove M(λ0)2 − kI4 has Fredholm
index zero for one λ0 ∈ ρ(A0) since the difference

M(λ0)2 −M(λ)2 = (M(λ0)−M(λ))(M(λ0) +M(λ)) (5.6)

is compact and due to Theorem 1.2, compact perturbations do not change the Fred-
holm index. The compactness follows from M(λ) = Cλ, Theorem 3.16 (iii) and Theo-
rem 1.2. In the same way, it suffices to show K2

α − kI4 has Fredholm index zero with
Kα defined by (3.100).

The following lemma gives us a simple yet helpful criteria for k being in F0.

Lemma 5.4. For any λ0 ∈ ρ(A0) holds ρ(M(λ0)2) ∪ ρ(K2
α) ⊂ F0. Here, Kα denotes

the operator defined by (3.100).

Proof. Let k be in ρ(M(λ0)2). We know domM(λ0)2 = L2(Σ;C4). Hence, the oper-
ator M(λ0)2 − kI4 is isomorphic in L2(Σ;C4). Moreover, index(M(λ0)2 − kI4) = 0.
Consequently, Remark 5.3 yields k ∈ F0. The proof for k ∈ ρ(K2

α) works out analo-
gously.

We apply Lemma 5.4 in the next two lemmas.

Lemma 5.5. Let
M− := inf

λ∈ρ(A0)

∥∥M(λ)2
∥∥
L2(Σ;C4)→L2(Σ;C4)

. (5.7)

Then, C \
[

1
16M−

,M−

]
⊂ F0.

Proof. At first, due to Corollary 3.17, we notice that K2
α is self-adjoint and bounded

from below by zero. Therefore, C \ [0,∞) ⊂ ρ(K2
α). Using Lemma 5.4 we get the

inclusion C \ [0,∞) ⊂ F0. Due to (M(λ)(α · ν))2 = −1
4
I4, see item (iv) of Theorem

3.16 and item (ii) of Theorem 4.15,∥∥M(λ)2
∥∥2

L2(Σ;C4)→L2(Σ;C4)

=
∥∥M(λ)2

∥∥
L2(Σ;C4)→L2(Σ;C4)

∥∥((α · ν)M(λ)(α · ν))2
∥∥
L2(Σ;C4)→L2(Σ;C4)

≥
∥∥M(λ)2((α · ν)M(λ)(α · ν))2

∥∥
L2(Σ;C4)→L2(Σ;C4)

=
1

4
‖M(λ)(α · ν)M(λ)(α · ν)‖L2(Σ;C4)→L2(Σ;C4) =

1

16
∀λ ∈ ρ(A0).

(5.8)
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This shows M− ≥ 1
4

and M− ≥ 1
16M−

. Now, let k > M−. The definition of M− implies

that there exists a λ0 ∈ ρ(A0) such that k > ‖M(λ0)2‖L2(Σ;C4)→L2(Σ;C4). Hence,

M(λ0)2 − kI4 = −k
(
I4 −

M(λ0)2

k

)
(5.9)

is invertible since ∥∥∥∥M(λ0)2

k

∥∥∥∥
L2(Σ;C4)→L2(Σ;C4)

< 1. (5.10)

Therefore, k ∈ ρ(M(λ0)2) and by applying Lemma 5.4 we get k ∈ F0. It remains to
consider the case 0 < k < 1

16M−
. We observe∥∥(M(λ)2)−1

∥∥
L2(Σ;C4)→L2(Σ;C4)

= 16
∥∥((α · ν)(M(λ)(α · ν))2

∥∥
L2(Σ;C4)→L2(Σ;C4)

= 16
∥∥M(λ)2

∥∥
L2(Σ;C4)→L2(Σ;C4)

.
(5.11)

Again, there exists a λ0 such that 0 < k < 1
16‖M(λ0)2‖L2(Σ;C4)→L2(Σ;C4)

. We notice

M(λ0)2 − kI4 = M(λ0)2(I4 − k(M(λ0)2)−1) (5.12)

is invertible due to ‖k((M(λ0)2)−1‖L2(Σ;C4)→L2(Σ;C4) < 1. Hence, k ∈ ρ(M(λ0)2) and
Lemma 5.4 yield k ∈ F0.

For C1 domains we can formulate a better result. Here, we use the compactness of
(α · ν)Cλ + Cλ(α · ν), which is proven in Theorem 3.18, as the main ingredient of the
proof. The statement reads as follows.

Lemma 5.6. If Ω is a C1 domain, then C \
{

1
4

}
⊂ F0.

Proof. We choose λ ∈ ρ(A0) and k ∈ C such that k 6= 1
4
. Theorem 4.15 (ii), Theorem

3.16 (iv) and Theorem 3.18 yield the compactness of

M(λ)2 − 1

4
I = C2

λ −
1

4
I = C2

λ + (Cλ(α · ν))2 = Cλ(α · ν) ((α · ν)Cλ + Cλ(α · ν)) . (5.13)

Furthermore, we can write

M(λ)2 − k = M(λ)2 − 1

4
I +

1− 4k

4
I4 (5.14)

with the isomorphic operator 1−4k
4
I4. Thus, due to Theorem 1.2, M(λ)2 − k has

Fredholm index zero.

Lemma 5.7. If η2 = τ 2 or 1
η2−τ2 ∈ F0 ∩ R, then I4 + (ηI4 + τβ)M(λ) is isomorphic

for λ ∈ C \ R.
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Proof. Let us start with the injectivity. Assume there exists an f 6= 0 ∈ L2(Σ;C4)
such that f + (ηI4 + τβ)M(λ)f = 0. We claim that in this case (λ, γ(λ)f) is an
eigenpair of Aη,τ . The definition of γ(λ), see (4.41), shows γ(λ)f ∈ ker (T − λ) and
Γ0γ(λ)f = f . Therefore,

Γ0γ(λ)f + (ηI4 + τβ)Γ1γ(λ)f = f + (ηI4 + τβ)M(λ)f = 0. (5.15)

Hence, (λ, γ(λ)f) is indeed an eigenpair of Aη,τ which contradicts λ ∈ C \ R. For the
surjectivity we study the product

(I4 + (ηI4 + τβ)M(λ))(I4 − (ηI4 + τβ)M(λ)). (5.16)

First, we rewrite I4 + (ηI4 + τβ)M(λ) in the form I4 + M(λ)(ηI4 − τβ) + K1, where
K1 := τ (βM(λ) +M(λ)β) is compact in L2(Σ;C4). The compactness of K1 can be
seen from combining Theorem 3.4, Theorem 3.10 (iii) and αjβ = −αjβ for j = 1, 2, 3.
Through

F := (I4 + (ηI4 + τβ)M(λ))(I4 − (ηI4 + τβ)M(λ))

= (I4 +M(λ)(ηI4 − τβ) +K1)(I4 − (ηI4 + τβ)M(λ))

= I4 −M(λ)(ηI4 − τβ)(ηI4 + τβ)M(λ) +K1(I4 − (ηI4 + τβ)M(λ))︸ ︷︷ ︸
=:K2

= I4 − (η2 − τ 2)M(λ)2 +K2

(5.17)

one immediately sees index(F ) = 0 if η2 − τ 2 = 0. Otherwise, F equals

(η2 − τ 2)

(
1

η2 − τ 2
I4 −M(λ)2

)
+K2. (5.18)

Due to 1
η2−τ2 ∈ F0, the expression 1

η2−τ2 I4 +M(λ)2 has Fredholm index zero. Applying

Theorem 1.2 shows us index(F ) = 0. We already know I4+(ηI4+τβ)M(λ) is injective.
The same holds for I4− (ηI4 + τβ)M(λ), otherwise it would contradict the symmetry
of A−η,−τ . Therefore, F is injective. Now, the Fredholm alternative, see Theorem 1.3,
implies the surjectivity of F . Hence, also I4 + (ηI4 + τβ)M(λ) is surjective.

Finally, we are able to state the main theorem of this chapter. It states sufficient
conditions on η and τ such that Aη,τ is self-adjoint. Moreover, properties of the
spectrum are listed. In view of the next theorem, we define

M+ := sup
λ∈(−|m|,|m|)

‖M(λ)‖L2(Σ;C4)→L2(Σ;C4). (5.19)

We observe M+ <∞ due to Theorem 3.16 (ii).
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Theorem 5.8. Let η2 = τ 2 or 1
η2−τ2 ∈ F0∩R, A0 be the free Dirac operator introduced

in Definition 4.1, and Aη,τ be given by (5.2). Then, the operator Aη,τ is self-adjoint
and for all λ ∈ ρ(A0) ∩ ρ(Aη,τ ) the resolvent is given by

(Aη,τ − λ)−1 = (A0 − λ)−1 + γ(λ)(I4 + (ηI4 + τβ)M(λ))−1(ηI4 + τβ)γ(λ)∗, (5.20)

where the γ-field and the Weyl function M are defined by (4.41). Moreover, there
holds

(i) σess(Aη,τ ) = (−∞,− |m|] ∪ [|m| ,∞),

(ii) σdisc(Aη,τ ) is finite,

(iii) max {|η + τ | , |η − τ |} < 1
M+
⇒ σdisc(Aη,τ ) = ∅,

(iv) min {|η + τ | , |η − τ |} > 4M+ ⇒ σdisc(Aη,τ ) = ∅ and

(v) λ ∈ σp(Aη,τ )⇔ −1 ∈ σp((ηI4 + τβ)M(λ)).

Proof. The statements about self-adjointness, the resolvent formula (5.20) and asser-
tion (v) are direct consequences of Lemma 5.7 and Theorem 1.15.
Proof of (i): Item (i) of Theorem 4.15 states that γ(λ)∗ is bounded as a mapping
from L2(R3;C4) to H1/2(Σ;C4). Thus, Theorem 2.27 proves the compactness of γ(λ)∗

as an operator from L2(R3;C4) to L2(Σ;C4). Therefore, (Aη,τ − λ)−1 − (A0 − λ)−1 is
compact, implying

σess(Aη,τ ) = σess(A0) = σ(A0) = (−∞,− |m|] ∪ [|m| ,∞) . (5.21)

Proof of (ii): In order to prove (ii), we proceed in the same way as in [10, Theorem
5.4 (ii)]. First, we note

σdisc(Aη,τ ) = σdisc(Aη,τ )∩(− |m| , |m|) is finite if σdisc(A
2
η,τ )∩

[
0,m2

)
is finite . (5.22)

Therefore, we prove that σdisc(A
2
η,τ ) is finite. Let a be the sesquilinear form defined by

a[u, v] := (Aη,τu,Aη,τv)L2(R3;C4) ∀u, v ∈ dom a := domAη,τ . (5.23)

One trivially sees that a is a densely defined sesquilinear form and bounded from below
by zero. Moreover, we notice that as a consequence of the closedness of Aη,τ , a is also
closed. Hence, [24, Chapter 6, Theorem 2.1.] shows that a is the form associated with
the operator A2

η,τ . Our goal is to construct a second form b such that

a[u] := a[u, u] ≥ b[u, u] =: b[u] ∀u ∈ dom a ⊂ dom b. (5.24)

If we can show that the operator B associated with b has only finite discrete spectrum
below the threshold m2, then also A2

η,τ has only finite discrete spectrum below m2, c.f.
[35, Corollary 12.3]. This would prove the desired statement.
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Let us start constructing b. First, we assume w.l.o.g. that Ω+ is bounded and choose
R2 > R1 > 0 such that Σ ⊂ B(0, R1). Now, let g1 ∈ C∞(R3) have the properties

0 ≤ g1 ≤ 1 in R3, g1 = 1 in B (0, R1) and supp g1 ⊂ B (0, R2) . (5.25)

Moreover, we define g2 :=
√

1− g2
1 and continue the proof in the same way as in [10,

Theorem 5.4 (ii)]. We notice gju ∈ dom a for all u ∈ dom a and j = 1, 2 and see

Aη,τ (gju) = gjAη,τu− i((α · ∇)gj)u for j = 1, 2. (5.26)

Applying (5.26) yields

a[gju] =(gjAη,τu− i((α · ∇)gj)u, (gjAη,τu− i((α · ∇)gj)u)L2(R3;C4)

=(gjAη,τu, gjAη,τu)L2(R3;C4) + (((α · ∇)gj)u), ((α · ∇)gj)u)L2(R3;C4)

− 2Re i(gjAη,τu, ((α · ∇)gj)u)L2(R3;C4)

=
(
g2
jAη,τu,Aη,τu

)
L2(R3;C4)

+
(
|∇gj|2 u, u

)
L2(R3;C4)

− 2Re i(Aη,τu, ((α · ∇)gj)u)L2(R3;C4) ∀u ∈ dom a and j = 1, 2.

(5.27)

Furthermore, we observe

(α · ∇)(g2
1 + g2

2) = 0 and define V := (|∇g1|2 + |∇g2|2). (5.28)

Hence, for all u ∈ dom a one has

a[u] =(Aη,τu,Aη,τu)L2(R3;C4) =
(
(g2

1 + g2
2)Aη,τu,Aη,τu

)
L2(R3;C4)

=a[g1u] + a[g2u]−
(
(|∇g1|2 + |∇g2|2)u, u

)
L2(R3;C4)

+ 2iRe
(
Aη,τu,

(
(α · ∇)(g2

1 + g2
2)
)
u
)
L2(R3;C4)

=a[g1u] + a[g2u]− (V u, u)L2(R3;C4)

=a[g1u] + a[g2u]−
(
V (g2

1 + g2
2)u, u

)
L2(R3;C4)

=a[g1u]− (V g1u, g1u)L2(B(0,R2);C4) + a[g2u]

− (V g2u, g2u)L2(R3\B(0,R1);C4).

(5.29)

We construct two further forms. Namely,

dom bint :=
{
u ∈ L2(B(0, R2);C4) : ũ ∈ dom a

}
bint[u, v] := a[ũ, ṽ]− (V u, v)L2(B(0,R2);C4) ∀u, v ∈ dom bint

(5.30)

and

dom bext := H1
0 (R3 \B(0, R1);C4)

bext[u, v] := a[ũ, ṽ]− (V u, v)L2(R3\B(0,R1);C4) ∀u, v ∈ dom bext,
(5.31)



5.1 Self-Adjointness and Spectral Properties of Aη,τ 81

where (̃·) denotes the zero extensions of the considered functions. Through a closer
look we see

bext[u, v] = ((−i(α · ∇) +mβ)u, (−i(α · ∇) +mβ)v)L2(R3\B(0,R1);C4)

− (V u, v)L2(R3\B(0,R1);C4)

=
(
(−i(α · ∇) +mβ)2u, v

)
L2(R3\B(0,R1);C4)

− (V u, v)L2(R3\B(0,R1);C4)

=
(
(−∆ +m2)u, v

)
L2(R3\B(0,R1);C4)

− (V u, v)L2(R3\B(0,R1);C4)

= (∇u,∇v)L2(R3\B(0,R1);C4⊗C3) +
(
(m2 − V )u, v

)
L2(R3\B(0,R1);C4)

(5.32)

for all u, v ∈ D(R3\B(0, R1);C4) and by density also for all u, v ∈ H1
0 (R3\B(0, R1);C4).

Moreover, V has compact support in B (0, R2) \ B(0, R1). With the same techniques
as in the proof of [11, Proposition 3.9.], one can show that the operator associated
with bext, Bext, has finite discrete spectrum below m2. Next, we consider the form bint.
The form is obviously sesquilinear and bounded from below by mbint

:= −maxV . In
order to prove the closedness of bint, we choose a sequence (ul)l∈N in dom bint such that

lim
l,k→∞

bint[ul − uk] + (1−mbint
)‖ul − uk‖2

L2(B(0,R2);C4) = 0. (5.33)

Thus, (ũl)l∈N is a sequence in dom a with

lim
l,k→∞

a[ũl − ũk] = 0 as well as lim
l,k→∞

‖ũl − ũk‖L2(R3;C4) = 0. (5.34)

Using the closedness of a yields the existence of w in dom a with

lim
l→∞

a[ũl − w] + ‖ũl − w‖2
L2(R3;C4) = 0. (5.35)

Since ũl = 0 a.e. in R3 \B(0, R2), we see through the L2 convergence that w = 0 a.e.
on R3 \B(0, R2). Combining these results and defining u := w|B(0,R2) leads to

u ∈ dom bint and lim
l→∞

bint[ul − u] + (1−mbint
)‖ul − u‖2

L2(B(0,R2);C4) = 0. (5.36)

Therefore, bint is closed. Now, dom bint ⊂ H1/2(Ω+;C4)⊕H1/2(Ω−∩B(0, R2);C4) and
[28, Theorem 3.27] show the compactness of the resolvent of Bint. Thus, Bint only has
discrete spectrum which only accumulates at infinity. Hence, the discrete spectrum
below m2 of Bint is finite. All in all, σdisc(Bint⊕Bext) ⊂ σdisc(Bint)∪ σdisc(Bext) proves
that the operator Bint ⊕ Bext, which is the operator corresponding to bint ⊕ bext, has
only finitely many discrete eigenvalues below m2. We define the operator

U : L2(R3;C4)→ L2(B(0, R2);C4)⊕ L2(R3 \B(0, R1);C4)

u 7→ g1u⊕ g2u.
(5.37)
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One can check that ranU is a closed subspace in L2(B(0, R2);C4)⊕L2(R3\B(0, R1);C4)
and that U is a unitary operator as a mapping from L2(R3;C4) to ranU . We introduce
an auxiliary form

bU [u, v] := bint ⊕ bext[u, v] for u, v ∈ dom bU := ranU ∩ (dom bint ⊕ dom bext). (5.38)

This form is sesquilinear and bounded from below by construction. Next, we check
that bU is densely defined in ranU . Therefore, we choose u ∈ ranU . Then, there
exists a sequence (ul)l∈N in L2(B(0, R2);C4)⊕ L2(R3 \ B(0, R1);C4) converging to u.
Defining wl := UU∗ul ∈ ranU and recalling U∗Uu = u yields

‖wl − u‖ranU = ‖U∗Uul − U∗Uu‖L2(B(0,R2);C4)⊕L2(R3\B(0,R1);C4)

≤ ‖ul − u‖L2(B(0,R2);C4)⊕L2(R3\B(0,R1);C4)

l→∞−−−→ 0.
(5.39)

This shows that bU is densely defined. Since convergence in the norm induced by

‖·‖L2(B(0,R2);C4)⊕L2(R3\B(0,R1);C4) + (1−mbint
−mbext)bint ⊕ bext[·], (5.40)

where mbext denotes the lower bound of the sesquilinear form bext, implies conver-
gence in the ‖·‖L2(B(0,R2);C4)⊕L2(R3\B(0,R1);C4)-norm, the closedness of bU follows from
the closedness of bint ⊕ bext and ranU . Hence, bU induces a self-adjoint operator BU

in the Hilbert space ranU . Furthermore, [35, Corollary 12.3] states that BU also only
has finite discrete spectrum below m2. The last quadratic form we need in this proof
is defined by

b[u, v] := bU [Uu, Uv] for u, v ∈ dom b := U∗(dom bU). (5.41)

The operator B corresponding to b has the form B = U∗BUU . Since U is a unitary
operator from L2(R3;C4) to ranU , the discrete spectra of B and BU coincide, implying
B has only finitely many discrete eigenvalues below m2. We obtain from (5.29)

a[u] = b[u] ∀u ∈ dom a ∩ dom b. (5.42)

It remains to prove dom a ⊂ dom b. Let u ∈ dom a ⊂ H
1/2,0
α (Ω+) ⊕ H

1/2,0
α (Ω−).

We immediately see g1u ∈ dom bint. Moreover, g2u ∈ H
1/2,0
α (R3 \ B(0, R1)) and

t∂(R3\B(0,R1))g2u = 0. Thus, g2u ∈ H1
0 (R3 \B(0, R1)) = dom bext by applying Corollary

2.38. We observe

U∗(w1 ⊕ w2) = g1w̃1 + g2w̃2 ∀(w1 ⊕ w2) ∈ L2(B(0, R2);C4)⊕ L2(R3 \B(0, R1);C4).
(5.43)

Therefore, u = U∗(g1u⊕ g2u) ∈ dom b which proves dom a ⊂ dom b and thereby also
concludes the proof of (ii).
In the remaining two parts of the proof we assume λ ∈ R \ σess(Aη,τ ) = (− |m| , |m|).
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Proof of (iii): One easily sees ηI4 + τβ is a diagonal matrix with diagonal entries η+ τ
and η − τ . Therefore, if max {|η + τ | , |η − τ |} < 1

M+
, then |ηI4 + τβ| < 1

M+
and

‖(ηI4 + τβ)M(λ)‖L2(Σ;C4)→L2(Σ;C4) < 1 for λ ∈ (− |m| , |m|). (5.44)

Hence, −1 ∈ ρ((ηI4 + τβ)M(λ)). Moreover, we obtain λ /∈ σdisc(Aη,τ ) from Theorem
1.15.
Proof of (iv): We immediately realize that under the given assumptions (ηI4+τβ)M(λ)
is invertible and ‖(M(λ))−1‖L2(Σ;C4)→L2(Σ;C4) = 4‖M(λ)‖L2(Σ;C4)→L2(Σ;C4) ≤ 4M+. Fur-
thermore,

I4 − (ηI4 + τβ)M(λ) = (ηI4 + τβ)M(λ)
(
(M(λ))−1(ηI4 + τβ)−1 − I4

)
. (5.45)

The norm of (ηI4 + τβ)−1 equals 1
min{|η+τ |,|η−τ |} <

1
4M+

. This leads to∥∥(M(λ))−1(ηI4 + τβ)−1
∥∥
L2(Σ;C4)→L2(Σ;C4)

< 1. (5.46)

Thus, −1 ∈ ρ((ηI4 + τβ)M(λ)). Applying Theorem 1.15 shows λ /∈ σdisc(Aη,τ ).

Remark 5.9. In case of a Lipschitz boundary Σ we have

η2− τ 2 /∈
[

1

M−
, 16M−

]
⇒ η2 = τ 2 or

1

η2 − τ 2
∈ F0∩R⇒ Aη,τ is self-adjoint. (5.47)

If the boundary Σ has even C1 regularity, there holds

η2 − τ 2 6= 4⇒ η2 = τ 2 or
1

η2 − τ 2
∈ F0 ∩ R⇒ Aη,τ is self-adjoint. (5.48)

Certainly, our results let us conjecture that (5.48) is also true for Lipschitz domains.
Unfortunately, we were not able to carry the proof of the important compactness result
regarding M(λ)2 − 1

4
I4, cf. Theorem 3.18, over to Lipschitz domains. It is also worth

mentioning that the critical case η2 − τ 2 = 4 is still open, even for smooth domains.
However, for two-dimensional Dirac operators with singular interactions on smooth
curves self-adjointness was proved in [11].

5.2 Particular Choices of the Interaction Strengths

η and τ

In order to emphasize the results of Theorem 5.8, we take a closer look at two special
cases which are included in Theorem 5.8. These special cases are covered by Theorem
5.8 for Lipschitz boundaries without additional regularity of the boundary. We con-
sider the confinement case, where η2− τ 2 = −4, and the case of purely Lorentz-scalar
δ-shell interactions, i.e. η = 0.
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Theorem 5.10. If η2 − τ 2 = −4, then the operator Aη,τ , which is defined by (5.2), is
self-adjoint and the domain can be decoupled into

domAη,τ =

{
f ∈ domT :

(
±i(α · ν) +

1

2
(ηI4 + τβ)

)
tΣf± = 0

}
. (5.49)

Proof. The self-adjointness is a direct consequence of Theorem 5.8 and Remark 5.9.
It remains to prove the representation of domAη,τ depicted in (5.49). Let us denote
the right-hand side of (5.49) Mη,τ . The inclusion Mη,τ ⊂ domAη,τ is obvious just by
looking at the definitions of Γ0 and Γ1. We start proving domAη,τ ⊂Mη,τ by choosing
a function f ∈ domAη,τ . Recalling the definitions of Γ0 and Γ1, cf. (4.21), we see

Γ0f + (ηI4 + τβ)Γ1f

=

(
i(α · ν) +

1

2
(ηI4 + τβ)

)
tΣf+ +

(
−i(α · ν) +

1

2
(ηI4 + τβ)

)
tΣf− = 0.

(5.50)

We multiply with −i(α · ν) + 1
2
(ηI4 − τβ) and obtain(

1 +
η2 − τ 2

4

)
tΣf+ +

((
−1 +

η2 − τ 2

4

)
I4 − i(α · ν)(ηI4 + τβ)

)
tΣf− = 0. (5.51)

Inserting our assumption η2 − τ 2 = −4 and multiplying with i
2
(α · ν) yields(

−i(α · ν) +
1

2
(ηI4 + τβ)

)
tΣf− = 0. (5.52)

Analogously, multiplying with i(α · ν) + 1
2
(ηI4 − τβ) gives us(

i(α · ν) +
1

2
(ηI4 + τβ)

)
tΣf+ = 0 (5.53)

and therefore f ∈Mη,τ . Hence, domAη,τ = Mη,τ .

Remark 5.11. The phenomenon stated in Theorem 5.10 is also studied in [3, Section 5],
[22, Remark 4.2.2.] and [7, Lemma 3.1]. It is a remarkable fact of the case η2−τ 2 = −4
since it implies that the operator Aη,τ can be decoupled into two independent opera-

tors defined on the domains
{
f± ∈ H1/2,0

α (Ω±) :
(
±i(α · ν) + 1

2
(ηI4 + τβ)

)
tΣf± = 0

}
.

The corresponding physical phenomenon is called confinement and means that the
boundary Σ is impermeable for particles.

Now, we consider the case of purely Lorentz-scalar δ-shell interactions. The results
listed below can be found e.g. in [22, Corollary 4.2.6.] or [23, Theorem 2.3], where these
kinds of operators are studied in further detail for domains with smooth boundaries.
The proof of Theorem 5.12 does not change for Lipschitz domains. However, we state
the proof for the sake of completeness.
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Theorem 5.12. Let τ ∈ R and A0,τ be the self-adjoint operator defined by (4.42).
Then, in addition to the assertions in Theorem 5.8, the following assertions hold:

(i) λ ∈ σ(A0,τ ) if and only if −λ ∈ σ(A0,τ ).

(ii) The discrete eigenvalues of A0,τ have even multiplicity.

(iii) If τm ≥ 0, then σdisc(A0,τ ) = ∅.

Proof. The ideas of the proof stem from [23, Theorem 2.3]. We start with assertion
(i) and introduce the so-called charge conjugation operator

C : L2(R3;C4)→ L2(R3;C4) (5.54)

f 7→ iβα2f. (5.55)

Keeping α2 = −α2 and β = β in mind, we obtain

C2f = iβα2iβα2f = −βα2βα2f = f. (5.56)

We claim f ∈ domA0,τ if and only if Cf ∈ domA0,τ . It is easy to check f ∈ domT if
and only if Cf ∈ domT . Therefore, let us investigate the boundary conditions. Using
(α · ν)α2 = α2(α · ν) and elementary algebraic operations yield

Γ0Cf + τβΓ1Cf = i(α · ν)iβα2(tΣf+ − tΣf−) + τβ
1

2
iβα2(tΣf+ + tΣf−)

= −iβα2i(α · ν) (tΣf+ − tΣf−)− 1

2
iβα2τβ (tΣf+ + tΣf−)

= −iα2β (Γ0f + τβΓ1f) ∀f ∈ domT.

(5.57)

This proves the claimed result. Next, we see, again through similar algebraic consid-
erations,

(A0,τCf)± = −i(α · ∇)iβα2f± +mβiβα2f± = −iβα2

(
−i(α · ∇)f± +mβf±

)
= −(CA0,τf)± ∀f ∈ domA0,τ .

(5.58)

Summing up the properties of C, we have

(a) C2 = I,

(b) f ∈ domA0,τ if and only if Cf ∈ domA0,τ and

(c) A0,τCf = −CA0,τf for f ∈ domA0,τ .

This implies λ ∈ σdisc(A0,τ ) if and only if −λ ∈ σdisc(A0,τ ). Moreover, we already know
that the essential spectrum of A0,τ is symmetric and therefore item (i) is true.
For the second assertion we introduce another helpful operator

T : L2(R3;C4)→ L2(R3;C4)

f 7→ −iγ5α2f
(5.59)
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called the time reversal operator with γ5 =

(
0 I2

I2 0

)
. The matrix γ5 satisfies the

relations γ5β = −βγ5 and γ5αk = αkγ5. In an analogous manner as for C, one can
show

(a) T 2 = −I,

(b) f ∈ domA0,τ if and only if T f ∈ domA0,τ and

(c) A0,τT f = T A0,τf for f ∈ domA0,τ .

Hence, (f, λ) is an eigenpair of Aη,τ if and only if (T f, λ) is an eigenpair of Aη,τ . As
a consequence of

(T f, g)L2(R3;C4) =

∫
R3

(
−iγ5α2f(x), g(x)

)
C4
dx =

∫
R3

if(x) · α2γ5g(x) dx

=

∫
R3

(iγ5α2g(x)) · f(x) dx =

∫
R3

(
iγ5α2g(x)

)
· f(x) dx

=

∫
R3

(
iγ5α2g(x), f(x)

)
C4
dx = −(T g, f)L2(R3;C4) ∀f, g ∈ L

2(R3;C4)

(5.60)

f and T f are orthogonal. Now, let λ be a discrete eigenvalue of A0,τ . We prove
assertion (ii) through constructing a basis of the eigenspace ker(A0,τ − λ). Therefore,
we choose an eigenfunction f1 corresponding to the eigenvalue λ. Then, T f1 is also
an eigenfunction which is orthogonal to f1. Now, two cases can occur. Either the
multiplicity of the eigenvalue λ is two or the multiplicity is larger than two. In the
first case we are done. Otherwise, there exists another eigenfunction f2 which is
orthogonal to span {f1, T f1}. We use (5.60) to see

(T f2, f1)L2(Σ;C4) = −(T f1, f2)L2(Σ;C4) = 0

and (T f2, T f1)L2(Σ;C4) = −
(
T 2f1, f2

)
L2(Σ;C4)

= 0.
(5.61)

Therefore, T f2 is orthogonal to span {f1, T f1, f2}. Again, two cases can occur and we
proceed iteratively. Since λ ∈ σdisc(A0,τ ), the multiplicity is finite and we can proceed
with this procedure until we have constructed an orthogonal basis for the eigenspace
of λ. Then, the eigenspace has even dimension by construction of the basis.
Last, we prove item (iii). For this purpose we examine the expression ‖A0,τf‖L2(R3;C4),
where f = f+ ⊕ f− ∈ domA0,τ . We observe

‖A0,τf‖2
L2(R3;C4)

≥ 2Re ((−i(α · ∇)f+)⊕ (−i(α · ∇)f−),mβf)L2(R3;C4) +m2‖f‖L2(R3;C4).
(5.62)

We notice if Re ((−i(α · ∇)f+)⊕ (−i(α · ∇)f−),mβf)L2(R3;C4) ≥ 0, then an eigenvalue
λ ∈ (− |m| , |m|) can not exist. This would yield σdisc(A0,τ ) = ∅ since Theorem 5.8 (i)
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shows σess(A0,τ ) = (−∞,− |m|] ∪ [|m| ,∞). In the following lines we split the expres-
sion, employ integration by parts and use (4.25) as well as the boundary conditions to
get

2Re ((−i(α · ∇)f+)⊕ (−i(α · ∇)f−),mβf)L2(R3;C4)

= (−i(α · ∇)f+,mβf+)L2(Ω+;C4) + (−i(α · ∇)f−,mβf−)L2(Ω−;C4)

+ (mβf+,−i(α · ∇)f+)L2(Ω+;C4) + (mβf−,−i(α · ∇)f−)L2(Ω−;C4)

= (−i(α · ν)tΣf+,mtΣβf+)L2(Σ;C4) + (i(α · ν)tΣf−,mtΣβf−)L2(Σ;C4)

= (Γ1f,Γ0mβf)L2(Σ;C4) − (Γ0f,Γ1mβf)L2(Σ;C4)

= −(βΓ1f,Γ0mf)L2(Σ;C4) − (Γ0f, βΓ1mf)L2(Σ;C4)

= −(βΓ1f,−τβmΓ1f)L2(Σ;C4) − (−τβΓ1f, βΓ1mf)L2(Σ;C4)

= 2τm‖Γ1f‖2
L2(Σ;C4) ≥ 0.

(5.63)

5.3 Differences of Powers of Resolvents

In this section we study the qualitative properties of differences of the form

(Aη,τ − λ)−l − (A0 − λ)−l, (5.64)

where λ ∈ C\R and l ∈ N. This is particularly important in scattering theory, because
by showing that (Aη,τ − λ)−l − (A0 − λ)−l belongs to the trace class for a l ∈ N, i.e.
the singular values of (Aη,τ − λ)−l − (A0 − λ)−l are summable, one can prove that the
wave operators of {Aη,τ , A0} are complete, see [24, Chapter Ten Theorem 4.12 and
Remark 4.13.].
The next two statements are based on Proposition 4.1.9. and Theorem 4.2.7 in [22].
The proofs are similar, but here we only assume Lipschitz continuity of the boundary
Σ and therefore we obtain slightly lesser regularity in terms of Schatten-von Neumann
ideals.

Lemma 5.13. Let the γ-field and the Weyl function M be given by (4.41). Then, the
following statements hold true:

(i) The operator-valued functions λ 7→ γ(λ) and λ 7→ γ(λ)∗ are holomorphic in ρ(A0)
and for k ∈ N0 and ε ∈ (0, 1)

dk

dλk
γ(λ) ∈ S 6

2k+1−ε ,∞
(L2(Σ;C4), L2(R3;C4)) and

dk

dλk
γ(λ)∗ ∈ S 6

2k+1−ε ,∞
(L2(R3;C4), L2(Σ;C4)).

(5.65)

In particular, dk

dλk
γ(λ) and dk

dλk
γ(λ)∗ are compact.
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(ii) The operator-valued function λ 7→ M(λ) is holomorphic in ρ(A0) and for k ∈ N
and ε ∈ (0, 1)

dk

dλk
M(λ) ∈ S 3

k−ε ,∞
(L2(Σ;C4), L2(Σ;C4)). (5.66)

Proof. We start the proof by showing that γ(λ),γ(λ)∗ and M(λ) are holomorphic.
First, we notice due to Theorem 4.15 that they are bounded and everywhere de-
fined operators. It suffices to show the statement for γ(λ)∗ = Γ1(A0 − λ)−1. For
the other two operator-valued functions the statement follows by taking the adjoint
and item (ii) from Theorem 1.13. We set d

dλ
γ(λ)∗ = Γ1(A0 − λ)−2 and see that for

|λ− µ| ‖A0 − λ‖L2(R3;C4)→H1(R3;C4) < 1 holds∥∥∥∥γ(λ)∗ − γ(µ)∗

λ− µ
− d

dλ
γ(λ)∗

∥∥∥∥
L2(R3;C4)→L2(Σ;C4)

≤
∥∥∥∥γ(λ)∗ − γ(µ)∗

λ− µ
− d

dλ
γ(λ)∗

∥∥∥∥
L2(R3;C4)→H1/2(Σ;C4)

≤
∥∥∥∥(A0 − λ)−1 − (A0 − µ)−1

λ− µ
− (A0 − λ)−2

∥∥∥∥
L2(R3;C4)→H1(R3;C4)

.

(5.67)

Next, we represent (A0 − µ)−1 as a Neumann series

(A0 − µ)−1 = (A0 − λ)−1

∞∑
l=0

(µ− λ)l(A0 − λ)−l. (5.68)

Applying this representation we see

(A0 − λ)−1 − (A0 − µ)−1

λ− µ
− (A0 − λ)−2 = −

∞∑
l=2

(µ− λ)l−1(A0 − λ)−l−1

= −(µ− λ)(A0 − λ)−3

∞∑
l=0

(µ− λ)l(A0 − λ)−l.

(5.69)

This expression can be bounded by

|λ− µ| ‖(A0 − λ)−1‖3
L2(R3;C4)→H1(R3;C4)

1− |λ− µ| ‖(A0 − λ)−1‖L2(R3;C4)→H1(R3;C4)

µ→λ−−→ 0 (5.70)

which shows that also (5.67) converges to zero for µ → λ. Hence, λ 7→ γ(λ)∗ is
holomorphic. Now, we prove the statements in item (i). Again, it suffices to show the
statement regarding the adjoint of γ(λ). Then, the second claim follows by taking the
adjoint. Item (ii) in Theorem 1.14 shows

dk

dλk
γ(λ)∗ = k! Γ1(A0 − λ)−k−1. (5.71)
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Using the Fourier transform we obtain that u ∈ domAk+1
0 is equivalent to

∞ >

∫
R3

∣∣((α · ξ) +mβ)k+1(Fu)(ξ)
∣∣2 + |(Fu)(ξ)|2 dξ

=

∫
R3

(|ξ|2 +m2)k+1 |(Fu)(ξ)|2 + |(Fu)(ξ)|2 dξ ≈ ‖u‖2
Hk+1(R3;C4).

(5.72)

Thus, ran (A0 − λ)−k−1 = domAk+1
0 = Hk+1(R3;C4). Let us choose R > 0 such that

Σ ⊂ B(0, R). Moreover, let g ∈ D(R3) such that 0 ≤ g ≤ 1, g = 1 in B(0, R) and
supp g ⊂ B(0, 2R). Then,

Q : Hk+1(R3;C4)→ Hk+1
0 (B(0, 2R);C4)

u 7→ (gu) |B(0,2R)

(5.73)

is well defined and bounded. Therefore,

dk

dλk
γ(λ)∗ = k! Γ1Q(A0 − λ)−k−1. (5.74)

Applying Corollary 2.17 yields

Q(A0 − λ)−k−1 ∈ S 3

k+1− 1+ε
2

(L2(R3;C4), H
1+ε

2 (B(0, 2R);C4)

= S 6
2k+1−ε ,∞

(L2(R3;C4), H
1+ε

2 (B(0, 2R);C4).
(5.75)

We also know from the trace theorem, see Theorem 2.25, and from the continuous
embedding of H

ε
2 (Σ;C4) in L2(Σ;C4) that Γ1 is bounded from H

1+ε
2 (B(0, 2R);C4) to

L2(Σ;C4). This leads to dk

dλk
γ(λ)∗ ∈ S 6

2k+1−ε ,∞
(L2(R3;C4), L2(Σ;C4)), implying (i).

Next, let us prove assertion (ii). Since G0 from Theorem 1.14 equals L2(Σ;C4) in our
case, (iii) from Theorem 1.14 yields

dk

dλk
M(λ) = k! Γ1(A0 − λ)−kγ(λ) = k

(
dk−1

dλk−1
γ(λ)∗

)
γ(λ). (5.76)

We apply (i) and Theorem 1.10 (iii) in order to get item (ii).

Theorem 5.14. Let η2 = τ 2 or 1
η2−τ2 ∈ F0∩R, A0 be the free Dirac operator introduced

in Definition 4.1, and Aη,τ be given by (5.2). Then, for l ∈ N, ε ∈ (0, 1) and λ ∈ C\R

(Aη,τ − λ)−l − (A0 − λ)−l ∈ S 3
l−ε ,∞

(
L2(R3;C4), L2(R3;C4)

)
(5.77)

holds true. In particular, (Aη,τ − λ)−l − (A0 − λ)−l belongs to the trace class ideal if
l ≥ 4.
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Proof. We start by rewriting (5.77) with the help of the product rule, cf. [26, eq.
(2.2.7)], in the following way

(Aη,τ − λ)−l − (A0 − λ)−l =
1

(l − 1)!

dl−1

dλl−1

(
(Aη,τ − λ)−1 − (A0 − λ)−1

)
=

1

(l − 1)!

dl−1

dλl−1

(
γ(λ) (I4 + (ηI4 + τβ)M(λ))−1 (ηI4 + τβ)γ(λ)∗

)
(5.78)

=
1

(l − 1)!

∑
q,r,s∈N0

q+r+s=l−1

dq

dλq
γ(λ)

dr

dλr
(I4 + (ηI4 + τβ)M(λ))−1 (ηI4 + τβ)

ds

dλs
γ(λ)∗.

At first, we take a closer look at the terms with r = 0. We already know from Lemma
5.7 that the operator (I4 + (ηI4 + τβ)M(λ))−1 is bounded in L2(Σ;C4). Moreover,

dq

dλq
γ(λ) ∈ S 6

2q+1−ε ,∞
(
L2(Σ;C4), L2(R3;C4)

)
and

ds

dλs
γ(λ)∗ ∈ S 6

2s+1−ε ,∞
(
L2(R3;C4), L2(Σ;C4)

)
.

(5.79)

Hence,

dq

dλq
γ(λ)

dr

dλr
(I4 + (ηI4 + τβ)M(λ))−1

(ηI4 + τβ)
ds

dλs
γ(λ)∗ ∈ S 3

l−ε ,∞
(
L2(R3;C4), L2(R3;C4)

) (5.80)

for r = 0. Next, we prove the case r ≥ 1. We claim

dr

dλr
(I4 + (ηI4 + τβ)M(λ))−1 ∈ S 3

r−ε̃ ,∞
(
L2(Σ;C4), L2(Σ;C4)

)
∀ ε̃ ∈ (0, 1). (5.81)

Let us prove the claim with induction. Therefore, we assume r = 1 at first. Then, the
inversion rule, cf. [26, eq. 2.2.8], yields

dr

dλr
(I4 + (ηI4 + τβ)M(λ))−1

= − (I4 + (ηI4 + τβ)M(λ))−1 (ηI4 + τβ)
d

dλ
M(λ) (I4 + (ηI4 + τβ)M(λ))−1 .

(5.82)

Thus, dr

dλr
(I4 + (ηI4 + τβ)M(λ))−1 ∈ S 3

r−ε̃ ,∞
(L2(Σ;C4), L2(Σ;C4)) for all ε̃ ∈ (0, 1)

according to Lemma 5.13. Now, let r ∈ N. We use the inversion rule and the product
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rule in order to see

dr+1

dλr+1
(I4 + (ηI4 + τβ)M(λ))−1

= − dr

dλr

(
((I4 + (ηI4 + τβ)M(λ))−1

(ηI4 + τβ)
d

dλ
M(λ) (I4 + (ηI4 + τβ)M(λ))−1

)
= −

∑
h,k,m∈N0
h+k+m=r

(
dh

dλh
(I4 + (ηI4 + τβ)M(λ))−1

(ηI4 + τβ)
dk+1

dλk+1
M(λ)

dm

dλm
(I4 + (ηI4 + τβ)M(λ))−1

)
.

(5.83)

Using the induction assumption we get

dj

dλj
(I4 + (ηI4 + τβ)M(λ))−1 ∈ S 6

2j− 2
3 ε̃
,∞
(
L2(Σ;C4), L2(Σ;C4)

)
(5.84)

for all ε̃ ∈ (0, 1) and j ∈ {1, . . . r}. Moreover, Lemma 5.13 (ii) yields

dk+1

dλk+1
M(λ) ∈ S 6

2(k+1)− 2
3 ε̃
,∞
(
L2(Σ;C4), L2(Σ;C4)

)
(5.85)

for all ε̃ ∈ (0, 1) and k ∈ N0. Applying (5.84), (5.85), Theorem 1.10 (iii) and the
boundedness of (I4 + (ηI4 + τβ)M(λ))−1 shows us

dr+1

dλr+1
(I4 + (ηI4 + τβ)M(λ))−1 ∈ S 3

r+1−ε̃ ,∞
(
L2(Σ;C4), L2(Σ;C4)

)
(5.86)

for all ε̃ ∈ (0, 1). Thus, the claim (5.81) holds true. We return to the expression

dq

dλq
γ(λ)

dr

dλr
(I4 + (ηI4 + τβ)M(λ))−1 ds

dλs
γ(λ)∗ (5.87)

for r ≥ 1. Again, Lemma 5.13 (i) proves dq

dλq
γ(λ) ∈ S 6

2q+1− 2
3 ε
,∞ (L2(Σ;C4), L2(R3;C4))

as well as ds

dλs
γ(λ)∗ ∈ S 6

2s+1− 2
3 ε
,∞ (L2(R3;C4), L2(Σ;C4)). Furthermore, we choose

ε̃ = 2
3
ε. Then, Theorem 1.10 (iii) gives us

dq

dλq
γ(λ)

dr

dλr
(I4 + (ηI4 + τβ)M(λ))−1

(ηI4 + τβ)
ds

dλs
γ(λ)∗ ∈ S 3

l−ε ,∞
(
L2(R3;C4), L2(R3;C4)

) (5.88)

for all q, r, s ∈ N0 with q + r + s = l − 1. Summing up these terms concludes the
proof.
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