Selfadjoint Schrödinger operators on the half-space with compactly supported Robin boundary conditions

Jussi Behrndt¹, Christian Kühn^{2,*}, and Jonathan Rohleder¹

¹ Institut für Numerische Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria

² Institut für Mathematik, MA 6-4, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

Schrödinger differential operators on a half-space with compactly supported Robin boundary conditions are studied.

Copyright line will be provided by the publisher

1 Introduction

We investigate realizations of the differential expression $-\Delta + V$ on the half-space $\mathbb{R}^n_+ = \{(x', x_n) : x' \in \mathbb{R}^{n-1}, x_n > 0\}, n \ge 2$, with a real-valued, bounded potential V. More precisely, we study the differential operator

$$A_g u = -\Delta u + V u, \quad \operatorname{dom} A_g = \left\{ u \in H^{3/2}_{\Delta}(\mathbb{R}^n_+) : \partial_{\nu} u|_{\mathbb{R}^{n-1}} = g \cdot (u|_{\mathbb{R}^{n-1}}) \right\},\tag{1}$$

in $L^2(\mathbb{R}^n_+)$, where $H^{3/2}_{\Delta}(\mathbb{R}^n_+) = \{u \in H^{3/2}(\mathbb{R}^n_+) : \Delta u \in L^2(\mathbb{R}^n_+)\}$ and $g : \mathbb{R}^{n-1} \to \mathbb{R}$ is a bounded, real function with compact support. The aim of the present note is to show that A_g is a selfadjoint, compact perturbation in the resolvent sense of the selfadjoint realization A_N of $-\Delta + V$ with Neumann boundary conditions. In particular this guarantees that A_g and A_N have the same essential spectrum. We point out that the latter can still be proved under slightly weaker assumptions on g, see [10] for a more general approach and [8] for a result with a more regular g in dimension n = 2. Our proofs make use of techniques which were originally developed in [2, 3] for the treatment of elliptic differential operators on domains with a compact boundary. For further recent developments in this area we refer the reader to [1,4,6,11,12].

2 Preliminaries

In this section we fix some notation and recall some known facts on Sobolev spaces and Schrödinger operators; proofs and further details can be found in [9] and, e.g., [7, Chapter 9]. Let $K \subset \mathbb{R}^{n-1}$ be a compact set and let $H^s(\mathbb{R}^n_+)$ and $H^s(K) = \{f|_K : f \in H^s(\mathbb{R}^{n-1})\}$ be the Sobolev spaces of order s > 0 on \mathbb{R}^n_+ and K, respectively. For $u \in H^{3/2}_{\Delta}(\mathbb{R}^n_+)$ we denote by $u|_{\mathbb{R}^{n-1}}$ the trace of u on the boundary \mathbb{R}^{n-1} of \mathbb{R}^n_+ , by $\partial_{\nu} u|_{\mathbb{R}^{n-1}} = -\frac{\partial u}{\partial x_n}|_{\mathbb{R}^{n-1}}$ the derivative of u along the outer normal vector field on \mathbb{R}^{n-1} , and by $u|_K$ and $\partial_{\nu} u|_K$, $\partial_{\nu} u|_{\mathbb{R}^{n-1}\setminus K}$ their restrictions to K and $\mathbb{R}^{n-1} \setminus K$, respectively. The mappings Γ_0 and Γ_1 given by

$$\Gamma_0: H^{3/2}_{\Delta}(\mathbb{R}^n_+) \to L^2(K), \quad \Gamma_0 u = \partial_{\nu} u|_K \quad \text{and} \quad \Gamma_1: H^{3/2}_{\Delta}(\mathbb{R}^n_+) \to H^1(K), \quad \Gamma_1 u = u|_K$$
(2)

are surjective.

Here and in the following let $V \in L^{\infty}(\mathbb{R}^n_+)$ be real-valued. It is well known that the *Neumann operator*

$$A_N u = -\Delta u + V u, \qquad \operatorname{dom} A_N = \left\{ u \in H^{3/2}_{\Delta}(\mathbb{R}^n_+) : \partial_{\nu} u|_{\mathbb{R}^{n-1}} = 0 \right\}$$

is a selfadjoint realization of $-\Delta + V$ in $L^2(\mathbb{R}^n_+)$, and by elliptic regularity dom $A_N \subset H^2(\mathbb{R}^n_+)$ holds. Note that this yields the decomposition $\{u \in H^{3/2}_{\Delta}(\mathbb{R}^n_+) : \partial_{\nu}u|_{\mathbb{R}^{n-1}\setminus K} = 0\} = \operatorname{dom} A_N + \mathcal{N}_{\lambda}$ for each λ in the resolvent set $\rho(A_N)$ of A_N , where $\mathcal{N}_{\lambda} := \{u \in H^{3/2}(\mathbb{R}^n_+) : -\Delta u + Vu = \lambda u, \partial_{\nu}u|_{\mathbb{R}^{n-1}\setminus K} = 0\}$. This, together with (2), ensures that the *Poisson* operator

$$\gamma(\lambda): L^2(K) \to L^2(\mathbb{R}^n_+), \quad \partial_\nu u_\lambda|_K \mapsto u_\lambda, \quad u_\lambda \in \mathcal{N}_\lambda, \tag{3}$$

and the Neumann-to-Dirichlet operator

$$M(\lambda): L^2(K) \to L^2(K), \quad \partial_\nu u_\lambda|_K \mapsto u_\lambda|_K, \quad u_\lambda \in \mathcal{N}_\lambda, \tag{4}$$

are well-defined for each $\lambda \in \rho(A_N)$. Moreover, $\gamma(\lambda)$ and $M(\lambda)$ are bounded and ran $M(\lambda) = H^1(K)$ holds.

^{*} Corresponding author: Email ckuehn@mail.math.tu-berlin.de

3 Selfadjoint Schrödinger operators on the half-space

The following theorem is the main result of this note. For $g \in L^{\infty}(\mathbb{R}^{n-1})$, supp g = K, we denote by G the operator of multiplication with the function $g|_K$ in $L^2(K)$.

Theorem 3.1 Let $K \subset \mathbb{R}^{n-1}$ be a compact set and let $g \in L^{\infty}(\mathbb{R}^{n-1})$ be a real-valued function with supp g = K. Then the operator A_g in (1) is selfadjoint in $L^2(\mathbb{R}^n_+)$ and $\lambda \in \rho(A_N)$ is an eigenvalue of A_g if and only if 1 is an eigenvalue of $GM(\lambda)$. The resolvent difference

$$(A_g - \lambda)^{-1} - (A_N - \lambda)^{-1} = \gamma(\lambda) \left(I - GM(\lambda) \right)^{-1} G\gamma(\overline{\lambda})^*, \quad \lambda \in \rho(A_g) \cap \rho(A_N),$$
(5)

is compact and, in particular, the essential spectra of A_g and A_N coincide.

Proof. Let us first show that $\lambda \in \rho(A_N)$ is an eigenvalue of A_g if and only if 1 is an eigenvalue of $GM(\lambda)$. For $u \in \ker(A_g - \lambda), u \neq 0$, we have $\Gamma_0 u \neq 0$ and $GM(\lambda)\Gamma_0 u = G\Gamma_1 u = \Gamma_0 u$. Thus $I - GM(\lambda)$ is not injective. Conversely, $f \in \ker(I - GM(\lambda)), f \neq 0$, implies $\gamma(\lambda)f \in \operatorname{dom} A_g, (A_g - \lambda)\gamma(\lambda)f = 0$, and $\gamma(\lambda)f \neq 0$. Thus $\gamma(\lambda)f$ is an eigenfunction of A_g corresponding to the eigenvalue λ .

Next we show that A_g is a selfadjoint operator in $L^2(\mathbb{R}^n_+)$. For this note first that for $u \in \text{dom } A_q$ we have

$$(A_g u, u) = \int_{\mathbb{R}^n_+} (-\Delta + V) u \,\overline{u} \, dx = \int_{\mathbb{R}^n_+} |\nabla u|^2 + V |u|^2 \, dx - \int_K g \, |u|^2 \, d\sigma \, \in \, \mathbb{R},$$

so that A_g is a symmetric in operator in $L^2(\mathbb{R}^n_+)$. Hence it is sufficient to verify that $A_g - \lambda$ is surjective for $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Fix some $\lambda \in \mathbb{C} \setminus \mathbb{R}$, choose an arbitrary $u \in L^2(\mathbb{R}^n_+)$, and define

$$v := (A_N - \lambda)^{-1} u + \gamma(\lambda) \left(I - GM(\lambda) \right)^{-1} G\gamma(\overline{\lambda})^* u.$$
(6)

In the following we will show that v is well-defined and belongs to dom A_g with $(A_g - \lambda)v = u$. The operator $\gamma(\lambda)$ and hence also $\gamma(\overline{\lambda})^*$ and $G\gamma(\overline{\lambda})^*$ are bounded and everywhere defined. Furthermore, since $\operatorname{ran} M(\lambda) = H^1(K)$ and the embedding from $H^1(K)$ into $L^2(K)$ is compact, $M(\lambda)$ and $GM(\lambda)$ are also compact operators in $L^2(K)$. Together with the fact that 1 is not an eigenvalue of $GM(\lambda)$ we conclude that the operator $I - GM(\lambda)$ has an everywhere defined, bounded inverse, i.e., v in (6) is well-defined. From the definition of v it is easy to see that $v \in H^{3/2}_{\Delta}(\mathbb{R}^n_+)$ and $\partial_{\nu}v|_{\mathbb{R}^{n-1}\setminus K} = 0$ holds.

It remains to show $G\Gamma_1 v = \Gamma_0 v$ and $(A_g - \lambda)v = u$. In fact, as a consequence of the second Green identity we find $\Gamma_1(A_N - \lambda)^{-1}u = \gamma(\overline{\lambda})^*u$ and therefore we conclude from (6)

$$G\Gamma_1 v = G\gamma(\overline{\lambda})^* u + GM(\lambda) \left(I - GM(\lambda) \right)^{-1} G\gamma(\overline{\lambda})^* u = \left(I - GM(\lambda) \right)^{-1} G\gamma(\overline{\lambda})^* u = \Gamma_0 v.$$

Thus we have shown $v \in \text{dom } A_g$ and from $(A_g - \lambda)v = (-\Delta + V - \lambda)v = u$ we obtain that $A_g - \lambda$ is surjective and, hence, A_g is selfadjoint. Moreover, we have shown the formula (5) for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$ and the same reasoning applies for real $\lambda \in \rho(A_N) \cap \rho(A_g)$. As mentioned above, $\gamma(\overline{\lambda})^* = \Gamma_1(A_N - \lambda)^{-1}$, in particular, $\operatorname{ran} \gamma(\overline{\lambda})^* \subset H^{3/2}(K)$, which is compactly embedded in $L^2(K)$. This shows that the right hand side in (5) is compact for $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Hence $(A_g - \lambda)^{-1} - (A_N - \lambda)^{-1}$ is compact for each $\lambda \in \rho(A_g) \cap \rho(A_N)$, and, in particular, A_g and A_N have the same essential spectrum.

We obtain the following corollary in the case V = 0.

Corollary 3.2 Let V = 0. Then the essential spectrum of the operator A_g in (1) is given by $[0, +\infty)$. Moreover, $\lambda < 0$ is an eigenvalue of A_g if and only if 1 is an eigenvalue of $G\iota^*(-\Delta_{\mathbb{R}^{n-1}} - \lambda)^{-1/2}\iota$, where ι denotes the embedding from $L^2(K)$ into $L^2(\mathbb{R}^{n-1})$ and $\Delta_{\mathbb{R}^{n-1}}$ is the Laplacian on \mathbb{R}^{n-1} .

Proof. In the case V = 0 it is well-known that the spectrum and essential spectrum of A_N is given by $[0, +\infty)$. Moreover, one computes similarly as in [7, Chapter 9] that $M(\lambda) = \iota^*(-\Delta_{\mathbb{R}^{n-1}} - \lambda)^{-1/2}\iota$ holds.

References

- [1] H. Abels, G. Grubb, and I. G. Wood, submitted.
- [2] J. Behrndt and M. Langer, J. Funct. Anal. 243 (2007), 536–565.
- [3] J. Behrndt, M. Langer, and V. Lotoreichik, submitted.
- [4] B. M. Brown, G. Grubb, and I. G. Wood, Math. Nachr. 282 (2009), 314–347.
- [5] F. Gesztesy and M. Mitrea, J. Differential Equations 247 (2009), 2871–2896.
- [6] F. Gesztesy and M. Mitrea, J. Anal. Math. **113** (2011), 53–172.
- [7] G. Grubb, Distributions and Operators (Springer, New York, 2009).
- [8] M. Jílek, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), 12 pp.
- [9] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I (Springer, Berlin, 1972).
- [10] V. Lotoreichik and J. Rohleder, submitted.
- [11] M. M. Malamud, Russ. J. Math. Phys. 17 (2010), 96-125.
- [12] A. Posilicano and L. Raimondi, J. Phys. A: Math. Theor. 42 (2009), 11 pp.