Eigenvalues of Schrödinger operators and Dirichlet-to-Neumann maps

Jussi Behrndt¹, Christian Kühn^{1,*}, and Jonathan Rohleder¹

¹ Institut für Numerische Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria

Eigenvalues and eigenspaces of selfadjoint Schrödinger operators on \mathbb{R}^n are expressed in terms of Dirichlet-to-Neumann maps corresponding to Schrödinger operators on the upper and lower half space.

Copyright line will be provided by the publisher

1 Introduction

It is known that the eigenvalues of a Schrödinger operator A_D with Dirichlet boundary condition on a bounded domain $\Omega \subset \mathbb{R}^n$ with a bounded, real-valued potential V coincide with the poles of the meromorphic operator function $\mu \mapsto M^{\Omega}(\mu)$, where $M^{\Omega}(\mu)$ is the Dirichlet-to-Neumann map of $-\Delta + V - \mu$, see, e.g., [1,2]. Moreover, for each eigenvalue λ the map

 $\tau: \ker(A_D - \lambda) \to \operatorname{ran} \operatorname{Res}_{\lambda} M^{\Omega}, \qquad u \mapsto \partial_{\nu} u|_{\partial\Omega}$

(where $\partial_{\nu}u|_{\partial\Omega}$ denotes the trace of the normal derivative of u at the boundary $\partial\Omega$) is an isomorphism between the eigenspace and the range of the residue of M^{Ω} at λ ; cf. [2]. Such a result is also desirable for a selfadjoint Schrödinger operator $A = -\Delta + V$ in $L^2(\mathbb{R}^n)$, $n \geq 2$. In order to define an operator function which plays the role of M^{Ω} we introduce the artificial "boundary" $\Sigma := \mathbb{R}^{n-1} \times \{0\}$, which separates \mathbb{R}^n into $\mathbb{R}^n_+ := \mathbb{R}^{n-1} \times (0, \infty)$ and $\mathbb{R}^n_- := \mathbb{R}^{n-1} \times (-\infty, 0)$, and consider the Dirichlet-to-Neumann maps $M^{\pm}(\mu)$ in $L^2(\Sigma)$ corresponding to the Schrödinger operators $-\Delta + V - \mu$ on \mathbb{R}^n_{\pm} , respectively. A natural candidate for the description of the eigenvalues of A is $M(\mu) := (M^+(\mu) + M^-(\mu))^{-1}$; cf. [3] for a similar function defined in the case that Σ is a sphere. In Theorem 2.1 of this note we show that each pole of M is an eigenvalue of A but in general the analog of the map τ is not bijective. We indicate in Theorem 2.2 that this drawback can be avoided by considering a certain 2×2 block operator matrix function with entries formed by M^{\pm} and M.

2 Characterization of eigenvalues and eigenspaces with Dirichlet-to-Neumann maps

Let $n \ge 2$ and denote by $H^s(\mathbb{R}^n)$ and $H^s(\Sigma)$ the Sobolev spaces of order s > 0 on \mathbb{R}^n and Σ , respectively. Moreover, let $V \in L^{\infty}(\mathbb{R}^n)$ be a real-valued potential. We consider the selfadjoint Schrödinger operator

$$Au = -\Delta u + Vu, \qquad \text{dom} A = H^2(\mathbb{R}^n),$$

in $L^2(\mathbb{R}^n)$. For μ in the resolvent set $\rho(A)$ of A we define

$$\mathcal{N}_{\mu}^{\pm} := \{ u_{\mu}^{\pm} \in H^2(\mathbb{R}_{\pm}^n) : (-\Delta + V - \mu) u_{\mu}^{\pm} = 0 \},\\ \mathcal{N}_{\mu} := \{ u_{\mu}^{+} \oplus u_{\mu}^{-} \in \mathcal{N}_{\mu}^{+} \oplus \mathcal{N}_{\mu}^{-} : u_{\mu}^{+} |_{\Sigma} = u_{\mu}^{-} |_{\Sigma} \},$$

where $v|_{\Sigma}$ denotes the trace of a Sobolev function v at Σ . Let $\partial_n v := \frac{\partial v}{\partial x_n}$. One can show, that for every $g \in H^{\frac{1}{2}}(\Sigma)$ there exists a unique element $u_{\mu} \in \mathcal{N}_{\mu}$ with $\partial_n u_{\mu}^-|_{\Sigma} - \partial_n u_{\mu}^+|_{\Sigma} = g$. Hence the operator-valued function M defined via

$$\rho(A) \ni \mu \mapsto M(\mu), \qquad M(\mu) \left(\partial_n u_{\mu}^{-} |_{\Sigma} - \partial_n u_{\mu}^{+} |_{\Sigma} \right) := u_{\mu}|_{\Sigma}$$

is well-defined. $M(\mu)$ is a bounded operator in $L^2(\Sigma)$ with domain $H^{\frac{1}{2}}(\Sigma)$ and range in $H^{\frac{3}{2}}(\Sigma)$ for every $\mu \in \rho(A)$. Moreover, for every $g \in H^{\frac{1}{2}}(\Sigma)$ the function $\mu \mapsto M(\mu)g$ is holomorphic and has poles of at most order one; cf. [2]. Note that for $\mu \in \mathbb{C} \setminus \mathbb{R}$ the operator $M(\mu)$ coincides with $(M^+(\mu) + M^-(\mu))^{-1}$, where $M^{\pm}(\mu)$ denotes the Dirichlet-to-Neumann map with respect to $-\Delta + V - \mu$ on \mathbb{R}^n_{\pm} , i.e. $M^{\pm}(\mu)u^{\pm}_{\mu}|_{\Sigma} = \mp \partial_n u^{\pm}_{\mu}|_{\Sigma}$ for $u^{\pm}_{\mu} \in \mathcal{N}^{\pm}_{\mu}$, respectively.

^{*} Corresponding author: e-mail kuehn@tugraz.at, phone +43 316 873 8625, fax +43 316 873 8621

Theorem 2.1 If $\lambda \in \mathbb{R}$ is a pole of M then λ is an eigenvalue of A, but in general dim ran $\operatorname{Res}_{\lambda} M \leq \dim \ker(A - \lambda)$.

Proof. Let $\lambda \in \mathbb{R}$ be a pole of M. We show dim ker $(A - \lambda) \geq \dim \operatorname{ran} \operatorname{Res}_{\lambda} M$, from which, in particular, the first assertion follows. Let $\mu, \nu, z \in \mathbb{C} \setminus \mathbb{R}$ be distinct and let $g \in H^{\frac{1}{2}}(\Sigma)$. For $j, k \in \{\mu, \nu, z\}$ denote by u_j the unique element in \mathcal{N}_j with $\partial_n u_j^-|_{\Sigma} - \partial_n u_j^+|_{\Sigma} = g$ and choose u_k analogously. Due to $u_j - u_k \in \operatorname{dom} A$ and

$$(A-j)(u_j - u_k) = (-\Delta + V - j)(u_j^+ - u_k^+) \oplus (-\Delta + V - j)(u_j^- - u_k^-) = (j-k)u_k$$

we obtain $(A - j)^{-1}u_k = \frac{u_j - u_k}{j - k}$ if $j \neq k$. Hence we get

$$\left((A-\mu)^{-1} (A-z)^{-1} u_{\nu} \right) \Big|_{\Sigma} = \frac{1}{z-\nu} \left((A-\mu)^{-1} (u_{z}-u_{\nu}) \right) \Big|_{\Sigma} = \frac{1}{z-\nu} \left[\frac{u_{\mu}-u_{z}}{\mu-z} - \frac{u_{\mu}-u_{\nu}}{\mu-\nu} \right] \Big|_{\Sigma}$$
$$= \frac{1}{z-\nu} \left[\frac{M(\mu)g - M(z)g}{\mu-z} - \frac{M(\mu)g - M(\nu)g}{\mu-\nu} \right].$$

By the spectral theorem one gets $iPu_{\nu} = \lim_{\eta \searrow 0} \eta (A - (\lambda + i\eta))^{-1} u_{\nu}$, where P denotes the orthogonal projection in $L^2(\mathbb{R}^n)$ onto $\ker(A - \lambda)$. As the map $v \mapsto [(A - \mu)^{-1}v]|_{\Sigma}$ is continuous from $L^2(\mathbb{R}^n)$ to $L^2(\Sigma)$ we get for $z = \lambda + i\eta$

$$\begin{aligned} (Pu_{\nu})|_{\Sigma} &= \left[(A-\mu)^{-1} (\lambda-\mu) Pu_{\nu} \right]|_{\Sigma} = (\lambda-\mu) \lim_{\eta \searrow 0} \frac{\eta}{i} \left[(A-\mu)^{-1} (A-(\lambda+i\eta))^{-1} u_{\nu} \right]|_{\Sigma} \\ &= \lim_{\eta \searrow 0} \frac{(\lambda-\mu)\eta}{(z-\nu)i} \left[\frac{M(\mu)g - M(z)g}{\mu-z} - \frac{M(\mu)g - M(\nu)g}{\mu-\nu} \right] = \lim_{\eta \searrow 0} \frac{i\eta}{\lambda-\nu} M(z)g = \frac{\operatorname{Res}_{\lambda} Mg}{\lambda-\nu}. \end{aligned}$$

We have shown $\{u|_{\Sigma} : u \in P\mathcal{N}_{\nu}\} = \operatorname{ran} \operatorname{Res}_{\lambda} M$, hence $\dim \ker(A - \lambda) \ge \dim \operatorname{ran} \operatorname{Res}_{\lambda} M$. In general equality does not hold. For example for a potential V reflection symmetric with respect to Σ (i.e., $V(x', x_n) = V(x', -x_n)$) eigenfunctions with vanishing traces on Σ may exist.

In order to characterize all eigenvalues and eigenspaces of A we define the block operator matrix function \mathcal{M} via

$$\mu \mapsto \mathcal{M}(\mu) := \begin{bmatrix} M(\mu) & -M(\mu)M^{-}(\mu) \\ -M^{-}(\mu)M(\mu) & -M^{-}(\mu)M(\mu)M^{+}(\mu) \end{bmatrix}, \qquad \mu \in \mathbb{C} \setminus \mathbb{R}.$$

 $\mathcal{M}(\mu)$ is an operator in $L^2(\Sigma) \times L^2(\Sigma)$ with domain $H^{\frac{1}{2}}(\Sigma) \times H^{\frac{3}{2}}(\Sigma)$ and range in $H^{\frac{3}{2}}(\Sigma) \times H^{\frac{1}{2}}(\Sigma)$. The function \mathcal{M} is holomorphic in the strong sense and can be extended to a strongly holomorphic function (also denoted by \mathcal{M}) defined on $\rho(A)$. Similar functions were already considered in, e.g., [5] for the ODE case and in [6,7] in an abstract setting.

Theorem 2.2 $\lambda \in \mathbb{R}$ is a pole of \mathcal{M} and ran $\operatorname{Res}_{\lambda} \mathcal{M}$ is finite-dimensional if and only if λ is an isolated eigenvalue of A with finite multiplicity. In this case the map

$$\mathcal{T}: \ker(A - \lambda) \to \operatorname{ran} \operatorname{Res}_{\lambda} \mathcal{M}, \qquad u \mapsto [u|_{\Sigma}, -\partial_n u|_{\Sigma}]^{\top}.$$

is bijective.

We omit the proof of Theorem 2.2, which uses methods similar to the proof of Theorem 2.1 and a unique continuation argument; cf. [4] for a similar reasoning.

Remark 2.3 With the help of the function \mathcal{M} one can even characterize all (embedded and isolated) eigenvalues and the corresponding eigenspaces of A; cf. [4] for the case of a Schrödinger operator on an exterior domain.

Acknowledgements The authors gratefully acknowledge financial support by the Austrian Science Fund (FWF): P 25162-N26.

References

- [1] A. Nachman, J. Sylvester, and G. Uhlmann, Comm. Math. Phys. 115, 595-605 (1988).
- [2] J. Behrndt and J. Rohleder, Comm. Partial Differential Equations 37, 1141–1159 (2012).
- [3] W.O. Amrein and D.B. Pearson, J. Comput. Appl. Math. 171, 1–26 (2004).
- [4] J. Behrndt and J. Rohleder, arXiv:1208.5224v2 (2012).
- [5] A. Dijksma, H. Langer, and H.S.V. de Snoo, CMS Conf. Proc. 8, 87–116 (Amer. Math. Soc., 1987).
- [6] V.A. Derkach, S. Hassi, M.M. Malamud, and H.S.V. de Snoo, Methods Funct. Anal. Topology 6, 24–55 (2000).
- [7] V.A. Derkach, S. Hassi, M.M. Malamud, and H.S.V. de Snoo, Russ. J. Math. Phys. 16, 17-60 (2009).