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Eigenvalues of Schrodinger operators and Dirichlet-to-Neumann maps
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Eigenvalues and eigenspaces of selfadjoint Schrodinger operators on R™ are expressed in terms of Dirichlet-to-Neumann
maps corresponding to Schrodinger operators on the upper and lower half space.
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1 Introduction

It is known that the eigenvalues of a Schrodinger operator Ap with Dirichlet boundary condition on a bounded domain
Q) C R™ with a bounded, real-valued potential V coincide with the poles of the meromorphic operator function p — M (1),
where M Q(u) is the Dirichlet-to-Neumann map of —A + V' — p, see, e.g., [1,2]. Moreover, for each eigenvalue \ the map

7 :ker(Ap — A) — ran Res) M9, u > O,ulsq

(where 0, u|sg, denotes the trace of the normal derivative of v at the boundary 9€2) is an isomorphism between the eigenspace
and the range of the residue of M at \; cf. [2]. Such a result is also desirable for a selfadjoint Schrodinger operator
A = —A+Vin L?(R"), n > 2. In order to define an operator function which plays the role of M* we introduce the
artificial “boundary” ¥ := R"~* x {0}, which separates R" into R’} := R"~! x (0,00) and R” := R"~! x (—00,0), and
consider the Dirichlet-to-Neumann maps M* (1) in L?(X) corresponding to the Schrodinger operators —A + V' — 1 on R%,
respectively. A natural candidate for the description of the eigenvalues of A is M () := (M ™ (u) + M~ (pn))~*; cf. [3] for
a similar function defined in the case that X is a sphere. In Theorem 2.1 of this note we show that each pole of M is an
eigenvalue of A but in general the analog of the map 7 is not bijective. We indicate in Theorem 2.2 that this drawback can be
avoided by considering a certain 2 x 2 block operator matrix function with entries formed by M* and M.

2 Characterization of eigenvalues and eigenspaces with Dirichlet-to-Neumann maps

Let n > 2 and denote by H*(R"™) and H*(X) the Sobolev spaces of order s > 0 on R™ and X, respectively. Moreover, let
V € L>®(R™) be a real-valued potential. We consider the selfadjoint Schrédinger operator

Au = —Au+ Vu, dom A = H*(R"),
in L2(IR™). For y in the resolvent set p(A) of A we define

NE = {uf € HX(RL): (A +V - p)uf =0},

N, = {u;’ Du, EN; ON, :u:|g =u, s},

where v|y denotes the trace of a Sobolev function v at . Let 0,,v := 8‘1” . One can show, that for every g € H z (X) there

exists a unique element u,, € N, 1 With 8nu; |s — anuf[ |» = g. Hence the operator-valued function M defined via
p(A) > e M(p),  M(p)(9nwy |z — Opuf]s) = uuls

is well-defined. M (1) is a bounded operator in L?(X) with domain H2 (%) and range in H? (%) for every p € p(A).
Moreover, for every g € H 3 (3) the function p — M (11)g is holomorphic and has poles of at most order one; cf. [2]. Note
that for y1 € C\ R the operator M (u) coincides with (M () 4+ M~ (1)) ~%, where M* (1) denotes the Dirichlet-to-Neumann
map with respect to —A + V — pon R%, i.e. Mi(u)uiE s = :Fﬁnu,f |5 for ur € N'E, respectively.
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Theorem 2.1 If X € R is a pole of M then ) is an eigenvalue of A, but in general dimran Resy M < dim ker(A — \).

Proof. Let A € R be a pole of M. We show dimker(A — \) > dimran Resy M, from which, in particular, the first
assertion follows. Let , v, z € C \ R be distinct and let g € H2 (X). For j, k € {u, v, 2} denote by u; the unique element in
N with (’)nuﬂz — 8nuj+|z = g and choose uy, analogously. Due to u; — u;, € dom A and

(A= j)(uj —ur) = (A+V = j)(uf —uf) & (A +V —j)(u; —uy) = (j — k)ux

we obtain (A — j) " tuy, = “;:Z’“ if j # k. Hence we get
1 1 Uy, — U U, — U
A Yy A _ -1 N _ w z Uy v
B =2}
_ 1 [M(pg—M(z)g M(p)g— Mg
Z—v =2z w—v '

By the spectral theorem one gets i Pu,, = lim,~ o (A — (A+1in)) ~'u,, where P denotes the orthogonal projection in L*(R"™)
onto ker(A — \). As the map v > [(A — ) ~!v]|x is continuous from L?(R") to L?(X) we get for z = A + in

(Pu)ls = [(A= )"0 = ) Pu]ls = (A — ) K%g[(A — ) A= (A +in)w] |y
iy A [Mu)g = M(z)g  M(p)g—MW)g| _ . @ . _ Res\Mg
_%%(Zu)i{ =2z w—v :|_717\0)\I/M( )g = A—v

We have shown {u\g tu € PNV} = ran Resy M, hence dimker(A — )\) > dimran Resy M. In general equality does not
hold. For example for a potential V reflection symmetric with respect to ¥ (i.e., V(2/, z,) = V(2/, —x,)) eigenfunctions
with vanishing traces on > may exist. O

In order to characterize all eigenvalues and eigenspaces of A we define the block operator matrix function M via

[ M M ()M (1)
o MO0 = | i) MM ) ECVR

M(1) is an operator in L2(X) x L2(X) with domain Hz () x H? () and range in H3 (%) x Hz2(X). The function M
is holomorphic in the strong sense and can be extended to a strongly holomorphic function (also denoted by M) defined on
p(A). Similar functions were already considered in, e.g., [5] for the ODE case and in [6,7] in an abstract setting.

Theorem 2.2 )\ € R is a pole of M and ran Resy M is finite-dimensional if and only if A is an isolated eigenvalue of A
with finite multiplicity. In this case the map

T : ker(A — A\) — ran Res) M, u [u|g,78nu|g]T.

is bijective.

We omit the proof of Theorem 2.2, which uses methods similar to the proof of Theorem 2.1 and a unique continuation
argument; cf. [4] for a similar reasoning.

Remark 2.3 With the help of the function M one can even characterize all (embedded and isolated) eigenvalues and the
corresponding eigenspaces of A; cf. [4] for the case of a Schrodinger operator on an exterior domain.
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