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Abstract

We study nonlinear inverse problems of the form

F (x) = y ,

and their stable solution via iterative regularization methods, in particular by Newton-type
methods, which are well-known for their fast convergence for well-posed problems. A basic
step of Newton’s method consists of calculating the update ∆xk via solution of a linearized
equation

F ′(xδ
k)∆xδ

k = (yδ − F (xδ
k)),

which will in general be ill-posed if the nonlinear problem is. Thus, for ill-posed problems,
the linearized equations have to be solved by some regularization method. In particular for
large scale problems, e.g., inverse problems in partial differential equations, where F (x) is
only defined implicitly via the solution of a PDE, iterative methods have to be used for this
purpose. In order to keep the overall effort, i.e., the overall number of iterations, as small as
possible, appropriate preconditioning has to be applied.

We propose and analyse a general preconditioning strategy in Hilbert scales, and show that
the overall number of iterations can be reduced to about the square root by preconditioning.
Moreover, in many examples differential operators can be used as preconditioners, and thus
preconditioning is almost for free. The theoretical results are illustrated in numerical examples.
A comparison with preconditioned Landweber iteration shows that the iteration numbers can
be further reduced, if fast iterative methods, e.g., the ν−methods, are used for the solution of
the linearized problems.

1 Introduction

This paper is concerned with the solution of inverse problems of the form

F (x) = y, (1)

where F : D(F ) ⊂ X → Y is a continuous, Fréchet differentiable, nonlinear operator between
Hilbert spaces X and Y. We assume that a solution x† of (1) exists, i.e., F (x†) = y. Many
practically relevant inverse problems are ill-posed in the sense that their solution depends unstably
on data perturbations, i.e., a solution of

F (x) = yδ, yδ = y + ”noise” (2)

might be arbitrarily far away from x†; moreover, a solution of (2) will not even exist in general. In
order to recover reasonable approximations to x† from perturbed data yδ, so-called regularization
methods have to be used, cf., e.g., [3, 13, 15, 28]. For the analysis of the approximation quality of
the regularized solutions, we require that a bound on the data noise

‖y − yδ‖ ≤ δ (3)
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is available. As shown by Bakushinskii [1], regularization is in general not possible without such
information.

Important classes of inverse problems, e.g., inverse problems in nonlinear evolution or parame-
ter identification governed by partial differential equations, are inherently nonlinear. The probably
most investigated regularization method for solving ill-posed problems (2) is Tikhonov regulariza-
tion, cf. [14, 28], where a regularized solution xδ

α is defined by

‖F (x)− yδ‖2 + α ‖x− x∗‖2 → min, (4)

where the a-priori guess x∗ helps to select a special solution in case of non-uniqueness. One of the
main drawbacks of Tikhonov regularization is that an optimal choice of the regularization param-
eter α, e.g., by a discrepancy principle, requires to solve a sequence of minimization problems for
different regularization parameters α, and thus a numerical realization of Tikhonov regularization
is often computationally expensive. Moreover, the minimization problem (4) has to be solved it-
eratively if F is nonlinear. From this point of view, iterative regularization methods are a natural
alternative to Tikhonov regularization, and parameter choice via the discrepancy principle

‖F (xδ
k∗)− yδ‖ ≤ τδ < ‖F (xδ

k)− yδ‖, for all 0 ≤ k < k∗ (5)

just means to stop the iteration at the right time and requires no additional effort. In [20], nonlinear
Landweber iteration

xδ
k+1 = xδ

k + F ′(xδ
k)(yδ − F (xδ

k)) (6)

has been investigated and optimal convergence rates have been proven if the iteration is stopped
according to (5).

Due to their fast convergence for well-posed problems, Newton-type methods are very attractive
also for the solution of inverse problems (2). The basic step consist in determining the update
∆xδ

k = xδ
k+1 − xδ

k by solving the linearized problem

F ′(xδ
k) ∆xδ

k = yδ − F (xδ
k). (7)

Note that (7) is typically ill-posed, if (2) is, and thus some regularization method has to be applied.
Several variants of Newton’s method have been investigated in the framework of regularization
methods, among them the iteratively regularized Gauß-Newton (IRGN) [2, 6] and the Levenberg-
Marquardt method [18]; in both cases (7) is solved approximately by Tikhonov regularization.
Note that for parameter identification problems, the operators F and F ′ are usually defined only
implicitly via the solution of a PDE, cf. Example 1. In particular for large scale problems, only
the action of the operators on some element can really be calculated, and therefor the linearized
problems (7) have to be solved by some iterative method. The Newton-Landweber [21] or the
Newton-CG iteration [19] have this structure. We will recall the definition and review the most
important convergence results of a quite general class of Newton-type methods in Section 2.

One of the main drawbacks of iterative methods for ill-posed problems is that usually a large
number of iterations is required in order to get optimal reconstructions. This holds true for linear
and nonlinear problems as well. Even if only few Newton iterations are required, the iterative
solution of the linearized equations (7) still requires many iterations, cf. [22]. The iteration
numbers can be reduced in different ways, e.g., by

i) polynomial acceleration, e.g., ν−methods or cg to solve the linearized equations,

ii) preconditioning.

We will investigate a combination of both approaches below.
A quite general strategy for preconditioning of iterative regularization methods has been pro-

posed and analyzed in the framework of regularization in Hilbert scales in [11, 12]. It has been
shown that the number of iterations for semi-iterative regularization methods for linear problems
as well as for nonlinear Landweber iteration can be reduced to the square root, while still optimal
convergence rates are obtained.
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In this paper we show that Newton-type methods with iterative solution of the linearized equa-
tions – fully iterative Newton-type methods – can be accelerated by preconditioning in Hilbert
scales and that, as for nonlinear Landweber iteration, the total number of (inner) iterations can be
reduced to about the square root. Further acceleration can be achieved if (preconditioned) faster
semi-iterative methods, e.g., the ν−methods, are used for the iterative solution of the linearized
problems.

The outline of this article is as follows: In the next section we formulate a general class of
Newton-type methods and present the main convergence results. Section 3 recalls the definition
of a Hilbert scale and summarises some auxiliary results needed for the subsequent analysis. In
Section 4, we introduce a class of preconditioned Newton-type iterations and present the main
convergence results. We conclude with an illustration of the theoretical results by numerical tests.

2 Iterative regularization of inverse problems

As already mentioned above, assembling the full operator F respectively its linearization F ′ is not
possible in many ”real world inverse problems”. For illustration, we consider a simple example
concerned with parameter identification:

Example 1 (Reconstruction of a reaction term) Consider heat conduction in a body Ω ⊂
Rd, d = 2, 3 with spatially varying reaction term c. In the stationary case, the temperature
distribution u = u(x) is given as solution of

−∆u+ cu = f, in Ω

u = g, on ∂Ω,
(8)

where f denotes interior heat sources and g is the prescribed temperature at the boundary. We
define the parameter-to-output mapping F by F : c 7→ u(c), where u(c) denotes a solution of (8)
with parameter c. The inverse problem now consist in determining c from measurements of the
state u.

For further examples of parameter estimation problems, we refer to [5, 13], and the references
cited there. Note that the forward operator F is only defined implicitly via the solution of the
differential equation (8), which is the typical situation for inverse problems in PDEs. A method
for solving the inverse problem should only require applications of the operator F respectively F ′,
which amounts to solutions of PDE problems, and thus iterative methods are a natural choice in
this context. In case of Newton-type methods, also the linearized equations (7) have to be solved
by iterative (regularization) methods. For later reference, we briefly discuss iterative regularization
of linear inverse problems and recall the most important convergence results.

2.1 Linear problems

Let T : X → Y be a continuous linear operator. For the iterative solution of Tx = yδ, we consider
a class of semi-iterative methods (cf., e.g., [13, 16]) of the form

xδ
k = xδ

k−1 + µk(xδ
k−1 − xδ

k−2) + ωkT
∗(yδ − Txδ

k−1), k ≥ 1. (9)

Algorithms of this kind belong to the class of Krylov-subspace methods, i.e., the k-th iterate xδ
k−x0

lies in the k-th Krylov subspace Kk(T ∗T, T ∗yδ), where for some self-adjoint operator A

Kk(A, r) := span{r,Ar, . . . , Ak−1r}, k ≥ 1.

Consequently, xδ
k can be written as

xδ
k = x0 + gk(T ∗T )T ∗yδ, (10)
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where gk denotes the iteration polynomial of degree k − 1. For an appropriate choice of the
coefficients µj and ωj the residual polynomials rk(λ) := 1−λgk(λ) satisfy the usual usual properties
required in regularization theory, i.e.,

sup
λ∈[0,‖T∗T‖]

|λµrk(λ)| ≤ cµk
−σµ, for 0 ≤ µ ≤ µ0

sup
λ∈[0,‖T∗T‖]

|gk(λ)| ≤ Cg k
σ (11)

for some µ0 > 0 and σ ∈ {1, 2}, and hence the standard convergence results hold, i.e., for x†−x0 ∈
R((T ∗T )µ) for some 0 < µ ≤ µ0 − 1/2, one obtains the optimal rates

‖xδ
k − x†‖ = O(δ

2µ
2µ+1 ) and k∗ = O(δ−

2
σ(2µ+1) ), (12)

if the iteration is stopped according to the linear analogue of the discrepancy principle (5), see [13]
for details and proofs.

Example 2 (Landweber iteration) By choosing µi,j = 0 and ωj = 1, we obtain Landweber
iteration

xδ
k+1 = xδ

k + T ∗(yδ − Txδ
k), k ≥ 0 (13)

as a special instance of (9) satisfying (11) with σ = 1 and µ0 = ∞.The number of iterations needed
to obtain optimal convergence is k∗ = O(δ−

2
2µ+1 ).

Example 3 (ν−methods) A class of methods which requires much less iterations are the ν−methods
by Brakhage [7, 16], defined by (9) with

µk = (k−1)(2k−3)(2k+2ν−1)
(k+2ν−1)(2k+4ν−1)(2k+2ν−3) ,

ωk = 4 (2k+2ν−1)(k+ν−1)
(k+2ν−1)(2k+2ν−1) .

They satisfy (11) with σ = 2 and µ0 = ν, thus yielding optimal rates of convergence with the
stopping index bounded by k∗ = O(δ−

1
2µ+1 ), which is only the square root of iterations than

Landweber iteration. We want to mention that for methods satisfying (11) with σ = 2, the
condition on gk(λ) already follows from the one on rk(λ) by Markov’s inequality.

Even further acceleration is possible by adapting the iterative method to the data yδ, which is
utilized by conjugate gradient type methods, cf. [17].

2.2 Nonlinear problems

The convergence analysis of iterative regularization methods for nonlinear problems is much more
involved than in the linear case, and additional assumptions are required in order to guarantee
similar convergence results: First, the nonlinearity of the problem has to be restricted. Addition-
ally, due to the nonlinearity, the convergence results typically apply only in a neighborhood of the
solution x†. The following assumptions are widely used in the literature, cf, e.g., [20, 22]:

Assumption 1 (i) F is Fréchet-differentiable in a ball Bρ(x0) and satisfies ‖F ′(x)‖ ≤ 1.

(ii) F ′(x) = R(x, x̄)F ′(x̄), for all x, x̄ ∈ Bρ(x0) and ‖R(x, x̄)− I‖ ≤ CR‖x− x̄‖.

(iii) F has a solution x† ∈ Bρ(x0) satisfying

x† − x0 =
(
F ′(x†)∗F ′(x†)

)µ
w,

for some µ > 0 and ‖w‖ sufficiently small.
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Note that under condition (ii), the range of the adjoint of the Fréchet-derivative is invariant in a
neighborhood of x0, i.e., R(F ′(x)∗) = R(F ′(x̄)∗) for x, x̄ ∈ Bρ(x0). We refer to [9] for a discussion
of invariance conditions for nonlinear inverse problems.

The following convergence rates result for nonlinear Landweber iteration (6) can be found in
[20]:

Theorem 1 Let Assumption 1 hold for some ρ sufficiently small and µ ≤ 1/2. If the iteration (6)
is stopped according to the discrepancy principle (5) with τ sufficiently large, then

k∗ = O(δ−
2

2µ+1 ) and ‖xδ
k − x†‖ = O(δ

2µ
2µ+1 ). (14)

Next, we consider a solution of (2) is by Newton-type methods. As already mentioned, the
linearized problem (7) usually inherits the ill-posedness from the nonlinear problem (2), and hence
(7) has to be solved by some regularization method. We consider here a class of methods which
solve (7) by regularizing around the initial iterate x0. The iteratively regularized Gauß-Newton
method [4, 6] and the Newton-Landweber iteration [21] are of this form. Furthermore, in order to
avoid assembling of the linearized operators F ′, we consider in particular iterative methods for the
solution of the linearized systems. Alltogether, we are interested in fully iterative methods of the
form

xδ
n+1 = x∗ + gkn(F ′(xδ

n)∗F ′(xδ
n))F ′(xδ

n)∗[yδ − F (xδ
n)− F ′(xδ

n)(x∗ − xδ
n)], (15)

where kn denotes the termination index of the inner iteration in the nth Newton step. We only
mention that under the above assumptions (i) – (iii), the rates (14) also hold this kind of methods.
Under more restrictive assumptions on the iteration polynomials gk(λ), the analysis can be carried
out under a weaker nonlinearity condition, namely

(ii∗) F ′(x) = R(x, x̄)F ′(x̄) + Q(x, x̄), for all x, x̄ ∈ Bρ(x0) with ‖R(x, x̄) − I‖ ≤ CR‖x − x̄‖ and
‖Q(x, x̄)‖ ≤ CQ‖F (x)− F (x̄)‖.

For a comprehensive discussion of various regularized Newton-type methods and their convergence
theory, we refer to [22] and the references cited therein. In view of (14) one expects that a rather
large number of iterations is required to obtain optimal convergence rates for Newton-type methods
as well as for Landweber iteration. In Section 4, we will propose a preconditioned version of a fully
iterative Newton-type method, which allows to reduce the number of iterations to about the square
root. In order to analyse these methods, we will need some results concerning Hilbert scales.

3 Hilbert scales

In the following, we shortly introduce the notion of a Hilbert scale. For details we refer to [13,
Section 8.4] and [23]. Further on, let L be a densely defined, unbounded, selfadjoint, strictly
positive operator in X , and M :=

⋃
s∈R

D(Ls).

Definition 1 For x ∈ M and s ∈ R, let ‖x‖s := ‖Lsx‖. Then the Hilbert spaces Xs are defined
as the completion of M with respect to the norm ‖ · ‖s, and {Xs}s∈R is called the Hilbert scale
induced by L.

This construction implies that the interpolation inequality

‖x‖r ≤ ‖x‖
s−r
s−q
q ‖x‖

r−q
s−q
s (16)

holds for −∞ < q < r < s <∞ and x ∈ Xs. For illustration, we present two short examples:

Example 4 Let T : X → Y be a compact, injective, linear operator between Hilbert spaces X
and Y. Then L := (T ∗T )−1 induces the Hilbert scale {Xs}s∈R with

Xs := D((T ∗T )−s) = R((T ∗T )s) .

Note that in this case the spaces Xµ, µ ≥ 0, are the usual source sets for regularization in Hilbert
spaces.
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Example 5 Let Ω ⊂ Rn, n = 2, 3, be a bounded domain with sufficiently smooth boundary ∂Ω.
Then

−∆ : H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) → L2(Ω)

satisfies the conditions of Definition 1, i.e., L := −∆ induces a Hilbert scale {Xs}s∈R. Furthermore,
Xs = H2s

0 (Ω) for s ∈ [0, 3/4), which means that the Sobolev spaces Hs
0 are part of the Hilbert

scale {Xs}s∈R, cf. [25].

The following proposition will play an important role in our convergence analysis:

Proposition 1 Let T : X → Y be a linear operator and L be as above. Assume that for some
a > 0 and m > 0

‖Tx‖ ≤ m‖x‖−a, for all x ∈ X (17)

holds and that the extension of T to X−a (again denoted by T) is injective. Then the following
assertions hold: D((B∗B)−

ν
2 ) = R((B∗B)

ν
2 ) ⊂ Xν(a+s) for all ν ∈ [0, 1] with B := TL−s for some

s ≥ −a, and

‖(B∗B)
ν
2 x‖ ≤ mν‖x‖−ν(a+s) for all x ∈ X , (18)

‖(B∗B)−
ν
2 x‖ ≥ m−ν‖x‖ν(a+s) for all x ∈ D((B∗B)−

ν
2 ) . (19)

Condition (17) is equivalent to

R(T ∗) ⊂ Xa and ‖T ∗w‖a ≤ m‖w‖ for all w ∈ Y . (20)

Now assume that in addition to (17)

m‖x‖−ã ≤ ‖Tx‖, for all x ∈ X (21)

holds for some m > 0, ã > 0. Then it follows for all ν ∈ [0, 1] that

Xν(ã+s) ⊂ R((B∗B)
ν
2 ) = D((B∗B)−

ν
2 )

and

‖(B∗B)
ν
2 x‖ ≥ mν‖x‖−ν(ã+s) for all x ∈ X ,

‖(B∗B)−
ν
2 x‖ ≤ m−ν‖x‖ν(ã+s) for all x ∈ Xν(ã+s) . (22)

Moreover, (21) is equivalent to

Xã ⊂ R(T ∗) and ‖T ∗w‖ã ≥ m‖w‖

for all w ∈ N (T ∗)⊥ with T ∗w ∈ Xã.
(23)

The proof of this result is based on the inequality of Heinz; for details see [12].

Remark 1 By (20), it follows that R((T ∗T )
1
2 ) = R(T ∗) ⊂ Xa, and hence

R((T ∗T )µ) ⊂ X2aµ, for 0 ≤ µ ≤ 1
2
.

Note that in general, x† ∈ X2aµ will not imply x† ∈ R((T ∗T )µ). If, on the other hand, ‖Tx‖ ≥
m‖x‖−ã for some m > 0, then the converse inclusionR((T ∗T )µ) ⊃ X2ãµ holds. Finally, if T ∼ L−a,
i.e.,

m‖x‖−a ≤ ‖Tx‖ ≤ m‖x‖−a for x ∈ X , (24)

(which is the usual condition for regularization in Hilbert scales; cf. [13, 24, 27]) holds for some
a > 0 and 0 < m < m < ∞, then the spaces X2aµ and R((T ∗T )µ) coincide for |µ| ≤ 1/2. Such
norm equivalence conditions are important for preconditioning also for well-posed problems.
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4 Preconditioned Newton-type iterations

Before we formulate and analyse a preconditioned version of Newton-type iterations for inverse
problems, we shortly outline the framework of regularization in Hilbert scales on the basis of
Landweber iteration. We consider the following preconditioned version:

xδ
k+1 = xδ

k + L−2sT ∗(yδ − Txδ
k), k ≥ 0. (25)

Remark 2 The iteration (25) can be understood as standard Landweber iteration if T is consid-
ered as operator from Xs to Y. In fact, T ] := L−2sT ∗ is the adjoint with respect to these spaces.
Consequently, a general preconditioned iterative method can be written in the form

xδ
k = gk(L−2sT ∗T )T ∗yδ = L−sgk(B∗B)B∗yδ, B := TL−s.

Note that (25) can also be seen as standard Landweber iteration for the problem

Bz = yδ, x = Lsz, with B : X → Y. (26)

Here, Ls is considered as an operator from X to Xs in the second equation. The natural source
condition for (26) is z† ∈ R((B∗B)µ) or equivalently

x† = L−s(B∗B)µw, for some w ∈ X . (27)

Convergence (rates) for xδ
k in the space Xs follow immediately by standard results of regularization

theory. The important step in the analysis of regularization in Hilbert scales will be to derive
optimal rates with respect to the original norm in the space X .

Remark 3 Originally, regularization in Hilbert scales was introduced for the case s ≥ 0 in order
to overcome saturation effects of Tikhonov regularization and Landweber iteration for nonlinear
problems [24, 26]. The potential of preconditioning iterative methods by setting s < 0 has been
investigated more recently in [11, 12], and optimal convergence rates have been shown under rather
weak assumptions on the operator, namely

‖LaT ∗‖ ≤ m. (28)

Additionally, the optimal rates can be obtained with only the square root of iterations than needed
by standard methods.

Preconditioned versions of the Newton-type methods (15) introduced in Section 2 can be con-
structed by considering F respectively F ′ as operators from Xs to Y. Here, we will investigate
iterations of the form

xδ
n+1 = x0 + gkn

(L−2sA∗nAn)L−2sA∗n(yδ − F (xδ
n) +An(xδ

n − x0)

= x0 + L−sgkn
(B∗

nBn)B∗
n(yδ − F (xδ

n) +BnL
s(xδ

n − x0)),
(29)

where we use the notations An := F ′(xδ
n) and Bn := F ′(xδ

n)L−s. The stopping indices kn for the
inner iterations are assumed to increase with n, i.e., we assume that k0 > 0 and

kn−1 ≤ kn ≤ q kn−1 for n ∈ N, and lim
n→∞

kn = ∞, (30)

for some q > 1; cf. [22] for similar conditions. The aim of this section is to give a detailed
convergence analysis for the preconditioned iterations (29).

4.1 Basic Assumptions

The following conditions will be required for the convergence analysis of methods of the form (29):

Assumption 2 Similar to the condition (28) for linear problems, we require:
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(A1) ‖F ′(x†)x‖ ≤ m‖x‖−a for all x ∈ X , some a > 0, and m > 0. Moreover, the extension of
F ′(x†) to X−a is injective.

(A2) B := F ′(x†)L−s is such that ‖B‖X ,Y ≤ 1, where −a/2 ≤ s ≤ 0.

In order to cope with the nonlinear nature of the problem under consideration, we further require

(A3) x0 ∈ Bρ(x†) := {x ∈ X : ‖x− x†‖ ≤ ρ} ⊂ D(F ) for some ρ > 0.

(A4) For all x ∈ Bρ(x†) there exists a linear operator R(x, x†) with ‖I −R(x, x†)‖ ≤ CR < 1 such
that

F ′(x) = R(x, x†)F ′(x†) .

(A5) There exists an element ω > 0, w ∈ X with ‖w‖ ≤ ω such that

Ls(x† − x0) = (B∗B)
u−s

2(a+s)w .

Before we start our analysis we shortly discuss the conditions above.

Remark 4 Condition (A1) amounts to (28) in the linear case. Note that only a one-sided estimate
is needed, i.e., in view of Proposition 1 it suffices that F ′(x)∗ is sufficiently smoothing in terms
of the Hilbert scale {Xs}s∈R. (A2) is a simple scaling condition. (A3) is a standard closeness
condition, which is typically required for nonlinear problems. Condition (A4) is the nonlinearity
condition (ii) already used for the analysis of nonlinear Landweber iteration, cf. Section 2 and [20].
Finally, as outlined in Remark 2, condition (A5) is the natural source condition for regularization
in Hilbert scales. If the smoothness of the operator F ′(x†) can be estimated from below, i.e., if
there exist ã and m such that

m‖Lãy‖ ≤ ‖T ∗y‖ for all y ∈ Y,

then by Proposition 1, the source condition (A5) can be interpreted as condition in the Hilbert
scale {Xr}, respectively as standard condition x† ∈ R((T ∗T )µ) for some appropriate µ. We refer
to [10, 11, 12] for a detailed discussion.

4.2 A-priori estimates

We start with investigating the convergence behavior for the iteration (29) when stopped by an
a-priori rule. In our analysis, we will use the following auxiliary result:

Lemma 1 Let A, B, R be bounded linear operators between Hilbert spaces X and Y. If B = RA
with ‖I − R‖ < 1, then for every |ν| ≤ 1/2 and w ∈ X there exist positive constants c, c and an
element v ∈ X such that

(A∗A)νw = (B∗B)νv,

with c‖w‖ ≤ ‖v‖ ≤ c‖w‖.

Proof. Observing that R((A∗A)1/2) = R(A∗) = R(B∗) = R((B∗B)1/2), the result follows by
the inequality of Heinz and duality arguments (cf. [22] for details). �

Proposition 2 Let Assumption 2 hold with CR, ω sufficiently small, and (A7) hold for some
0 < u ≤ a+ 2s. Furthermore, let yδ ∈ Y satisfy (3), and let xδ

n denote the iterates defined by (29)
with rk satisfying (11) for some µ0 ≥ 1. Finally, let kn satisfy (30), and for η > 0 let N(δ) denote
the largest integer such that

kn ≤
(

1
ηω

δ

)− 2(a+s)
a+u

(31)

for all 0 ≤ n ≤ N(δ).
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Then there exists a positive constant Cη such that the estimates

‖xδ
n − x†‖ ≤ Cη k

− σu
2(a+s)

n ω, (32)

‖F ′(x†)(xδ
n − x†)‖ ≤ Cη k

−σ(u+a)
2(a+s)

n ω (33)

hold and xδ
n ∈ Bρ(x†) for 0 ≤ n ≤ N(δ).

Proof. We prove the assertions by induction: By assumption ‖x0 − x†‖ ≤ ω, and hence (32),
(33) holds for n = 0 if Cη is chosen large enough.

Now let (32), (33) hold for some 0 < n < N(δ) and assume that xδ
n ∈ Bρ(x†). Then with the

notation eδ
n := xδ

n − x† and (29), we get the closed form representation

eδ
n+1 = L−srkn

(B∗
nBn)Ls(x0 − x†) + L−sgkn

(B∗
nBn)B∗

n(yδ − y + ln),

with ln :=
∫ 1

0
[F ′(x†+ teδ

n)−F ′(xδ
n)] eδ

n dt. By the nonlinearity condition (A4) and Lemma 1, there
exists a wn ∈ X with ‖wn‖ ∼ ‖w‖ such that

(B∗B)
u−s

2(a+s)w = (B∗
nBn)

u−s
2(a+s)wn

and hence

‖eδ
n+1‖ ≤ c ‖(B∗

nBn)
u

2(a+s) rkn(B∗
nBn)wn‖

+ c ‖(BnB
∗
n)

a+2s
2(a+s) gkn

(BnB
∗
n)(yδ − y + ln)‖

for some c > 0. With (11) we obtain

c ‖(B∗
nBn)

u
2(a+s) rkn(B∗

nBn)wn‖ ≤ c1k
− σu

2(a+s)
n ω.

Next we estimate

‖ln‖ = ‖
∫ 1

0

[F ′(x† + teδ
n)− F ′(xδ

n)] eδ
n dt‖

≤ 2CR‖(F ′(x†)eδ
n‖ ≤ 2CRCηk

−σ(u+a)
2(a+s)

n ω ,

which together with (11) yields

c ‖(BnB
∗
n)

a+2s
2(a+s) gkn

(BnB
∗
n)(yδ − y + ln)‖ ≤ c2k

σa
2(a+s)
n δ + c3CRCηk

− σu
2(a+s)

n ω.

In order to establish (32) for n+ 1, one has to choose Cη such that

Cη(1− c3CR) ≥ c1 + c2η,

where we used the bound (31). Note that such a choice is always possible and independent of n as

long as c3CR < 1. Finally, if ω is sufficiently small, e.g., so small that Cηωk
− σu

2(a+s)
0 ≤ ρ, then (32)

yields xδ
n+1 ∈ Bρ(x†).

The second estimate (33) follows in a similar manner. �

Proposition 2 immediately implies the following convergence rates in terms of δ:

Corollary 1 Let the assumptions of Proposition 2 be valid and let N(δ) be chosen as in (31).
Then the following rates hold:

‖xδ
N(δ) − x†‖ = O(δ

u
a+u ) and ‖F ′(x†)(xδ

N(δ) − x†)‖ = O(δ). (34)

Proof. The assertion follows immediately from the previous proposition. �
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Remark 5 The rates (34) even hold in the slightly stronger norm |||x||| := ‖(B∗B)
s

2(a+s)Lsx‖ and
are order optimal with respect to this norm and the source condition (A5); we refer to [11, 12] for a
detailed discussion. For the choice kn ∼ k0q

n with q > 0, the number of (outer) Newton iterations
is O(1 + | log δ|) and hence the overall number of inner iterations is bounded by

k∗ =
N(δ)∑
n=0

kn = O(δ−
2(a+s)

a+u ), respectively k∗ =
N(δ)∑
n=0

kn = O(δ−
a+s
a+u )

for the preconditioned Newton-Landweber iteration and the preconditioned Newton-ν-methods,
respectively. With s = −a/2, the resulting iteration numbers can be reduced to the square root by
preconditioning, which corresponds to the acceleration effect already observed for linear problems
and for nonlinear Landweber iteration [11, 12]. Moreover, the preconditioned Newton-ν-methods
yield optimal convergence with only the square root of iterations that would be needed for the
preconditioned Landweber iteration and only the fourth root of iterations needed for the standard
Landweber iteration. We will demonstrate this substantial speed-up in numerical examples in
Section 5.

4.3 A-posteriori stopping

The a-priori results of Proposition 2 and Corollary 1 are not of great use per-se, since in general
one does not know the smoothness of the solution, i.e., for which u the source condition (A5) holds.
However, the estimate of Proposition 2 will be used to prove convergence rates, when the iteration
is stopped according to the following generalized discrepancy principle (cf. [22]):

Stopping rule: For some τ > 1 let n∗ = n(δ, yδ) be the smallest integer such that

max{‖yδ − F (xδ
n∗−1)‖, ‖yδ − F (xδ

n∗)‖} ≤ τδ. (35)

According to (35), the (outer) Newton iteration is stopped, when the first time two consecutive
residuals are less than τδ. The following proposition guarantees stability of our class of precondi-
tioned Newton-type methods (29) equipped with the above criterion:

Proposition 3 Let the assumptions of Proposition 2 be valid, and the iteration (29) be stopped
according to (35) with τ sufficiently large. Then, the iteration is well-defined and n∗ ≤ N(δ) with
N(δ) as in (31).

Proof. For some η > 0, Proposition 2, (3) and (A4) imply that

‖F (xδ
n)− yδ‖ ≤ δ + (1 + CR)‖F ′(x†)eδ

n‖ ≤ δ + (1 + CR)Cηk
− u+a

2(a+s)
n ω

for all 0 ≤ n ≤ N(δ). This together with (30) and (31) yields the estimate

‖F (xδ
n)− yδ‖ ≤ δ [1 + (1 + CR)Cηη

−1q−
a+u
a+s ] (36)

for n = N(δ) − 1 and n = N(δ). Thus, if τ is larger than the constant in square brackets above,
then n∗ ≤ N(δ) and, due to Proposition 2, the iteration is well-defined up to the stopping index
n∗. �

We are now in the position to prove the following convergence rates result:

Theorem 2 Let the assumptions of Proposition 2 be satisfied, and the iteration (29) be stopped
after n∗ = n(δ, yδ) steps according to the stopping rule (35) with some τ sufficiently large. Then

‖xδ
n∗ − x†‖ = O(δ

u
a+u ).
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Proof. We use the notation A = F ′(x†) and An = F ′(xδ
n). Observe, that by (3) and (A4) the

following estimate holds for n = n∗ and n = n∗ − 1:

‖Ane
δ
n‖ ≤ (1 + CR)‖Aeδ

n‖

≤ 2 ‖y − F (xδ
n)−

∫ 1

0

[F ′(xδ
n − teδ

n)− F ′(x†)] eδ
n dt‖

≤ 2 [δ + ‖F (xδ
n)− yδ‖+ CR

1−CR
‖Ane

δ
n‖],

and hence with (35), CR < 1/2 and (36)

‖Ane
δ
n‖ ≤ c1δ, n ∈ {n∗ − 1, n∗} (37)

for some positive constant c1. Next, by (29), and denoting n = n∗ − 1, Bn = AnL
−s we have

Ane
δ
n∗ = Bnrkn(B∗

nBn)Ls(x0 − x†) +Bngkn(B∗
nBn)B∗

n[yδ − F (xδ
n) +Ane

δ
n)] .

Thus, we obtain with (A4), (37), and (35) that

‖Bnrkn(B∗
nBn)Ls(x0 − x†)‖

= ‖Ane
δ
n∗ −BnB

∗
ngkn

(B∗
nBn)[yδ − F (xδ

n) +An(xδ
n − x†)]‖

≤ 1+CR

1−CR
‖An∗e

δ
n∗‖+ c2(‖yδ − F (xδ

n)‖+ ‖Ane
δ
n‖) ≤ c3δ,

for some c2, c3 > 0. Finally, using the above estimates, the representation (29), (A5), and n = n∗−1
the error can be estimated as follows:

‖eδ
n∗‖ ≤ ‖L−srkn

(B∗
nBn)(B∗B)

u−s
2(a+s)w‖+ ‖L−sgkn

(B∗
nBn)B∗

n(yδ − F (xδ
n) +Ane

δ
n)‖

≤ c4
(
‖(B∗

nBn)
u

2(a+s) rkn
(B∗

nBn)wn‖

+ ‖gkn
(BnB

∗
n)(BnB

∗
n)

a+2s
2(a+s) ‖(τδ + ‖Ane

δ
n‖

)
≤ c5

(
‖rkn

(B∗
nBn)(B∗

nBn)
u

2(a+s)wn‖+ k
σa

2(a+s)
n δ

)
for some constants c4, c5 > 0. Using the interpolation inequality, the above estimates and (A5),
we obtain

‖(B∗
nBn)

u
2(a+s) rkn(B∗

nBn)wn‖ ≤ c6‖(B∗
nBn)

u+a
2(a+s) rkn(B∗

nBn)wn‖
u

a+u ‖wn‖
a

a+u

≤ c6‖Bnrkn(B∗
nBn)Ls(x0 − x†)‖

u
a+u ‖wn‖

a
a+u

≤ c7δ
u

a+uω
a

a+u

for some positive constants c6 and c7. This together with Proposition 3 and (31) completes the
proof. �

Remark 6 We want to mention that the above results can be strengthened in several directions:
First, the rates can be proven in a slightly stronger norm, cf. Remark 5, and then are order
optimal; see [11, 12]. For nonlinear Landweber iteration, the convergence rates can proven under
more flexible nonlinearity conditions, e.g.,

F ′(x) = R(x̄, x)F ′(x̄) +Q(x̄, x)

with
‖I −R(x, x†)‖ ≤ CR < 1, ‖Q(x, x†)‖X s

−b,Y ≤ CQ |||x− x†|||b−a,

for some b ∈ [0, a], β ∈ (0, 1], and CR, CQ > 0, where X s
b is the space equipped with the norm

‖x‖X s
r

= |||x|||r = ‖(B∗B)
s−r

2(a+s)Lsx‖, cf. [10, 12]. We conjecture that at least for the preconditioned
IRGN and Newton-Landweber method, the convergence rates can be proven under this assumption
instead of (A4). The generalized discrepancy principle (35) was already used in [22] for the proof
of optimal convergence rates of the IRGN method.
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Remark 7 Another very efficient fully iterative Newton-type method can obtained by solving the
linear Tikhonov regularization problems of IRGN with a conjugate gradient method. We only
mention that our theory applies literally to IRGN by replacing gk in (29) by gα. As a consequence
of Propositions 2 and 3 one obtains that the regularization parameter α∗, where the discrepancy
principle is reached, is about the square-root from the one without preconditioning. A larger value
of α implies that the spectrum of the operator (L−2sT ∗T+αI) (which appears in the preconditioned
iteration) clusters at a larger value and thus fewer iterations are required to solve the linearized
systems approximately. We refer to [10] for an analysis of cgne in Hilbert scales.

5 Numerical test examples

In this Section we verify the Assumptions (A1)-(A5) needed in our convergence for some test exam-
ples. Moreover, we illustrate the theoretical results by numerical experiments. For the numerical
tests, the corresponding equations are discretized by standard finite elements. In order to avoid
inverse crimes, the data y are computed on a finer grid and additionally perturbed by uniformly
distributed random noise.

Example 6 (A nonlinear Volterra-Hammerstein integral equation) The following integral
equation of the first kind is a special case from an example discussed in [20, 26]: Let F : H1[0, 1] →
L2[0, 1] be defined by

(F (x))(s) =
∫ s

0

x(t)2dt.

The adjoint of the Fréchet derivative is then given by

F ′(x)∗w = 2A−1

[
x(·)

∫ 1

·
w(t)dt

]
,

where A : D(A) = {ψ ∈ H2[0, 1] : ψ′(0) = ψ′(1) = 0} → L2[0, 1] is defined by Aψ := −ψ′′ + ψ;
note that A−1 is the adjoint of the embedding operator from H1[0, 1] in L2[0, 1]. Assuming that
x† ≥ γ > 0 a.e., we get

R(F ′(x†)∗) = {w ∈ H3[0, 1] : w′(0) = w′(1) = 0, w(1) = w′′(1)},

and
‖F ′(x†)∗w‖H3 ∼ ‖w‖, for all w ∈ Y.

As a Hilbert scale we choose the one induced by L2x := −x′′ + x over the space X = H1[0, 1] with
X1 = {x ∈ H2[0, 1] : x′(0) = x(1) = 0}. With this choice, we have

R(F ′(x†)∗) ⊂ X2

and hence, by Proposition 1, (A1) holds with a = 2. Therefore, we set s = −1, which yields

L−2sF ′(x)∗w = 2x(·)
∫ 1

·
w(t)dt; (38)

in particular, we have
F ′(x) = R(x, x†)F ′(x†)

with
‖R(x, x†)− I‖ ≤ C‖x− x†‖0,

which proves (A4) with CR arbitrarily small for x close to x†.
Note that in this example the application of the Hilbert scale operator L−2s in fact makes the

iteration even simpler, i.e., application of A−1, which is a main part or the numerical effort for
calculating F ′(x)∗, can be avoided.
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For a numerical test, we set

x†(t) :=
{

1/2 + t, 0 ≤ t ≤ 1/2
3/2− t, 1/2 < t ≤ 1 and x0 = 1/2,

and compare the performance of Landweber iteration, the Newton-Landweber and the Newton-ν
method, and their preconditioned equivalents. The iteration numbers realized in the numerical
tests are listed in Table 1.

δ/‖y‖ lw new-lw new-ν hs-lw new-hs-lw new-hs-ν
0.02 52 6(126) 5(62) 5 3(14) 3(14)
0.01 110 7(254) 5(62) 11 4(30) 3(14)
0.005 278 9(1022) 6(126) 18 4(30) 3(14)
0.002 711 10(2046) 7(254) 29 5(62) 4(30)
0.001 1615 11(4094) 7(254) 40 6(126) 4(30)
η -1.14 -1.18 -0.56 -0.67 -0.67 -0.31

Table 1: Iteration numbers (outer and total inner iterations) for iterative regularization methods
and their Hilbert-scale equivalents and the corresponding rates k∗ = O(δη); parameters τ = 2.1,
ν = 2 and Nt = 501.

Note, that as predicted by the theory the rates of the overall iteration numbers are significantly
smaller for the preconditioned iterations than for the standard iterations. We only mention that
all iterations yield similar reconstructions and convergence rates ‖xδ

k∗ − x†‖ ∼ δ0.2.

Example 7 (Parameter identification) In this example, which is taken from [20], we try to
identify the parameter c in

−∆u+ cu = f in Ω,
u = g in ∂Ω, (39)

from distributed measurements of the state u. Here, Ω is an interval in R or a bounded domain
in R2 or R3 with smooth boundary or a parallelepiped. The right hand side is assumed to satisfy
f ∈ L2(Ω) and the boundary data g ∈ H3/2(∂Ω). If u would be known exactly, then one could
reconstruct c by

c =
f + ∆u

u
, (40)

which in case of noisy measurements uδ is unstable due to differentiation. (40) already reveals
another possible source of instability, namely division by u, which may cause noise amplification
where u is close to zero. Note that if u = 0 on a subdomain, then c is not uniquely determined by
(39) there, and hence cannot be reconstructed.

We consider the inverse problem as abstract operator equation, and define the nonlinear
parameter-to-solution mapping

F : D(F ) ⊂ L2(Ω) → L2(Ω)

with F (c) = u(c), and u = u(c) denoting the solution of (39) with parameter c. One can show (cf.
[8]) that the operator F is well-defined and Fréchet differentiable on

D(F ) := {c ∈ L2(Ω) : ‖c− c‖ ≤ γ for some c ≥ 0 a.e.}

where u(c) denotes the solution of (39), and γ > 0 has to be sufficiently small. By standard
arguments one can show that

F ′(c)∗w = u(c)A(c)−1w,

where A(c) : H2(Ω) ∩H1
0 (Ω) → L2(Ω) is defined by A(c)u = −∆u+ cu.

Next we choose an appropriate Hilbert scale namely the one induced by L2 = −∆ over X =
L2(Ω) with X2 := H2(Ω) ∩H1

0 (Ω). This yields

R(F ′(c)∗) ⊂ X2,
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which already proves (A1). If furthermore u† ≥ γ > 0 a.e., then we even have

‖F ′(c†)∗w‖2 ∼ ‖w‖0,

and according to Remark 4, (A5) can be interpreted in terms of the spaces Xu. In order to show
(A4), we use that

[F ′(c)∗ − F ′(d)∗]w = u(c)[A(c)−1 −A(d)−1]w + [u(d)− u(c)]A(d)−1w

= : r1 + r2.

The terms r1 and r2 can be further estimated by

‖r1‖2 ≤ C‖u(c)‖H2‖[A(c)−1 −A(d)−1]w‖H2

≤ C1‖u(c)‖H2‖c− d‖L2‖w‖L2

and

‖r2‖2 ≤ ‖u(d)− u(c)‖H2‖A(d)−1w‖H2

≤ C2‖c− d‖L2‖w‖L2 .

Here we used that A(c) is an isomorphism between L2(Ω) and H2(Ω)∩H1
0 (Ω). If u† ≥ γ > 0, this

yields (A4) with CR ≤ C‖c0 − c†‖.
In our numerical test, we try to reconstruct the reaction term

c† = sign(x− 0.5) · sign(y − 0.5)

on Ω = [0, 1]2 and start with the initial guess c0 = 0. Obviously c† is non-smooth and hence
one expects that a large number of iterations is necessary for a reasonable reconstruction. For
comparison, we apply the Newton-Landweber and the Newton-ν method with their preconditioned
(s = −1) equivalents. The iteration number achieved in the numerical tests are summarized in
Table 2.

δ
‖uδ−u(c0)‖ new-lw new-ν hs-new-lw hs-new-ν

0.08 5(70) 3(25) 1(5) 1(5)
0.04 8(266) 5(70) 2(13) 2(13)
0.02 11(931) 7(173) 4(43) 3(25)
0.01 13(2114) 8(266) 5(70) 3(25)
0.005 16(7174) 9(406) 6(111) 4(43)
η -1.63 -0.99 -1.13 -0.71

Table 2: Iteration numbers for iterative regularization methods and their Hilbert-scale equivalents
and the corresponding rates k∗ = O(δη); parameters τ = 2.1, ν = 2.

As expected, the overall iteration numbers can be reduced substantially by preconditioning.
The numerical reconstructions are similar for all methods, and the observed convergence rates are
approximately ‖xδ

k∗ − x†‖ = O(δ0.2).
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