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Eigenvalues of Schrödinger operators and Dirichlet-to-Neumann maps
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Eigenvalues and eigenspaces of selfadjoint Schrödinger operators on Rn are expressed in terms of Dirichlet-to-Neumann
maps corresponding to Schrödinger operators on the upper and lower half space.
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1 Introduction

It is known that the eigenvalues of a Schrödinger operator AD with Dirichlet boundary condition on a bounded domain
Ω ⊂ Rn with a bounded, real-valued potential V coincide with the poles of the meromorphic operator function µ 7→MΩ(µ),
where MΩ(µ) is the Dirichlet-to-Neumann map of −∆ + V − µ, see, e.g., [1, 2]. Moreover, for each eigenvalue λ the map

τ : ker(AD − λ)→ ran ResλM
Ω, u 7→ ∂νu|∂Ω

(where ∂νu|∂Ω denotes the trace of the normal derivative of u at the boundary ∂Ω) is an isomorphism between the eigenspace
and the range of the residue of MΩ at λ; cf. [2]. Such a result is also desirable for a selfadjoint Schrödinger operator
A = −∆ + V in L2(Rn), n ≥ 2. In order to define an operator function which plays the role of MΩ we introduce the
artificial “boundary” Σ := Rn−1 × {0}, which separates Rn into Rn+ := Rn−1 × (0,∞) and Rn− := Rn−1 × (−∞, 0), and
consider the Dirichlet-to-Neumann maps M±(µ) in L2(Σ) corresponding to the Schrödinger operators −∆ + V − µ on Rn±,
respectively. A natural candidate for the description of the eigenvalues of A is M(µ) := (M+(µ) + M−(µ))−1; cf. [3] for
a similar function defined in the case that Σ is a sphere. In Theorem 2.1 of this note we show that each pole of M is an
eigenvalue of A but in general the analog of the map τ is not bijective. We indicate in Theorem 2.2 that this drawback can be
avoided by considering a certain 2× 2 block operator matrix function with entries formed by M± and M .

2 Characterization of eigenvalues and eigenspaces with Dirichlet-to-Neumann maps

Let n ≥ 2 and denote by Hs(Rn) and Hs(Σ) the Sobolev spaces of order s > 0 on Rn and Σ, respectively. Moreover, let
V ∈ L∞(Rn) be a real-valued potential. We consider the selfadjoint Schrödinger operator

Au = −∆u+ V u, domA = H2(Rn),

in L2(Rn). For µ in the resolvent set ρ(A) of A we define

N±µ := {u±µ ∈ H2(Rn±) : (−∆ + V − µ)u±µ = 0},
Nµ := {u+

µ ⊕ u−µ ∈ N+
µ ⊕N−µ : u+

µ |Σ = u−µ |Σ},

where v|Σ denotes the trace of a Sobolev function v at Σ. Let ∂nv := ∂v
∂xn

. One can show, that for every g ∈ H 1
2 (Σ) there

exists a unique element uµ ∈ Nµ with ∂nu−µ |Σ − ∂nu+
µ |Σ = g. Hence the operator-valued function M defined via

ρ(A) 3 µ 7→M(µ), M(µ)
(
∂nu

−
µ |Σ − ∂nu+

µ |Σ
)

:= uµ|Σ

is well-defined. M(µ) is a bounded operator in L2(Σ) with domain H
1
2 (Σ) and range in H

3
2 (Σ) for every µ ∈ ρ(A).

Moreover, for every g ∈ H 1
2 (Σ) the function µ 7→ M(µ)g is holomorphic and has poles of at most order one; cf. [2]. Note

that for µ ∈ C\R the operatorM(µ) coincides with (M+(µ)+M−(µ))−1, whereM±(µ) denotes the Dirichlet-to-Neumann
map with respect to −∆ + V − µ on Rn±, i.e. M±(µ)u±µ |Σ = ∓∂nu±µ |Σ for u±µ ∈ N±µ , respectively.
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Theorem 2.1 If λ ∈ R is a pole of M then λ is an eigenvalue of A, but in general dim ran ResλM � dim ker(A− λ).

P r o o f. Let λ ∈ R be a pole of M . We show dim ker(A − λ) ≥ dim ran ResλM , from which, in particular, the first
assertion follows. Let µ, ν, z ∈ C \ R be distinct and let g ∈ H 1

2 (Σ). For j, k ∈ {µ, ν, z} denote by uj the unique element in
Nj with ∂nu−j |Σ − ∂nu

+
j |Σ = g and choose uk analogously. Due to uj − uk ∈ domA and

(A− j)(uj − uk) = (−∆ + V − j)(u+
j − u

+
k )⊕ (−∆ + V − j)(u−j − u

−
k ) = (j − k)uk

we obtain (A− j)−1uk =
uj−uk

j−k if j 6= k. Hence we get

(
(A− µ)−1(A− z)−1uν

) ∣∣
Σ

=
1

z − ν
(
(A− µ)−1(uz − uν)

) ∣∣
Σ

=
1

z − ν

[
uµ − uz
µ− z

− uµ − uν
µ− ν

] ∣∣∣∣
Σ

=
1

z − ν

[
M(µ)g −M(z)g

µ− z
− M(µ)g −M(ν)g

µ− ν

]
.

By the spectral theorem one gets iPuν = limη↘0 η(A−(λ+iη))−1uν , where P denotes the orthogonal projection in L2(Rn)
onto ker(A− λ). As the map v 7→ [(A− µ)−1v]|Σ is continuous from L2(Rn) to L2(Σ) we get for z = λ+ iη(

Puν
)
|Σ =

[
(A− µ)−1(λ− µ)Puν

]
|Σ = (λ− µ) lim

η↘0

η

i

[
(A− µ)−1(A− (λ+ iη))−1uν

]∣∣
Σ

= lim
η↘0

(λ− µ)η

(z − ν)i

[
M(µ)g −M(z)g

µ− z
− M(µ)g −M(ν)g

µ− ν

]
= lim
η↘0

iη

λ− ν
M(z)g =

ResλMg

λ− ν
.

We have shown
{
u|Σ : u ∈ PNν

}
= ran ResλM , hence dim ker(A − λ) ≥ dim ran ResλM . In general equality does not

hold. For example for a potential V reflection symmetric with respect to Σ (i.e., V (x′, xn) = V (x′,−xn)) eigenfunctions
with vanishing traces on Σ may exist.

In order to characterize all eigenvalues and eigenspaces of A we define the block operator matrix functionM via

µ 7→ M(µ) :=

[
M(µ) −M(µ)M−(µ)

−M−(µ)M(µ) −M−(µ)M(µ)M+(µ)

]
, µ ∈ C \ R.

M(µ) is an operator in L2(Σ) × L2(Σ) with domain H
1
2 (Σ) × H 3

2 (Σ) and range in H
3
2 (Σ) × H 1

2 (Σ). The functionM
is holomorphic in the strong sense and can be extended to a strongly holomorphic function (also denoted byM) defined on
ρ(A). Similar functions were already considered in, e.g., [5] for the ODE case and in [6, 7] in an abstract setting.

Theorem 2.2 λ ∈ R is a pole ofM and ran ResλM is finite-dimensional if and only if λ is an isolated eigenvalue of A
with finite multiplicity. In this case the map

T : ker(A− λ)→ ran ResλM, u 7→
[
u|Σ,−∂nu|Σ

]>.
is bijective.

We omit the proof of Theorem 2.2, which uses methods similar to the proof of Theorem 2.1 and a unique continuation
argument; cf. [4] for a similar reasoning.

Remark 2.3 With the help of the functionM one can even characterize all (embedded and isolated) eigenvalues and the
corresponding eigenspaces of A; cf. [4] for the case of a Schrödinger operator on an exterior domain.
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