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Abstract

Superoscillations are functions with the paradoxical behavior of oscillating (at least
locally) faster than their largest Fourier component. For example, plane waves with
small frequencies (e.g. red light) can interfere in such a way that a resulting wave with
arbitrary large frequency is created (e.g. blue light or theoretically even a gamma ray).

Due to the wave-particle duality in quantum mechanics, also particles can exhibit this
superoscillatory behavior. One of the main questions in this context then is: What
happens when a particle with a superoscillating wave function interacts with a potential?
Does this delicate interference effect persists in time, or is it destroyed by the external
force? Mathematically this means: Is the solution of the time-dependent Schrödinger
equation, with superoscillatory initial condition, still superoscillating at later times?

So far, answers to this question only have been given for some potentials, for which
in particular the associated Green’s function is known explicitly. The aim of this doc-
toral thesis is now to develop a general approach that proves the time persistence of
superoscillations not only for individual but for whole classes of potentials. The explicit
form of the Green’s function will no longer be needed, only qualitative properties as
holomorphicity and growth conditions will be assumed.

Another problem addressed in this thesis is, that there is still no uniform definition of
a superoscillating function existing. Superoscillations have been developed by various
scientific disciplines over the years and there is a certain discrepancy between the math-
ematical and the physical perspectives in particular. The aim of this work was to close
this gap by giving a generally valid definition of a superoscillating function. Furthermore,
it is also proven, that all popular variants of superoscillations from the mathematical
and physical literature satisfy this definition.
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Kurzfassung

Superoszillationen sind Funktionen mit dem paradoxen Verhalten, (zumindest lokal)
schneller zu oszillieren als ihre größte Fourier-Komponente das vermuten lassen würde.
Man kann beispielsweise ebene Wellen mit kleinen Frequenzen (zum Beispiel rotes Licht)
derart interferieren lassen, so dass eine resultierende Welle mit beliebig großer Frequenz
entsteht (zum Beispiel blaues Licht oder theoretisch sogar Gamma Strahlung).

Aufgrund des Welle-Teilchen-Dualismus der Quantenmechanik können auch Teilchen
dieses superoszillierende Verhalten aufweisen. Eine der Hauptfragen in diesem Zusam-
menhang ist: Was passiert, wenn ein Teilchen mit superoszillierender Wellenfunktion mit
einem Potential interagiert? Bleibt dieser empfindliche Interferenzeffekt erhalten oder
wird er durch die äußere Kraft zerstört? Mathematisch bedeutet dies: Ist die Lösung
der zeitabhängigen Schrödingergleichung, mit einer superoszillierenden Funktion als An-
fangsbedingung, zu einem späteren Zeitpunkt immer noch superoszillierend?

Antwort auf diese Frage wurde bisher nur für einige wenige Potentiale gegeben, bei
denen insbesondere die zugehörige Green’sche Funktion explizit bekannt ist. Ziel dieser
Doktorarbeit ist es nun, einen allgemeinen Zugang zu diesem Problem zu entwickeln,
der die zeitliche Stabilität von Superoszillationen nicht mehr nur für einzelne sondern
für ganze Klassen von Potentialen beweist. Dabei soll nicht mehr die explizite Form
der Green’schen Funktion verwendet, sondern lediglich qualitative Eigenschaften wie
Holomorphie und Wachstumsverhalten derselben vorausgesetzt werden.

Ein weiteres Thema dieser Doktorarbeit beschäftigt sich mit dem Problem, dass es noch
keine einheitliche Definition einer superoszillierenden Funktion gibt. Superoszillationen
wurden im Laufe der Jahre von verschiedenen wissenschaftlichen Disziplinen entwickelt
und es gibt insbesondere eine gewisse Diskrepanz zwischen der mathematischen und
der physikalischen Sichtweise. Ziel dieser Arbeit ist es, diese Lücke zu schließen, indem
eine allgemein gültige Definition einer superoszillierenden Funktion niedergeschrieben
wird. Weiters wird auch bewiesen, dass alle in der mathematischen und physikalischen
Literatur gängigen Varianten von Superoszillationen ebendieser Definition entsprechen.
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0. Introduction

0.1. What are superoscillations

Superoscillations are functions with the paradoxical behaviour to (locally) oscillate faster
than their largest Fourier component. For instance, one can take plane waves, all having
small frequencies, and interfere them in a way that the resulting superposition has a
larger frequency than all the original waves had. What happens is an almost destructive
interference, leaving a remainder with a small amplitude but an unexpected high fre-
quency. One can even choose this interference such that the resulting frequency as well
as the superoscillating region becomes arbitrary large. However, the price to pay is an
exponential decrease in the amplitude, which is then of course very sensitive to noise, as
pointed out in [47].

Although this effect may sound surprising, already the following simple example shows,
that the above described increase in frequency is indeed possible. Consider for n ∈ N
and k > 1 the sequence of functions

Fn(x) =
(

cos
(x
n

)
+ ik sin

(x
n

))n
=

n∑
j=0

Cj(n)eikj(n)x, x ∈ R, (0.1)

with coefficients

Cj(n) =

(
n

j

)(1 + k

2

)n−j(1− k
2

)j
and kj(n) = 1− 2j

n
. (0.2)

In particular one sees, that Fn is a linear combination of plane waves with frequencies
kj(n) ∈ [−1, 1]. The superocillatory behaviour now comes from the fact, that

lim
n→∞

Fn(x) = eikx, x ∈ R, (0.3)

converges to a plane wave with frequency k > 1. The convergence (0.3) can be un-
derstood as uniform on compact subsets of R, or if one considers the Fn as complex
functions, i.e., replaces x ∈ R by z ∈ C, this sequence even converges in the space
A1(C) of entire functions with exponential growth. See Chapter 1 and in particular
Proposition 1.8 for a detailed discussion.
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0. Introduction

x

1
π/2-π/2

350

≈ e4ix

C0(5)eix=f0(x)

C1(5)ei0.6x=f1(x)

C2(5)ei0.2x=f2(x)

C3(5)e-i0.2x=f3(x)

C4(5)e-i0.6x=f4(x)

C5(5)e-ix=f5(x)

F5(x)

Figure 0.1.: Illustration of the superoscillatory function (0.1) for n = 5 and k = 4.
The thin lines show the functions fj(x) = Cj(5)eikj(5)x, which add up to the function
F5(x) =

∑5
j=0 fj(x). Observe the almost destructive interference of the fj , the high

frequency of F5 in the central region, and also the small amplitude inside and the larger
amplitude outside the superoscillatory region.

But it is not only the limit n → ∞ what makes the Fn superoscillating. In [51] for
example, the authors interpret the superoscillating property as the size of the local wave
number

kloc(x) :=
d

dx
Arg(Fn(x)) =

d

dx
Arg

((
cos
(x
n

)
+ ik sin

(x
n

))n)
= n

d

dx
Arg

(
cos
(x
n

)
+ ik sin

(x
n

))
= n

d

dx
arctan

(
k tan

(x
n

))
=

k

cos2(xn) + k2 sin2(xn)
.

This local wave number shows, that the frequency varies in between kloc(0) = k and
kloc(

nπ
2 ) = 1

k . In particular, it is larger than 1 in the region |x| ≤ n cot−1(
√
k). Moreover,

the number of oscillations in this region is

nosc =
1

2π

∫ n cot−1(
√
k)

−n cot−1(
√
k)
kloc(x)dx =

n

π

∫ ∞
√
k

k

u2 + k2
dk =

n

π
tan−1(

√
k),

which is more than n
π cot−1(

√
k), the number of oscillations a wave with frequency 1

would admit.
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0.2. From the beginnings of superoscillations to the present state of art

0.2. From the beginnings of superoscillations to the present
state of art

The early pioneer of the concept of superoscillations was G. Toraldo di Francia who
already used this effect in the 1950s to create narrow beams in antenna theory [109]. He
also recognized that his research may have an impact on optics, allowing subwavelength
resolution in microscopy. However, unable to produce a suitable lens system at that
time, these ideas took another 60 years until they were realized in the first practical
imaging aperture, built by N. I. Zheludev and collaborators in 2012 [60].

The initiator of the modern study of superoscillations was Y. Aharonov, who in his still
unpublished preprint [24] from 1991 made a thought experiment considering a box only
containing red light, but emitting a gamma ray. His early attempts to reformulate quan-
tum mechanics as a time-symmetric theory [8], gave rise to the so called weak value of a
quantum observable. A weak value is the result of a measurement which selects indepen-
dent initial and final states [10, 11, 23, 26, 30, 65]. As a consequence, Y. Aharonov found
a way How the result of a measurement of a component of the spin of a spin-1

2 particle
can turn out to be 100 [3]. It was also shown in [108] that these measurements may ob-
serve information without disturbing the system, which was against the common believe
that weak values can only be determined in statistical ensembles. Continuing this line
of thought even questions the present understanding and interpretation of conservation
laws [25].

It was then M. Berry, who started a mathematically more rigorous treatment of su-
peroscillations in his work Faster than Fourier [43]. He constructed whole families of
superoscillating functions and investigated them systematically with respect to their su-
peroscillatory behaviour. In a series of papers, [43, 44, 46, 48, 49, 51, 52] just to name
some of them, he also explored various ramifications of superoscillations in different ar-
eas of physics and mathematics. This, as a consequence, made superoscillations more
popular and attracted many researchers in the subsequent years to contribute in this
research field.

In quantum mechanics, superoscillations appear as initial conditions of the time depen-
dent Schrödinger equation

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2
+ V (t, x)

)
Ψ(t, x),

Ψ(0, x) = F (x),

and evolve in time accordingly. Since, as mentioned in Section 0.1, superoscillations arise
from a delicate, almost destructive, interference, it is a question of central importance,
whether they are destroyed or preserved when interacting with some external potential.
In other words: If the initial condition F of the time dependent Schrödinger equation is
superoscillatory, is this still the case for the solution Ψ(t, · ) at later times t > 0 ?

The first contribution to this problem was [43], where it was shown, that for free particles
the superoscillatory behaviour occurs within a region |x| < O(n) and within the time
t < O(n). In particular, in the limit n → ∞ this property is preserved for all times
t > 0, as first shown in [15]. Also for nonvanishing potentials the time persistence of

3



0. Introduction

superoscillations was investigated, as for example the harmonic oscillator was considered
in [22, 33, 35, 55, 56, 68], the electric field in [19, 22, 35, 55], the magnetic field in [22, 66],
the centrifugal potential in [22, 33, 67, 68], the step potential in [20] and distributional
potentials as δ and δ′ in [5, 6, 36].

This time evolution property of superoscillations is of course interesting not only for the
Schrödinger equation but also for other evolution equations as the Dirac or the Klein-
Gordon equation. So far, only very little is known in those settings and no more than
the following three basic contributions exist in the mathematical literature. In [88], the
authors numerically consider the time evolution of superoscillating spin-0 wavepackets
in the Klein-Gordon equation as well as spin-1

2 particles in the Dirac equation. In the
work [21] again the Klein-Gordon field was considered, but this time the time persistence
of superoscillations was proven from a mathematical point of view. Also for the Dirac
equation, the analogue time persistence was considered in [72]. This field of relativistic
evolution of superoscillations, has numerous open questions, and will for sure be subject
of future research.

0.3. Topics of this thesis

The drawback of all the time evolution results mentioned in Section 0.2 is, that only
specific potentials were considered, for which in particular the corresponding Green’s
function is known explicitly, i.e. the function G which connects the initial value F to
the wave function Ψ via the integral

Ψ(t, x) =

∫
R
G(t, x, y)F (y)dy.

One of the main novelties of this thesis is a generalization of the above results, considering
whole classes of potentials simultaneously. This theory will be developed in Chapter 4
for potentials defined on the whole real line R, and in Chapter 5 for potentials on R\{0},
having singularities at x = 0 or being distributional as δ- and δ′-potentials. In particular,
almost all potentials which were already considered separately in the existing literature,
see also the list in Section 0.2, are covered by this unified approach. The key feature
of this general theory is to impose qualitative properties on the corresponding Green’s
function, see Assumption 4.1 or Assumption 5.1, which allow to prove a continuous
dependency result between the initial condition and the solution of the time dependent
Schrödinger equation. Roughly speaking, for a sequence of converging initial conditions

lim
n→∞

Fn = F

we prove, that the sequence of solutions still converges as

lim
n→∞

Ψ(t, x;Fn) = Ψ(t, x;F ),

see Theorem 4.6 and Theorem 5.4 for details.

However, this continuous dependency is not enough to conclude time persistence of
superoscillations, i.e., the superoscillatory behaviour of the solutions Ψ(t, x;F ). It turns

4



0.3. Topics of this thesis

out, that the precise mathematical definition of superoscillations is too narrow to persist
in time. The reason is, that if we define superoscillations via the convergence to a plane
wave, as in (0.3), some potential will in general deform this plane wave and the resulting
limit Ψ(t, x; eik · ) may still be oscillating in some sense, but in general no longer as a plane
wave. This problem was already realized in [6, 20, 33, 68, 72] and inspired the notion
of supershift, where one principally neglects the oscillatory behaviour of the plane waves
eik · and substitutes them by arbitrary functions ϕk. Motivated by (0.1) this means,
that the supershift in the existing literature, considers functions of the form

Fn(x) =
n∑
j=0

Cj(n)ϕκj(n)(x), (0.4)

with coefficients Cj(n) ∈ C and κj(n) ∈ U in some region U , which converge to

lim
n→∞

Fn(x) = ϕk(x), (0.5)

for some k ∈ C \ U . One of the main results of this thesis is now Theorem 6.5, where
we use the above mentioned novel unified approach to prove the time persistence of the
supershift property.

The second part of this thesis addresses the problem that the theory of superoscillations
was developed by different communities using different approaches throughout the years.
For instance, beside the standard example (0.1), M. Berry constructed a whole family
of superoscillating functions in [43], which are given by some integral of the form

Fn(x) =

∫
R
Cn(u)eikn(u)xdu. (0.6)

In order to unify those functions with the ones in (0.1), the notion of a Type I superoscil-
lating sequence is introduced in Definition 2.1. In this definition, a sequence of functions
(Fn)n has to be of the form

Fn(z) =

∫ k0

−k0

eikzdµn(k), z ∈ C, (0.7)

with some k0 > 0 and complex Borel measures µn on [−k0, k0]. While this representation
indeed covers both (0.1) and (0.6), see the choice of measures µn in Lemma 2.4, the
required convergence

lim
n→∞

Fn(z) = eikz, (0.8)

to some plane wave with frequency k > 1, is until now only known for the functions
(0.1), see [70, Lemma 2.4] or [69, Lemma 1]. In [43], complex saddle point methods were
used to verify the superoscillatory properties of (0.6), but a convergence of the form (0.8)
was not given there. This missing part is now added in Section 2.2, where Theorem 2.6
proves the required convergence, which makes (0.6) a Type I superoscillating sequence.
The same is done in Section 2.3 for the one specific example given in [46]. Also for the
functions in [12] it is proven in Section 2.4, and for the functions constructed in [16, 28]
it is shown in Section 2.1, that all of them can be considered as Type I superoscillating
sequences.

5



0. Introduction

However, in order to agree with the new Type I superoscillations, also the notion of
supershift in (0.4) is extended to the more general form

Fn(x) =

∫
U
ϕκ(x)dµn(κ),

in Definition 6.1.

Another type of superoscillatory function was constructed in [79, 91], where the functions
still admit an integral representation of the form (0.7), but the superoscillatory property
manifests itself no longer by the convergence (0.8), but by the number of zeros inside
some interval. In Definition 2.2 we introduce the terminology Type II superoscillating
function for these kind of functions.

The authors of [79, 91] proved, that there exist functions of the form

F (x) =

∫ k0

−k0

C(k)eikxdk,

for arbitrary small k0 > 0 which have arbitrary many isolated zeros in some arbitrary
small interval. Moreover, they even managed to construct a particular function having
minimal L2-norm, while passing through an arbitrary set of prescribed points. Due to the
exponentially small amplitudes of superoscillations, generating them can be very energy
expensive and this minimal energy result may be useful in practical applications. One
result regarding these Type II superoscillating functions is now given in Theorem 2.16,
where the just mentioned method from [79] is generalized to not only prescribed values
of the function itself, but to also allow prescribed values of any derivative. Note, that a
particular generalization to include the first derivative was already done in [84]. These
additional prescribed values of the derivatives can now be used to control the shape of
the resulting superoscillating function.

Summing up, in order to organize the existing literature, a mathematical precise defi-
nition of two types of superoscillations is given in Chapter 2. It is then a collection of
various results, which categorizes most variants of superoscillating functions in the exist-
ing literature into those two classes. At some places missing parts were added or existing
results generalized, as the mentioned convergence of Berry’s superoscillating functions
in [43] or [46] in Theorem 2.6 and Theorem 2.9 or the additional prescribed values of
the derivatives of the Kempf-Ferreira superoscillations in Theorem 2.16. All of this is
done to give a more complete picture of how the different superoscillating functions are
related to each other. Closing these gaps is another step in the direction of a complete
picture of the theory of superoscillations.

0.4. Applications of superoscillations

In this last part of the introduction we want to give a short overview of (possible)
applications of superoscillations which are sometimes of realistic and sometimes of more
academic nature.

One quantum mechanical thought experiment is the acceleration through a slit [57].
A particle with a bounded momentum range may have a superoscillatory wave func-
tion which locally oscillates with a shorter wavelength then classically allowed. If this

6



0.4. Applications of superoscillations

superoscillation exactly happens at the position of a slit in some screen, only the super-
oscillatory part of the wave function will pass through and the rest of the wave stays on
this side of the screen. Since the amplitude in the superoscillatory region is very small,
this event of the particle gaining momentum is very unlikely, but still possible.

There is a large field of applications in optical superresolution, which is a way of analyzing
a probe in details smaller than the diffraction limit. The theoretical basis was given
by Berry and Popescu, who in [51] proved, that the superoscillatory sub-wavelength
structure retained without evanescent waves. This method was then first tested in 2007
by Huang and Zheludev [89], who managed to focus light through a crystal nano-hole
array. Together with coauthors they improved their technique and lenses, see [1, 61, 90,
111], until the first practical imaging apparature was built in 2012 [60]. A large progress
was also made by the invention of the ”metamaterial super-lens” in [104], which allows
focus points of arbitrary shapes. For a rather complete overview, we refer the reader to
the Roadmap of superoscillations [9].

Superoscillations can also be used in combination with surfaces whose reflection and
transmission properties are frequency dependent, see [94]. On the one hand, if one sends
a beam towards a surface which reflects low but transmits high frequencies, its distance
can only be measured with accuracy according to the reflected long wavelength. A super-
oscillating signal instead will also be reflected completely (since it only consists of long
wavelengths), but the accuracy of measuring the distance increases to the wavelength of
the superoscillatory region. Conversely, if the surface only reflects high but transmits
low frequencies, one can do imaging behind the surface. Classically, one can only do
this with a resolution determined by the long wavelength. Using superoscillations, one
can choose the superoscillatory region to be behind the surface, which means, that all
the long wavelengths pass through the surface and interfere to a superoscillating high
frequency behind the wall. This allows a related high resolution of images.

Finally, we also want to mention the papers [92, 93], where A. Kempf collected some
(thought) experiments how one could use and apply superoscillations. Topics are the
usage of superresolution for the detection of landmines, superabsorbtion in optogenet-
ics, proving a generalization of the Shannon-Hartley theorem, recording a Beethoven
symphony with a 1 Hz bandlimited signal, data compression and the trans-Planckian
problem of black hole radiation.

7





1. The spaces Ap(C)

In the introduction we mentioned the standard example (0.1) of a superoscillating se-
quence, which is, by its physical origin, a function of one real variable x ∈ R and
converges uniformly on compact sets, but not uniformly on all of R [13, Theorem 4.3].
Unfortunately it turns out that in view of Chapter 6, the time persistence of superoscil-
lations, the uniform convergence only on compact sets is not enough. However, noting
that the constructed examples (2.16) and (2.20) are entire functions of the complex
variable z ∈ C and also that the standard example (0.1) obviously admits an entire
extension, it is a more suitable way to consider superoscillating functions as elements in
the space Ap(C) of entire functions with exponential growth. The aim of this chapter is
now to introduce these spaces and prove basic properties which will be of importance in
the applications throughout this thesis. In the context of superoscillations it is already
state of the art to consider convergences and operator continuity in these spaces, see
for example [4, 5, 19, 33, 35, 66, 68]. we want to mention that these spaces are special
cases of Analytically Uniform spaces (AU-spaces), introduced by Ehrenpreis in [75] and
enhanced by Berenstein, Taylor and coauthors in [38, 41, 42, 107]. An overview can also
be found in [16, 39, 40].

Definition 1.1. Let H(C) denote the set of all entire functions on C. Then for every
p > 0 define the space of entire functions with exponential growth of order p as

Ap(C) :=
{
F ∈ H(C)

∣∣∣ ∃A,B ≥ 0 such that |F (z)| ≤ AeB|z|p for all z ∈ C
}
. (1.1)

A sequence of functions (Fn)n ∈ Ap(C) converges to F0 ∈ Ap(C) in Ap(C), if and only
if there exists some B ≥ 0, such that

lim
n→∞

sup
z∈C
|Fn(z)− F0(z)|e−B|z|p = 0. (1.2)

We will write Fn
Ap−→ F0 for this type of convergence.

For more details about the topology of the space Ap(C) which leads to the convergence
(1.2) we refer to [28, Section 2] and [39, Section 2.1]. For the purpose of this thesis, the
detailed structure of the topology will not be of importance.

The following lemma shows, that the spaces Ap(C) are continuously included in each
other, and also give some relation to the uniform convergence.

Lemma 1.2. For every 0 < p ≤ q we have Ap(C) ⊆ Aq(C) and for any sequence

9



1. The spaces Ap(C)

F0, (Fn)n ⊆ Ap(C) we get the following implications of convergences

Fn
n→∞−→ F0 in Ap(C)

⇓

Fn
n→∞−→ F0 in Aq(C)

⇓

Fn
n→∞−→ F0 uniformly on every compact K ⊆ C

Proof. Let F ∈ Ap(C). Then by definition there exist A,B ≥ 0 such that

|F (z)| ≤ AeB|z|p , z ∈ C.

It then immediately follows from p ≤ q that also

|F (z)| ≤ A
{
eB|z|

q
, if |z| ≥ 1,

eB, if |z| ≥ 1,
≤ AeBeB|z|q , z ∈ C, (1.3)

which proves F ∈ Aq(C). Let now Fn
n→∞−→ F0 in Ap(C). By definition this means

lim
n→∞

sup
z∈C
|Fn(z)− F0(z)|e−B|z|p = 0,

for some B ≥ 0. By the same estimate as in (1.3) we get

sup
z∈C
|Fn(z)− F0(z)|e−B|z|q ≤ eB sup

z∈C
|Fn(z)− F0(z)|e−B|z|p n→∞−→ 0,

and hence the convergence Fn
n→∞−→ F0 in Aq(C) follows. Furthermore, for every r > 0

we get

sup
|z|≤r
|Fn(z)− F (z)| ≤ eBrq sup

|z|≤r
|Fn(z)− F (z)|e−B|z|q

≤ eBrq sup
z∈C
|Fn(z)− F (z)|e−B|z|q n→∞−→ 0.

Hence Fn
n→∞−→ F0 uniformly on every ball of radius r > 0 and hence also on every

compact subset K ⊆ C.

One standard example of an Ap-function is the following Mittag-Leffler function (1.4).
This function will also play a central role in the upcoming estimates of this chapter.

Definition 1.3 (Mittag-Leffler function). For every α, β > 0, we define the Mittag-
Leffler function as the power series

Eα,β(z) :=
∞∑
n=0

zn

Γ(αn+ β)
, z ∈ C, (1.4)

where Γ denotes the well known Gamma function.

10



Lemma 1.4. Let α, β > 0. Then there exists some Aα,β ≥ 0, such that

|Eα,β(z)| ≤ Aα,βe|z|
1
α , z ∈ C. (1.5)

In particular we have Eα,β ∈ A 1
α

(C).

Proof. Due to [99, Eq. (1.1) & (1.2)], the Mittag-Leffler function admits the asymptotic
behaviour

Eα,β(x) =
1

α

[α−1
2

]∑
n=−[α−1

2
]

ex
1
α e

2πin
α , as x→∞,

where [α−1
2 ] denotes the nearest integer part, i.e. [α−1

2 ] = N ∈ N0, if α−1
2 ∈ (−N

2 ,
N
2 ].

This sum can now be estimated as

Eα,β(x) ≤ 1

α

[α−1
2

]∑
n=−[α−1

2
]

ex
1
α cos( 2πn

α
) ≤ 1

α

(
2
[α− 1

2

]
+ 1
)
ex

1
α , as x→∞.

Since Eα,β is an entire function, it is in particular bounded on any compact interval and
hence there exists some Aα,β ≥ 0 such that

Eα,β(x) ≤ Aα,βex
1
α , x ≥ 0.

For the complex argument then immediately follows the desired

|Eα,β(z)| ≤ Eα,β(|z|) ≤ Aα,βe|z|
1
α , z ∈ C.

With this result about the Mittag-Leffler function, we can now characterize the space
Ap(C) and the corresponding convergence (1.2) in terms of the power series coefficients
of the respective functions. See also [35, Lemma 2.2].

Lemma 1.5. For every p > 0, the space Ap(C) can be characterized by

Ap(C) =

{
F ∈ H(C)

∣∣∣∣∣ ∃A,B ≥ 0 such that |fk| ≤ A
Bk

Γ(kp + 1)
for all k ∈ N0

}
, (1.6)

where (fk)k ∈ C are the coefficients of the power series representation F (z) =
∑∞

k=0 fkz
k.

Moreover, any sequence (Fn)n ∈ Ap(C) converges to F0 ∈ Ap(C) in Ap(C) if and only if
there exist (An)n, B ≥ 0, such that

(i) |fn,k − f0,k| ≤ An Bk

Γ( k
p

+1)
, k, n ∈ N0,

(ii) lim
n→∞

An = 0.

Proof. We start with the inclusion “ ⊆ “ of (1.6). Let F ∈ Ap(C). By (1.1), there exist
A,B ≥ 0 such that |F (z)| ≤ AeB|z|

p
, for every z ∈ C. Without loss of generality we

11



1. The spaces Ap(C)

will assume B > 0. Using the Cauchy integral formula, the power series coefficients are
given by

fk =
1

2πi

∫
γ

F (ξ)

ξk+1
dξ =

1

2πrk

∫ 2π

0
F (reiϕ)e−ikϕdϕ, k ∈ N,

where γ is a circle around the origin with a not yet specified radius r > 0. This integral
can now be estimated as

|fk| ≤
A

2πrk

∫ 2π

0
eBr

p
dϕ =

A

rk
eBr

p
, k ∈ N.

Since the right hand side depends on the free parameter r > 0, we can minimize it by

choosing r = ( k
Bp)

1
p , which is possible since we assumed B > 0 and only considered

k ∈ N. This gives the upper bound

|fk| ≤ A
(Bep

k

) k
p
, k ∈ N. (1.7)

Due to the asymptotic behaviour Γ(kp + 1) ∼
√

2π kp
(
k
ep

) k
p , as k → ∞ of the Gamma

function [2, Eq.(6.1.37)], we get

(ep
k

) k
p

Γ(kp + 1)

2
k
p

∼

√
2π kp

2
k
p

, as k →∞.

Since the right hand side tends to zero as k →∞, there exists some AΓ ≥ 1, such that

(ep
k

) k
p

Γ(kp + 1)

2
k
p

≤ AΓ, k ∈ N. (1.8)

Using this in (1.7) gives

|fk| ≤ AAΓ
(2B)

k
p

Γ(kp + 1)
, k ∈ N. (1.9)

The missing term k = 0 can be estimated as |f0| = |F (0)| ≤ A, and since we chose
AΓ ≥ 1, it is also covered by (1.9).

For the inverse inclusion “ ⊇ “ let the coefficients be bounded as |fk| ≤ A Bk

Γ( k
p

+1)
, for

some A,B ≥ 0. Then we can estimate the function as

|F (z)| ≤ A
∞∑
k=0

(B|z|)k

Γ(kp + 1)
= AE 1

p
,1(B|z|), z ∈ C,

using the Mittag-Leffler function (1.4). From Lemma 1.4 we then conclude the estimate

|F (z)| ≤ AA 1
p
,1e

Bp|z|p , z ∈ C, (1.10)

which proves, that F ∈ Ap(C).

12



For the equivalence of the Ap-convergence, let us first assume, that Fn
n→∞−→ F0 in Ap(C).

If we define
An := sup

z∈C
|Fn(z)− F0(z)|e−B|z|p ,

then lim
n→∞

An = 0 by (1.2) and we get the estimate

|Fn(z)− F0(z)| ≤ AneB|z|
p
, z ∈ C.

In the same way as we derived (1.9) we then also get

|fn,k − f0,k| ≤ AnAΓ
(2B)

k
p

Γ(kp + 1)
.

Note here, that the coefficient AΓ from (1.8) does not depend on n. Hence we proved
the conditions (i) and (ii).

Conversely, assume that the conditions (i) and (ii) are satisfied. Then analogously as we
derived (1.10), we get

|Fn(z)− F0(z)| ≤ AnA 1
p
,1e

Bp|z|p , z ∈ C.

Also here we note, that the constant A 1
p
,1 comes from the estimate (1.5) and in particular

does not depend on n. Since limn→∞An = 0 by assumption we conclude the Ap-
convergence

sup
z∈C
|Fn(z)− F0(z)|e−BB′|z|p ≤ AnA 1

p
,1
n→∞−→ 0.

A similar argument as for the power series coefficients in Lemma 1.5 shows, that for
functions in Ap(C) all its derivatives are contained in Ap(C) as well.

Lemma 1.6. Let p > 0 and F ∈ Ap(C). Then also F (n) ∈ Ap(C) for every n ∈ N0.

Proof. Let F ∈ Ap(C) and A,B ≥ 0 such that |F (z)| ≤ AeB|z|
p
, for every z ∈ C.

Without loss of generality we will assume B > 0 and n ∈ N. By the Cauchy integral
formula, we can write the n-th derivative as

F (n)(z) =
n!

2πi

∫
γ

F (ξ)

(ξ − z)n+1
dξ =

n!

2πrn

∫ 2π

0
F (z + reiϕ)e−inϕdϕ,

where γ is a circle around z with a not yet specified radius r > 0. This integral can now
be estimated as

|F (n)(z)| ≤ An!

2πrn

∫ 2π

0
eB|z+re

iϕ|pdϕ ≤ An!

rn
eB2p(|z|p+rp).

Since the right hand side still depends on the free parameter r > 0, we minimize it by

choosing r = 1
2( n
Bp)

1
p . This gives

|F (n)(z)| ≤ An!2n
(eBp
n

)n
p
eB2p|z|p ≤ AAΓ

n!2
n(1+ 1

p
)
B

n
p

Γ(np + 1)
eB2p|z|p ,

where in the last inequality we used the constant AΓ from (1.8).
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1. The spaces Ap(C)

By definition, the space Ap(C) consists of entire functions which admit some additional
exponential growth condition. From standard analysis we know, that the power series
F (z) =

∑∞
k=0 fkz

k of any entire function uniformly converges on compact subsets of C.
However, the next lemma shows, that the additional exponential growth constraint of
Ap(C) ensures, that the series even converges in the stronger Ap-sense.

Lemma 1.7. Let F ∈ Ap(C). Then the power series representation

F (z) =
∞∑
k=0

fkz
k converges in Ap(C).

Proof. For every z 6= 0, we can use the Cauchy integral formula to write for every N ∈ N0

the function as,

F (z) =
1

2πi

∫
|ξ|=2|z|

F (ξ)

ξ − z
dξ

=
1

2πi

∫
|ξ|=2|z|

F (ξ)

∞∑
k=0

zk

ξk+1
dξ

=
N∑
k=0

zk

2πi

∫
|ξ|=2|z|

F (ξ)

ξk+1
dξ +

1

2πi

∫
|ξ|=2|z|

F (ξ)
∞∑

k=N+1

zk

ξk+1
dξ

=
N∑
k=0

fkz
k +

1

2πi

∫
|ξ|=2|z|

F (ξ)
∞∑

k=N+1

zk

ξk+1
dξ, z ∈ C \ {0}.

where in the last line we used the Cauchy integral formula for the coefficients of the
power series. Using the exponential bound |F (z)| ≤ AeB|z|

p
of functions in Ap(C), we

can estimate the difference between F and its partial sum as∣∣∣F (z)−
N∑
k=0

fkz
k
∣∣∣ ≤ 1

2π

∫ 2π

0
|F (2|z|eiϕ)|

∞∑
k=N+1

1

2k
dϕ ≤ A

2N
eB|2z|

p
, z ∈ C \ {0}.

Since this estimate is obviously also true for z = 0, we conclude the Ap-convergence

sup
z∈C

∣∣∣F (z)−
N∑
k=0

fkz
k
∣∣∣e−B2p|z|p ≤ A

2N
N→∞−→ 0.

As an application of the Ap-spaces, we verify, that the example superoscillating functions
(0.1) indeed converge in A1(C). It is to mention, that a very similar proof is already
given in [68, Lemma 2.4] or [69, Lemma 1].

Proposition 1.8. For every k ∈ C, the sequence

Fn(z) =
n∑
j=0

Cj(n)eikj(n)z, z ∈ C,

with the coefficients

Cj(n) =

(
n

j

)(1 + k

2

)n−j(1− k
2

)j
and kj(n) = 1− 2j

n
,
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converges to

lim
n→∞

Fn(z) = eikz, in A1(C). (1.11)

Proof. Using the binomial formula, we write the function Fn(z) as

Fn(z) =
n∑
j=0

(
n

j

)(1 + k

2

)n−j
ei
n−j
n
z
(1− k

2

)j
e−i

j
n
z

=
(1 + k

2
ei
z
n +

1− k
2

e−i
z
n

)n
=
(

cos
( z
n

)
+ ik sin

( z
n

))n
.

Using the bounds

| sin(ξ)| ≤ |ξ|e|ξ| and | cos(ξ)| ≤ e|ξ|, ξ ∈ C, (1.12)

which immediately follow from the respective power series representation of sin(ξ) and
cos(ξ), we can estimate the functions Fn as

|Fn(z)| =
∣∣∣ cos

( z
n

)
+ ik sin

( z
n

)∣∣∣n ≤ (1 +
|k||z|
n

)n
e|z| ≤ e(|k|+1)|z|, z ∈ C. (1.13)

Next, we estimate the difference of the cos-terms

∣∣∣ cos
( z
n

)
− cos

(kz
n

)∣∣∣ =
∣∣∣ ∫ kz

n

z
n

sin(ξ)dξ
∣∣∣ ≤ |k − 1||z|

n
sup

ξ∈[ z
n
, kz
n

]

| sin(ξ)|

≤ (|k|+ 1)|z|
n

sup
ξ∈[ z

n
, kz
n

]

|ξ|e|ξ| ≤ (|k|+ 1)2|z|2

n2
e

(1+|k|)|z|
n , (1.14)

where we again used the estimate (1.12). In a similar way we also derive an inequality
for the difference of sin-terms, namely we use

∣∣∣cos(ξ)

ξ
− sin(ξ)

ξ2

∣∣∣ =
∣∣∣ ∞∑
n=0

(−1)n+1 2n+ 2

(2n+ 3)!
ξ2n+1

∣∣∣ ≤ ∞∑
n=0

1

(2n+ 1)!
|ξ|2n+1 ≤ e|ξ|, ξ ∈ C,

to estimate

∣∣∣k sin
( z
n

)
− sin

(kz
n

)∣∣∣ =
|k||z|
n

∣∣∣ ∫ kz
n

z
n

(cos(ξ)

ξ
− sin(ξ)

ξ2

)
dξ
∣∣∣

≤ |k||k − 1||z|2

n2
sup

ξ∈[ z
n
, kz
n

]

∣∣∣cos(ξ)

ξ
− sin(ξ)

ξ2

∣∣∣
≤ (|k|+ 1)2|z|2

n2
sup

ξ∈[ z
n
, kz
n

]

e|ξ| ≤ (|k|+ 1)2|z|2

n2
e

(|k|+1)|z|
n . (1.15)
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1. The spaces Ap(C)

Using now the identity An−Bn = (A−B)
∑n−1

j=0 A
jBn−1−j , together with the estimates

(1.13), (1.14) and (1.15), gives for every n ≥ |k|+ 1 the estimate

|Fn(z)− eikz| =
∣∣∣( cos

( z
n

)
+ ik sin

( z
n

))n
−
(
ei
kz
n
)n∣∣∣

=
∣∣∣ cos

( z
n

)
+ ik sin

( z
n

)
− ei

kz
n

∣∣∣∣∣∣ n−1∑
j=0

(
cos
( z
n

)
+ ik sin

( z
n

))j
ei
n−1−j
n

kz
∣∣∣

≤ 2(|k|+ 1)2|z|2

n2
e

(|k|+1)|z|
n

n−1∑
j=0

e
j
n

(|k|+1)|z|e
n−1−j
n
|k||z|

≤ 2(|k|+ 1)2|z|2

n
e(|k|+1)|z|

≤ 8(|k|+ 1)2

ne2
e(|k|+2)|z|,

where in the last line we used |z|2 ≤ 4
e2
e|z|. This estimate now shows, that

lim
n→∞

|Fn(z)− eikz|e−(|k|+2)|z| ≤ lim
n→∞

8(|k|+ 1)2

ne2
= 0,

and hence limn→∞ Fn(z) = eikz in A1(C).

In these spaces Ap(C) we can now define different kind of infinite order differential
operators as in (1.17), (1.21) and (1.29). In the literature, those kind of operators play the
role of a time evolution operator for the time dependent Schrödinger equation, and were
used to prove continuity results similar to the one in Theorem 4.6 and Theorem 5.4, see
for example [5, 19, 20, 22, 32, 34, 35, 55, 66, 67, 72]. However, our methods in Chapter 4
and Chapter 5 use more direct arguments and avoid these operators. Nevertheless, they
will still be used in Theorem 2.5 for the construction of superoscillating functions, similar
as in [16, 28]. The first very large family of operators is introduced in the following
Theorem 1.9 and is for p ≥ 1 already stated in [35, Theorem 2.4]. Also the proof is
basically taken from there.

Theorem 1.9. Let p > 0 and (an)n : C→ C be entire functions, such that there exists
some C ≥ 0 and for every ε > 0 some Bε ≥ 0, with

|an(z)| ≤ Bε
εn

Γ(nq + 1)
eC|z|

p
, z ∈ C, (1.16)

where 1
q

:=

{
1− 1

p , if 1 < p <∞,
0, if 0 < p ≤ 1.

Then the infinite order differential operator

U :=
∞∑
n=0

an
dn

dzn
, (1.17)

acts continuously as an operator U : Ap(C)→ Ap(C).
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Proof. Let F ∈ Ap(C) admitting the power series representation F (z) =
∑∞

k=0 fkz
k. In

this form the action of U on F is

(UF )(z) =
∞∑
n=0

an(z)
dn

dzn

∞∑
k=0

fkz
k =

∞∑
n=0

an(z)
∞∑
k=0

fn+k
(n+ k)!

k!
zk, z ∈ C. (1.18)

By the boundedness of the functions an in (1.16) and the bound |fk| ≤ A Bk

Γ( k
p

+1)
of the

coefficients in Lemma 1.5, we can estimate this expression for every ε > 0 by

|(UF )(z)| ≤ ABεeC|z|
p
∞∑
n=0

∞∑
k=0

(n+ k)!(Bε)n(B|z|)k

Γ(nq + 1)Γ(n+k
p + 1)k!

, z ∈ C.

Next we will use the following basic inequalities of the Gamma function and factorial

(n+ k)!

n!k!
=

(
n+ k

k

)
≤

n+k∑
j=0

(
n+ k

j

)
= 2n+k,

Γ(np + 1
2)Γ(kp + 1

2)

Γ(n+k
p + 1)

= B
(n
p

+
1

2
,
k

p
+

1

2

)
≤ B

(1

2
,
1

2

)
= π,

to further estimate the double sum as

|(UF )(z)| ≤ ABεπeC|z|
p
∞∑
n=0

n!(2Bε)n

Γ(nq + 1)Γ(np + 1
2)

∞∑
k=0

(2B|z|)k

Γ(kp + 1
2)
, z ∈ C.

Due to the asymptotic behaviour Γ(x) ∼
√

2π xx−
1
2

ex , as x→∞, see [2, Eq.(6.1.37)], the
coefficients of the first sum for 1 < p < ∞, where we have 1

p + 1
q = 1 asymptotically

behave as

n!

Γ(nq + 1)Γ(np + 1
2)
≤ n!

Γ(nq )Γ(np )
∼ nn+ 1

2

√
2π (nq )

n
q
− 1

2 (np )
n
p
− 1

2

=
n

3
2 (p

1
p q

1
q )n√

2πpq
, as n→∞.

However, also for 0 < p ≤ 1, where 1
q

:= 0, we have the inequality

n!

Γ(np + 1
2)
≤ n!

Γ(n)
= n+ 1, n ≥ 1.

Hence, if we fix 0 < ε < p
1
p q

1
q

2B , the sum

Cε :=

∞∑
n=0

n!(2Bε)n

Γ(nq + 1)Γ(np + 1
2)
<∞

is finite. Using the Mittag-Leffler function (1.4), with its exponential bound (1.5), we
can finally estimate (Uf)(z) as

|(UF )(z)| ≤ ABεCεπeC|z|
p
E 1
p
, 1
2
(2B|z|) ≤ AA 1

p
, 1
2
BεCεπe

(C+(2B)p)|z|p , z ∈ C. (1.19)
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1. The spaces Ap(C)

On the one hand, this estimate now proves, that the sum (1.18) uniformly converges
compact subsets of C, and hence UF is entire. On the other hand, it also gives the
exponential boundedness UF ∈ Ap(C).

In order to prove the continuity of the operator U , let Fn
Ap−→ F0. According to

Lemma 1.5, this means that there exist constants An, B ≥ 0 with limn→∞An = 0,
such that the power series coefficients can be estimated as

|fn,k − f0,k| ≤ An
Bk

Γ(kp + 1)
, k, n ∈ N0.

The same estimate (1.19) done for the difference UFn − UF0, gives

|(UFn)(z)− (UF0)(z)| ≤ AnA 1
p
, 1
2
BεCεπe

(C+(2B)p)|z|p .

Rewriting this inequality gives

|(UFn)(z)− (UF0)(z)|e−(C+(2B)p)|z|p ≤ AnA 1
p
, 1
2
BεCεπ

n→∞−→ 0,

which is exactly the Ap-convergence (1.2). Hence UFn
Ap−→ UF0 and we proved the

Ap-continuity of the operator U .

For the particular A1-space the previous Theorem 1.9 can still be generalized in the
sense that the simple derivative d

dz can be replaced by some operator H( ddz ).

Theorem 1.10. Let p > 0 and H, (an)n : C → C be entire functions, such that there
exists some C ≥ 0 and for every ε > 0 some Bε ≥ 0, with

|an(z)| ≤ BεεneC|z|
p
, z ∈ C, ε > 0. (1.20)

Then the differential operator

U :=

∞∑
n=0

an

(
H
( d
dz

))n
, (1.21)

acts continuously as an operator U : A1(C)→ A1(C). Note, that for H(z) =
∑∞

l=0 hlz
l

we consider the corresponding infinite order differential operator H( ddz ) :=
∑∞

l=0 hl
dl

dzl
.

Proof. For any F ∈ A1(C), having the power series representation F (z) =
∑∞

k=0 fkz
k,

the action of H( ddz ) is given by

(
H
( d
dz

)
F
)

(z) =
∞∑
l=0

hl
dl

dzl

∞∑
k=0

fkz
k =

∞∑
k=0

∞∑
l=0

hlfk+l
(k + l)!

k!
zk, (1.22)

where we already interchanged the order of summation, which will be justified by the
upcoming estimate (1.24). This shows, that H( ddz )F is again a power series with coeffi-
cients (

H
( d
dz

)
F
)
k

=
1

k!

∞∑
l=0

hlfk+l(k + l)!, k ∈ N0. (1.23)
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Using now the estimate |fk| ≤ ABk

k! from Lemma 1.5, we can estimate the coefficients
(1.23) as ∣∣∣(H( d

dz

)
F
)
k

∣∣∣ ≤ ABk

k!

∞∑
l=0

|hl|Bl = AD
Bk

k!
, (1.24)

where we used the constant D :=
∑∞

l=0 |hl|Bl < ∞. With this estimate we verified,
that the double sum in (1.22) is absolutely convergent and we were indeed allowed to
interchange the sums. Since H( ddz )F is an everywhere convergent power series, it is

again entire, and since its coefficients admit the bound (1.24), even H( ddz )F ∈ A1(C).

Moreover, equation (1.24) tells us, that whenever we apply H( ddz ), the estimate of the
corresponding power series coefficients gets multiplied by D. Which means, that if we
apply H( ddz ) n-times, we get the estimate∣∣∣((H( d

dz

))n
F
)
k

∣∣∣ ≤ ADnB
k

k!
, k ∈ N0, (1.25)

of the corresponding power series coefficients. Next, the action of U on the function F
is given by

(UF )(z) =

∞∑
n=0

an(z)

∞∑
k=0

((
H
( d
dz

))n
F
)
k
zk, z ∈ C. (1.26)

Using (1.20) and (1.25), we can estimate this function for every ε > 0 as

|(UF )(z)| ≤ ABεeC|z|
∞∑
k=0

∞∑
n=0

(εD)n(B|z|)k

k!
=

ABε
1− εD

e(B+C)|z|, z ∈ C, (1.27)

where we chose 0 < ε < 1
D . This estimate shows, that the sum in (1.26) is absolutely

convergent as well as uniform on compact subsets of C, hence UF is entire. On the other
hand it also gives the exponential boundedness to make UF ∈ A1(C).

In order to prove the continuity of the operator U , let Fn
A1−→ F0. According to

Lemma 1.5, this means that there exist constants An, B ≥ 0 with limn→∞An = 0,
such that the power series coefficients can be estimated as

|fn,k − f0,k| ≤ An
Bk

k!
, k, n ∈ N0.

The same estimate (1.27) done for the difference UFn − UF0, gives

|(UFn)(z)− (UF0)(z)| ≤ AnBε
1− εD

e(B+C)|z|, z ∈ C. (1.28)

Rewriting this inequality gives the convergence

sup
z∈C
|(UFn)(z)− (UF0)(z)|e−(C+B)|z| ≤ AnBε

1− εD
n→∞−→ 0,

which is exactly the A1-convergence (1.2). Hence UFn
A1−→ UF0 and we proved the

A1-continuity of the operator U .
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1. The spaces Ap(C)

The following corollary is a direct consequence of Theorem 1.10 and will play a central
role in the construction of superoscillations in Theorem 2.5. For the special case of a
monome H(z) = zp this operator is already considered in [34, Theorem 2.3]. A similar
operator as (1.29) is already considered in [16, Theorem 2], but defined via infinite
products there.

Corollary 1.11. Let λ ∈ C and H : C→ C be an entire function. Then the differential
operator

U :=

∞∑
n=0

λn

n!

(
H
(
− i d

dz

))n
, (1.29)

acts continuously as an operator U : A1(C) → A1(C). Moreover, for every F ∈ A1(C)

with power series coefficients bounded as |fk| ≤ ABk

k! for some A,B ≥ 0, the image UF
admits the exponential bound

|(UF )(z)| ≤ Ae|λ|
∑∞
l=0 |hl|BleB|z|, z ∈ C, (1.30)

where (hl)l are the power series coefficients of H(z) =
∑∞

l=0 hlz
l.

Proof. This operator U is of the form (1.21) with the entire function H( · ) replaced by
H(−i · ), and the constant functions an(z) = λn

n! , which obviously satisfy (1.20).

In order to check the estimate (1.30), we note, that in (1.26) we derived the representaton

(UF )(z) =
∞∑
n=0

λn

n!

∞∑
k=0

((
H
(
− i d

dz

))n
F
)
k
zk, z ∈ C.

Choosing D =
∑∞

l=0 |hl|Bl we can use (1.25) to estimate

|(UF )(z)| ≤
∞∑
n=0

|λ|n

n!

∞∑
k=0

ADnB
k

k!
|z|k = AeD|λ|eB|z|, z ∈ C.
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2. Classification of superoscillations

As mentioned in the introduction, the existing literature consists of various variants of
superoscillating functions, defined in different ways and having different types of oscil-
latory properties. The aim of this chapter is now to unify these concepts and categorize
them into two classes of superoscillating functions.

Beside the difference in their oscillatory behaviour, all superoscillations have in common,
that they are entire functions and (linear) combinations of plane waves with frequencies
lying within a bounded range. I.e., for some k0 > 0 and some complex valued Borel
measure µ on [−k0, k0] we consider functions of the form

F (z) =

∫ k0

−k0

eiκzdµ(κ), z ∈ C. (2.1)

In order to be superoscillatory, we additionally have to ensure that some oscillatory
behaviour occurs, which exceeds the intrinsic frequency range [−k0, k0]. There are now
two different ways how this oscillatory behaviour manifests itself.

The first type of superoscillations considers sequences of functions for which the super-
oscillatory property is realized by the convergence to a plane wave with a frequency
outside the expected range.

Definition 2.1 (Type I superoscillations). A sequence of functions (Fn)n, each of the
form (2.1) with corresponding measures µn but a common maximal frequency k0 > 0, is
called a Type I superoscillating sequence, if there exists some k ∈ R \ [−k0, k0], such that

lim
n→∞

Fn(z) = eikz, in A1(C). (2.2)

In contrast, the following Type II superoscillation is a property of a single function only.
Here, the superoscillatory behaviour is connected to the number of zeros in a certain
interval.

Definition 2.2 (Type II superoscillations). A function F of the form (2.1) is called a
Type II superoscillating function on the interval [a, b] ⊆ R, if

F has at least
k0(b− a)

π
isolated zeros in the open interval (a, b). (2.3)

The following lemma ensures that the functions (2.1) are indeed elements in the space
A1(C) of exponentially bounded entire functions (1.1) and hence the convergence (2.2)
is well defined.

Lemma 2.3. Let k0 > 0 and µ be a complex Borel measure on [−k0, k0]. Then the
function F in (2.1) is an element in A1(C).
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2. Classification of superoscillations

Proof. The integrand eiκz in (2.1) is an entire function in z and its derivative can be
estimated by ∣∣∣ d

dz
eiκz

∣∣∣ = |κ|e−κ Im(z) ≤ k0e
k0|z|, κ ∈ [−k0, k0], z ∈ C. (2.4)

Since the interval [−k0, k0] is of finite measure, the κ-uniform upper bound (2.4) is inte-
grable and hence ensures the complex differentiability of the function (2.1). Moreover,
the exponential boundedness follows from the estimate

|F (z)| =
∣∣∣ ∫ k0

−k0

eiκzdµ(κ)
∣∣∣ ≤ ∫ k0

−k0

|eiκz|d|µ|(κ) ≤ |µ|([−k0, k0])|ek0|z|, z ∈ C,

where |µ| is the variation of the complex measure µ. This verifies that F ∈ A1(C).

The next lemma verifies that the two specific representations (0.1) and (0.6) of super-
oscillations are indeed covered by the general form (2.1).

Lemma 2.4. Let k0 > 0 and F : C→ C be one of the following types of functions:

(i) A linear combination of plane waves

F (z) =
n∑
j=0

Cje
ikjz, z ∈ C,

with coefficients Cj ∈ C and kj ∈ [−k0, k0].

(ii) An integral of the form

F (z) =

∫
R
C(u)eik(u)zdu, z ∈ C,

for some C ∈ L1(R), k(u) ∈ [−k0, k0] for every u ∈ R.

Then there exists some complex Borel measure µ on [−k0, k0], such that F admits the
representation (2.1).

Proof.

(i) Choosing the Dirac measure

µ(B) :=
n∑

j=0,kj∈B
Cj ,

for any Borel set B ⊆ [−k0, k0], then F obviously admits the representation (2.1).

(ii) In the first step we define the complex measure

σ(A) :=

∫
A
C(u)du,
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2.1. Constructing Type I superoscillations via generalized Schrödinger equation

for any Borel set A ⊆ R. With this measure, the function F admits the represen-
tation

F (z) =

∫
R
eik(u)zdσ(u), z ∈ C.

Choosing furthermore

µ(B) := σ
(
{ u ∈ R | k(u) ∈ B }

)
for any Borel set B ⊆ [−k0, k0], we can even rewrite F as

F (z) =

∫ k0

−k0

eikzdµ(k), z ∈ C,

which is exactly the form (2.1).

The following sections now collect superoscillations of the existing literature, generalize
them if possible, and prove that they fit in either of those two classes. In particular, the
Sections 2.1–2.4 treat Type I superoscillating sequences and in Section 2.5 & 2.6 Type II
superoscillating functions are considered.

2.1. Constructing Type I superoscillations via generalized
Schrödinger equation

In this section we derive two methods, which take a given Type I superoscillating se-
quence, for example the one in (0.1), and construct a new family of Type I superoscil-
lating sequences out of it. The idea was first considered in [16], revisited in [28] and uses
the generalized free Schrödinger equation

i
∂

∂t
Ψ(t, z) = −H

(
− i ∂

∂z

)
Ψ(t, z), t, z ∈ C, (2.5)

where for some entire H(z) =
∑∞

n=0 hnz
n the operator H(−i ddz ) :=

∑∞
n=0 hn(−i ddz )n is

defined as the corresponding infinite order differential operator acting in A1(C). Choos-
ing the initial condition Ψ(0, z) = eikz, the equation (2.5) has the explicit solution

Ψ(t, z) = eiH(k)teikz, t, z ∈ C.

Consequently, taking some function Fn of the form (2.1) as initial condition, the solution
formally looks like

Ψn(t, z) =

∫ k0

−k0

eiH(κ)teiκzdµn(κ), t, z ∈ C. (2.6)

If we now assume that the initial conditions (Fn)n form a Type I superoscillatory se-
quence, one may expect, that also at other times t ∈ C the sequence (Ψn(t, · ))n is still a
Type I superoscillating sequence. This method is precisely specified in Theorem 2.5 (i).
It will also turn out in Theorem 2.5 (ii), that at the point z = 0, the sequence (Ψn( · , 0))n
is Type I superoscillating sequence in the time variable t.
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2. Classification of superoscillations

The novelty of Theorem 2.5 compared to the works [16, 28], is firstly, that in (2.5)
arbitrary Type I superoscillating functions of the form (2.1) are chosen, while in [16,
28] only the standard example (0.1) was considered. Secondly, it is proven, that the

resulting functions F
(1)
n and F

(2)
n in (2.9) and (2.10) converge in A1(C), while only

uniform convergence on compact subsets was proven in [16, 28].

Theorem 2.5. Let (Fn)n be a Type I superoscillating sequence, which satisfy (2.1) in
the form

Fn(z) =

∫ k0

−k0

eiκzdµn(κ), z ∈ C, (2.7)

for some k0 > 0 and complex Borel measures µn on [−k0, k0], and which converge as

lim
n→∞

Fn(z) = eikz in A1(C), (2.8)

for some k ∈ R \ [−k0, k0].

(i) Then for every entire function H : C→ C, also the sequence

F (1)
n (z) := e−H(k)

∫ k0

−k0

eH(κ)eiκzdµn(κ), z ∈ C, n ∈ N, (2.9)

is a Type I superoscillating sequence, with limit lim
n→∞

F
(1)
n (z) = eikz in A1(C).

(ii) For every entire function H : C → C, which satisfies H(κ) ∈ [−h0, h0] for every
κ ∈ [−k0, k0] and H(k) ∈ R \ [−h0, h0], for some h0 > 0, the sequence

F (2)
n (z) :=

∫ k0

−k0

eiH(κ)zdµn(κ), z ∈ C, n ∈ N, (2.10)

is a Type I superoscillating sequence, with limit lim
n→∞

F
(2)
n (z) = eiH(k)z in A1(C).

Proof. For every t ∈ C we consider the operator

U(t) :=

∞∑
m=0

(it)m

m!

(
H
(
− i d

dz

))m
, (2.11)

which, according to Corollary 1.11, is continuous in A1(C). Starting with the power
series representation H(z) =

∑∞
l=0 hlz

l, it turns out that the operator H(−i ddz ) acts on
plane waves eiκz, as the multiplication

H
(
− i d

dz

)
eiκz =

∞∑
l=0

hl(−i)l
dl

dzl
eiκz =

∞∑
l=0

hlκ
leiκz = H(κ)eiκz.

Consequently, the operator U(t) acts as

(U(t)eiκ · )(z) =

∞∑
m=0

(it)m

m!

(
H
(
− i d

dz

))m
eiκz =

∞∑
m=0

(it)m

m!
(H(κ))meiκz = eiH(κ)teiκz.

(2.12)
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2.1. Constructing Type I superoscillations via generalized Schrödinger equation

Since the right hand side of this equation is uniformly bounded as

|eiH(κ)teiκz| ≤ e|H(κ)t|e|κ||z| ≤ et
∑∞
l=0 |hl|kl0ek0|z|, κ ∈ [−k0, k0],

and since the interval [−k0, k0] has finite measure with respect to µn, a version of the
dominated convergence theorem allows to carry the operator U inside the integral (2.7),
namely

(U(t)Fn)(z) =
(
U(t)

∫ k0

−k0

eiκ · dµn(κ)
)

(z)

=

∫ k0

−k0

(U(t)eiκ · )(z)dµn(κ) =

∫ k0

−k0

eiH(κ)teiκzdµn(κ).

(2.13)

(i) In order to prove, that (2.9) is a Type I superoscillating sequence, we choose t = −i
in (2.13) and get

(U(−i)Fn)(z) =

∫ k0

−k0

eH(κ)eiκzdµn(κ) = eH(k)F (1)
n (z), z ∈ C.

Since U(−i) is continuous in A1(C) and Fn → eik · in A1(C), we conclude the
convergence

lim
n→∞

F (1)
n (z) = e−H(k) lim

n→∞
(U(−i)Fn)(z)

= e−H(k)(U(−i)eik · )(z) = eikz in A1(C). (2.14)

The fact that F
(1)
n is of the form (2.1) was already proven in Lemma 2.4 (ii), and

hence this proves that (F
(1)
n )n is indeed a Type I superoscillating sequence.

(ii) According to the A1-convergence (2.8) and Lemma 1.5, there exist An, B ≥ 0 with
limn→∞An = 0, such that we can estimate the power series coefficients of the

difference Fn(z)− eikz =
∑∞

l=0(fn,l − (ik)l

l! )zl by

∣∣∣fn,l − (ik)l

l!

∣∣∣ ≤ AnBl

l!
, l, n ∈ N0.

From the estimate (1.30) we then conclude∣∣(U(t)(Fn − eik · )
)
(z)
∣∣ ≤ AneD|t|eB|z|,

using D :=
∑∞

l=0 |hl|Bl. This estimate shows in particular for z = 0 the conver-
gence

lim
n→∞

sup
t∈C

∣∣(U(t)(Fn − eik · )
)
(0)
∣∣e−D|t| ≤ lim

n→∞
An = 0.

In other words this is nothing else than the A1-convergence

lim
n→∞

(U(t)Fn)(0) = (U(t)eik · )(0),
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2. Classification of superoscillations

in the variable t. Using the identities (2.12) and (2.13) this convergence can be
written as

lim
n→∞

F (2)
n (t) = lim

n→∞

∫ k0

−k0

eiH(κ)tdµn(κ)

= lim
n→∞

(U(t)Fn)(0) = (U(t)eik · )(0) = eiH(k)t. (2.15)

Since H(κ) ∈ [−h0, h0] for every κ ∈ [−k0, k0] by assumption, it follows again

from Lemma 2.4 (ii), that F
(2)
n admits the representation (2.1) for some complex

measure µn on [−h0, h0]. Together with the convergence (2.15) to a plane wave with

frequency H(k) ∈ R\[−h0, h0], this proves, that (F
(2)
n )n is a Type I superoscillating

sequence.

2.2. Type I Superoscillations as integrals

Another way of constructing superoscillating functions was initiated by M. Berry in [43],
where he considered functions of the form

Fδ(x) =
1

δ
√

2π

∫
R
eik(u)xe−

(u−ia)2

2δ2 du, x ∈ R.

The idea is, that
1

δ
√

2π
e−

(u−ia)2

2δ2 → δ(u− ia), as δ → 0+,

approximates the complex delta function and consequently

Fδ(x)→ eik(ia)x, as δ → 0+,

converges to a plane wave. In the following Theorem 2.6 we want to revisit this idea and
prove that under certain assumptions the resulting functions form a Type I superoscil-
lating sequence, see Corollary 2.7.

Moreover, we also improve the above construction of [43] in three ways. Firstly, an
additional function g is allowed in the integral (2.16). This function does not affect
the superoscillatory property of the Fδ’s, but allows to modify their shape. Secondly,
precise assumptions on the involved functions g and k are given. Thirdly and most
importantly, while in [43] mainly the complex saddle point approximation is used to
derive properties as the local wavenumber, the convergence in the space A1(C) is proven
here. In particular, this is necessary for (Fδ)δ to be a Type I superoscillating sequence
according to Definition 2.1.

Theorem 2.6. Let I ⊆ R be some closed but not necessarily bounded interval. Consider
continuously differentiable functions k, g : I → C, which for some B ≥ 0 admit the
bounds

sup
u∈I
|k(u)| <∞ and sup

u∈I
|g(u)|e−B|u| <∞.

Furthermore, let α ∈ C \ R be such that[
Re(α)− | Im(α)| , Re(α) + | Im(α)|

]
⊆ I,

Re

Im

∆
45◦ 45◦

[ ]
I

α

Re(α)-| Im(α)| Re(α)+| Im(α)|
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2.2. Type I Superoscillations as integrals

and k, g extend to the closed triangle ∆ with the corners α and Re(α) ± | Im(α)|, in a
way that they are holomorphic on the interior of ∆ and continuously differentiable on
∆. Then for every δ > 0, the function

Fδ(z) :=
1

δ
√

2π

∫
I
g(u)eik(u)ze−

(u−α)2

2δ2 du, z ∈ C, (2.16)

satisfies Fδ ∈ A1(C) and converges as

lim
δ→0+

Fδ(z) = g(α)eik(α)z in A1(C). (2.17)

Corollary 2.7. Let I ⊆ R and k, g : I → C be as in Theorem 2.6 and additionally
satisfy

g(α) = 1, k(α) ∈ R \ [−k0, k0] and k(u) ∈ [−k0, k0] for every u ∈ I,

for some k0 > 0. Then (Fδ)δ from (2.17) is a Type I superoscillating sequence.

Proof. The convergence

lim
δ→0+

Fδ(z) = eik(α)z in A1(C), (2.18)

follows from Theorem 2.6 and the assumption g(α) = 1. Since k(u) ∈ [−k0, k0] fpr every
u ∈ I, the representation (2.1) follows from Lemma 2.4 (ii). Finally, since the frequency
k(α) of the limit function in (2.18) lies in R \ [−k0, k0], we indeed verified, that (Fδ)δ is
a Type I superoscillating sequence.

Now we come back to the proof of the main result of this section, Theorem 2.6.

Proof of Theorem 2.6. Without loss of generality we choose α = ia for some a > 0. This
simplifies the geometry to

Re

Im

∆
45◦ 45◦

[ ]
x0 x1

I

ia

-a a

Furthermore, we will use

C := sup
u∈I
|k(u)|, A := sup

u∈I
|g(u)|e−B|u|, x0 := inf(I), x1 := sup(I).

In Step 1 we will interchange the part −a → a of the integration path in (2.16) by the
triangle path −a → ia → a. Since the functions g, k are holomorphic in the interior of
∆, we have to scale the triangle by some sufficiently small parameter ε > 0, in order to
apply the Cauchy theorem
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2. Classification of superoscillations

∫
a+ε(i−1−

√
2)

−a+ε(i+1+
√

2)

g(ξ)eik(ξ)ze−
(ξ−ia)2

2δ2 dξ =

∫
ia−iε

√
2

−a+ε(i+1+
√

2)

g(ξ)eik(ξ)ze−
(ξ−ia)2

2δ2 dξ

+

∫
a+ε(i−1−

√
2)

ia−iε
√

2

g(ξ)eik(ξ)ze−
(ξ−ia)2

2δ2 dξ.
Re

Im

-a a

ia

ε

ε ε

-a+ε(i+1+
√

2) a+ε(i-1-
√

2)

ia-iε
√

2

Since g and k are continuous on the closed triangle ∆, we are allowed to apply the limit
ε→ 0+ and end up with∫ a

−a
g(ξ)eik(ξ)ze−

(ξ−ia)2

2δ2 dξ =

∫ ia

−a
g(ξ)eik(ξ)ze−

(ξ−ia)2

2δ2 dξ +

∫ a

ia
g(ξ)eik(ξ)ze−

(ξ−ia)2

2δ2 dξ.

Hence we can split up the function Fδ into the four parts

Fδ(z) =
1

δ
√

2π

∫ −a
x0

g(u)eik(u)ze−
(u−ia)2

2δ2 du︸ ︷︷ ︸
=:F

(1)
δ (z)

+
1

δ
√

2π

∫ ia

−a
g(ξ)eik(ξ)ze−

(ξ−ia)2

2δ2 dξ︸ ︷︷ ︸
=:F

(2)
δ (z)

+
1

δ
√

2π

∫ a

ia
g(ξ)eik(ξ)ze−

(ξ−ia)2

2δ2 dξ︸ ︷︷ ︸
=:F

(3)
δ (z)

+
1

δ
√

2π

∫ x1

a
g(u)eik(u)ze−

(u−ia)2

2δ2 du.︸ ︷︷ ︸
=:F

(4)
δ (z)

(2.19)

In Step 2 we will apply the limit δ → 0+ to (2.19). Starting with F
(4)
δ (z), we estimate

|F (4)
δ (z)| ≤ A

δ
√

2π
eC|z|e

a2

2δ2

∫ x1

a
eBue−

u2

2δ2 du ≤ A

2
eC|z|eBaΛ

( a

δ
√

2
− Bδ√

2

)
,

where in the second equation the integral identity (A.18) was used. Due to the asymp-
totics (A.22) and since a > 0, this proves the A1-convergence

sup
z∈C
|F (4)
δ (z)|e−C|z| ≤ A

2
eBaΛ

( a

δ
√

2
− Bδ√

2

)
−→ 0, as δ → 0+.

In the same way we also observe

lim
δ→0+

sup
z∈C
|F (1)
δ (z)|e−C|z| = 0.

For the function F
(3)
δ (z) we use

∫ a
ia e
− (ξ−ia)2

2δ2 dξ = δ
√
π√
2

erf
(
a
δ
√
i

)
, to rewrite the difference

F
(3)
δ (z)− g(ia)

2
eik(ia)z =

1

δ
√

2π

∫ a

ia

(
g(ξ)eik(ξ)z − g(ia)

erf
(
a
δ
√
i

)eik(ia)z
)
e−

(ξ−ia)2

2δ2 dξ

= −1

2

∫ a

ia

(
g(ξ)eik(ξ)z − g(ia)

erf
(
a
δ
√
i

)eik(ia)z
) d
dξ

erfc
(ξ − ia
δ
√

2

)
dξ

= −g(ia)

2
eik(a)z erfc

( a

δ
√
i

)
+

1

2

∫ a

ia

d

dξ

(
g(ξ)eik(ξ)z

)
erfc

(ξ − ia
δ
√

2

)
dξ,
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2.2. Type I Superoscillations as integrals

where in the last line we applied integration by parts. Since g, g′, k, k′ are continuous on
the closed triangle ∆, we denote their respective suprema with ‖ · ‖. Using this, we can
now estimate the difference by∣∣∣F (3)

δ (z)− g(ia)

2
eik(ia)z

∣∣∣ ≤ ( |g(ia)|
2

∣∣∣ erfc
( a

δ
√
i

)∣∣∣
+
‖g′‖+ ‖g‖‖k′‖|z|√

2

∫ a

0

∣∣∣ erfc
( s

δ
√
i

)∣∣∣ds)e‖k‖|z|.
Using∣∣∣ erfc

( s

δ
√
i

)∣∣∣ =
∣∣∣Λ( s

δ
√
i

)∣∣∣ ≤ Λ
( s

δ
√

2

)
≤ min

{ δ√2

s
√
π
,Λ(0)

}
= min

{ δ√2

s
√
π
, 1
}
,

by (A.22), gives for every 0 < δ ≤ a
√
π√
2

the estimate

∫ a

0

∣∣∣ erfc
( s

δ
√
i

)∣∣∣ds ≤ ∫ δ
√

2√
π

0
1dt+

δ
√

2√
π

∫ a

δ
√

2√
π

1

s
ds =

δ
√

2√
π

(
1 + ln

(a√π
δ
√

2

))
,

which then leads to the final estimate∣∣∣F (3)
δ (z)− g(ia)

2
eik(ia)z

∣∣∣ ≤ δ√
π

(
|g(a)|
a
√

2
+
(
‖g′‖+ ‖g‖‖k′‖|z|

)(
1 + ln

(a√π
δ
√

2

)))
e‖k‖|z|.

Since |z|e‖k‖|z| ≤ 1
e‖k‖e

2‖k‖|z|, this estimate proves the convergence

lim
δ→0+

F
(3)
δ (z) =

g(ia)

2
eik(ia)z in A1(C).

For the same reason also

lim
δ→0+

F
(2)
δ (z) =

g(ia)

2
eik(ia)z in A1(C),

and we proved that all the terms in (2.19) converge in A1(C), and consequently also
their sum, as it is the statement of the theorem.

Next we will point out some possible choices of functions k in Corollary 2.7, which lead
to Type I superoscillatory sequences (Fδ)δ. In particular, we will take the functions k
from the original paper [43], which then also shows, that the result of this section indeed
cover all the situations investigated there.

Example 2.8.

◦ We start with the function k(u) = 1
1+u2 integrate over I = R in (2.16). Since k is

holomorphic on C \ {±i}, the allowed values α ∈ C \R for which the triangle ∆ is
contained in C \ {±i}, are characterized by the condition

0 6= | Im(α)| < 1 + |Re(α)|. Re

Im

i

-i
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2. Classification of superoscillations

In particular, choosing g ≡ 1 and α = ia, for some 0 < a < 1, then k(u) ∈ [−1, 1]
for every u ∈ R and k(ia) > 1. This gives the Type I superoscillatory sequence

Fδ(z) =
1

δ
√

2π

∫
R
e

iz
1+u2 e−

(u−ia)2

2δ2 du
δ→0+

−→ e
iz

1−a2 in A1(C).

◦ The second example in [43] considers k(u) = 1
cosh(u) and again integrates over

I = R. Since k is holomorphic on C \ iπ(Z + 1
2), the allowed values α ∈ C \ R

for which the triangle ∆ is contained in C \ iπ(Z + 1
2), are characterized by the

condition

0 6= | Im(α)| < π

2
+ |Re(α)|. Re

Im

iπ
2

-iπ
2

In particular, choosing g ≡ 1 and α = ia, for some 0 < a < π
2 , then k(u) ∈ [−1, 1]

for every u ∈ R and k(ia) > 1. This gives the Type I superoscillatory sequence

Fδ(z) =
1

δ
√

2π

∫
R
e

iz
cosh(u) e−

(u−ia)2

2δ2 du
δ→0+

−→ e
iz

cos(a) in A1(C).

◦ Another example is k(u) = e−u
2
, which is holomorphic on all of C. Hence, Corol-

lary 2.7 is applicable for every α ∈ C \R and in particular, for every a > 0, we can
choose α = ia and g ≡ 1, to get k(u) ∈ [−1, 1] for every u ∈ R and k(ia) > 1. This
gives the Type I superoscillatory sequence

Fδ(z) =
1

δ
√

2π

∫
R
eie
−u2

ze−
(u−ia)2

2δ2 du
δ→0+

−→ eie
a2
z in A1(C).

◦ Another possible frequency function is k(u) = cos(u). This function is again entire
and Corollary 2.7 is again applicable for every α ∈ C \ R. In particular for g ≡ 0
and for every a > 0, we get k(u) ∈ [−1, 1] for every u ∈ R and k(ia) > 1. This
leads to the Type I superoscillatory sequence

Fδ(z) =
1

δ
√

2π

∫
R
ei cos(u)ze−

(u−ia)2

2δ2 du
δ→0+

−→ ei cosh(a)z in A1(C).

◦ One possible frequency function, for which we only integrate along the finite inter-
val I = [−2, 2], is k(u) = 1− u2

2 . Here, the values α ∈ C\R are not restricted by the
holomorphicity of k, but by the condition [Re(α)− | Im(α)|,Re(α) + | Im(α)|] ⊆ I.
Hence the allowed values α ∈ C \ R are those who satisfy

0 6= | Im(α)| ≤ |2± Re(α)|. Re

Im

[ ]
-2 2

2

-2
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2.3. Type I Superoscillating sinc-function

In particular, choosing g ≡ 1 and α = ia, for some 0 < a ≤ 2, one gets k(u) ∈
[−1, 1] for every u ∈ [−2, 2] and k(ia) > 1. This gives the Type I superoscillatory
sequence

Fδ(z) =
1

δ
√

2π

∫ 2

−2
ei(1−

u2

2
)ze−

(u−ia)2

2δ2 du
δ→0+

−→ ei(1+a2

2
)z in A1(C).

2.3. Type I Superoscillating sinc-function

Not a whole class, but one particular superoscillatory function was considered in [46] by
M. Berry. For every a > 1 he considered the functions

Fδ(z) =
2

δ
e−

1
δ sinc

(√
z2 − 2iaz

δ
− 1

δ2

)
, z ∈ C, δ > 0, (2.20)

using the Sinus cardinalis sinc(z) := sin(z)
z . Note, that it does not play any role which

branch of the complex square root one uses, since the sign, which distinguishes the two
branches, gets cancelled out by the symmetry of sinc. The aim of this section is now to
verify that (2.20) indeed is a Type I superoscillatory sequence according to Definition 2.1.
This will be done in two steps. In Theorem 2.9 we prove the convergence (2.2) and in
Theorem 2.10 the integral representation (2.1).

Theorem 2.9. For every a > 1, the functions (Fδ)δ from (2.20) are elements in A1(C)
and converge as

lim
δ→0+

Fδ(z) = eiaz in A1(C). (2.21)

Proof. First of all, although the complex square root in (2.20) is not an entire function,
the power series expansion shows, that

sinc(
√
ξ) =

∞∑
n=0

(−1)n

(2n+ 1)!
ξn, ξ ∈ C, (2.22)

and hence Fδ is again entire. The illustrative reason for this is, that the sign, which
distinguishes the two branches, cancels out when

√
ξ is put as the argument of sinc(

√
ξ).

In order to show that Fδ ∈ A1(C) and to prove the convergence (2.21), we define

Rδ(z) :=

√
z2 − 2iaz

δ
− 1

δ2
, z ∈ C, (2.23)

such that we can write Fδ(z) = 2
δ e
− 1
δ sinc(Rδ(z)). We will now estimate different regions

of z separately. In the first case we will estimate in the whole complex plane except
regions around the zeros ia±bδ of Rδ, where b :=

√
a2 − 1, and in the second and third

case we consider the neighborhoods of those zeros.

◦ If |z − ia+b
δ | ≥ 1 and |z − ia−bδ | ≥ 1, the square root (2.23) can be estimated as

|Rδ(z)|2 =
∣∣∣z−ia+ b

δ

∣∣∣∣∣∣z−ia− b
δ

∣∣∣ ≥ { |z − ia−bδ |, if Im(z) ≥ a
δ ,

|z − ia+b
δ |, if Im(z) ≤ a

δ ,

}
≥ max

{
1,
b

δ

}
.

(2.24)
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2. Classification of superoscillations

If we now define the function Gδ(z) := − e−
1
δ
−iRδ(z)

iδRδ(z)
, we can estimate

|Fδ(z)−Gδ(z)| =
2e−

1
δ

δ

∣∣∣ sinc(Rδ(z)) +
e−iRδ(z)

2iRδ(z)

∣∣∣ =
e−

1
δ
−Im(Rδ(z))

δ|Rδ(z)|
≤ e−

1
δ

δ
, (2.25)

where in the last inequality we used (2.24) and the fact that the square root Rδ(z)
is chosen to have nonnegative imaginary part.

Defining also Hδ(z) := − eiaz

iδRδ(z)
, we can further estimate

|Gδ(z)−Hδ(z)| =
1

δ|Rδ(z)|
∣∣e− 1

δ
−iRδ(z) − eiaz

∣∣ =
e−a Im(z)

δ|Rδ(z)|
∣∣e−i(Rδ(z)+az− i

δ
) − 1

∣∣
≤
|Rδ(z) + az − i

δ |√
bδ

ea|z|+| Im(Rδ(z)+az− i
δ

)|, (2.26)

where in the last inequality we used (2.24) and that |eiξ − 1| ≤ |ξ|e| Im(ξ)| for every
ξ ∈ C. Since we can write

Rδ(z) + az − i

δ
=

1

δ

(√
δ2z2 − 2iaδz − 1 + aδz − i

)
=

−b2δz2

√
δ2z2 − 2iaδz − 1− aδz + i

, (2.27)

we can use the two estimates (A.1) and (A.8) to further estimate (2.26) as

|Gδ(z)−Hδ(z)| ≤
√
bδ |z|2

min{b, a− b}
e(2a+1)|z|. (2.28)

Thirdly, we estimate

|Hδ(z)− eiaz| =
|1 + iδRδ(z)|
δ|Rδ(z)|

e−a Im(z) ≤
√
δ√
b

(∣∣∣Rδ(z) + az − i

δ

∣∣∣+ a|z|
)
ea|z|

≤
( √

b δ
3
2 |z|2

min{b, a− b}
+
a
√
δ |z|√
b

)
ea|z|, (2.29)

where in the first inequality we used (2.24) in the denominator and in the second
inequality (2.27) together with (A.1). Combining now (2.25), (2.28) and (2.29)
gives for the difference of Fδ(z) and eiaz the upper bound

|Fδ(z)− eiaz| ≤
e−

1
δ

δ
+

√
bδ |z|2

min{b, a− b}
e(2a+1)|z| +

( √
b δ

3
2 |z|2

min{b, a− b}
+
a
√
δ |z|√
b

)
ea|z|

≤
√
δ
(e− 1

δ

δ
3
2

+
4
√
b (1 + δ)

e2 min{b, a− b}
+

a

e
√
b

)
e2(a+1)|z|, (2.30)

where in the second inequality we used |z| ≤ 1
ee
|z| and |z|2 ≤ 4

e2
e|z|.
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2.3. Type I Superoscillating sinc-function

◦ If |z − ia+b
δ | ≤ 1 we can estimate

|Rδ(z)|2 =
∣∣∣z − ia+ b

δ

∣∣∣ ∣∣∣z − ia− b
δ

∣∣∣ ≤ ∣∣∣z − ia− b
δ

∣∣∣ ≤ 1 +
2b

δ
.

With the additional | sinc(ξ)| ≤ e|ξ|, ξ ∈ C, this then leads to

|Fδ(z)− eiaz| ≤
2

δ
e−

1
δ e|Rδ(z)| + e−a Im(z) ≤ 2

δ
e
− 1
δ

+
√

1+ 2b
δ + e−a(a+b

δ
−1). (2.31)

◦ For |z − ia−bδ | ≤ 1 we similarly get

|Fδ(z)− eiaz| ≤
2

δ
e
− 1
δ

+
√

1+ 2b
δ + e−a(a+b

δ
−1). (2.32)

Combining the three estimates (2.30), (2.31) and (2.32) then proves the A1-convergence
(2.21).

Next, we derive some integral representation for the functions Fδ.

Theorem 2.10. For every a > 1, δ > 0, the function Fδ from (2.20) admits the integral
representation

Fδ(z) =
1

δ

∫ 1

−1
e
ak−1
δ J0

(√(a2 − 1)(1− k2)

δ

)
eikzdk, z ∈ C,

where J0 is the Bessel function of order zero.

Proof. In Lemma A.3 we already calculated the integral

sinc
(√

z2 + b2
)

=
1

2

∫ 1

−1
eikzJ0

(
b
√

1− k2
)
dk, z ∈ C.

If we replace z → z − ia
δ and set b =

√
a2−1
δ immediately gives the stated integral

Fδ(z) =
2

δ
e−

1
δ sinc

(√
z2 − 2iaz

δ
− 1

δ

)
=

1

δ

∫ 1

−1
eikze

ak−1
δ J0

(√(a2 − 1)(1− k2)

δ

)
dk.

Finally, we will now combine Theorem 2.9 and Theorem 2.10 to show that the functions
Fδ in (2.16) indeed form a Type I superoscillating sequence.

Corollary 2.11. For every a > 1, the functions (Fδ)δ from (2.20) are a Type I super-
oscillating sequence.

Proof. The convergence
lim
δ→0+

Fδ(z) = eiaz, in A1(C),

to a plane wave with frequency a > 1 is proven in Theorem 2.9. Moreover, the integral
representation

Fδ(z) =

∫ 1

−1
eikzdµδ(z), z ∈ C,

is satisfied due to Theorem 2.10 and Lemma 2.4. Hence Fδ is indeed a Type I super-
oscillating sequence according to Definition 2.1.
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2. Classification of superoscillations

2.4. Type I Superoscillating sum of plane waves

The standard example (0.1) of a superoscillating function admits a representation as a
linear combination of plane waves

Fn(z) =

n∑
j=0

Cj(n)eikj(n)z, z ∈ C, n ∈ N0, (2.33)

with specific frequencies kj(n) = 1 − 2j
n and coefficients Cj(n) =

(
n
j

)
(1+k

2 )n−j(1−k
2 )j .

These frequencies and coefficients are chosen in a way that

lim
n→∞

Fn(z) = eikz, z ∈ C, (2.34)

converges to a single plane wave with frequency k, which may be arbitrary large. It
was a fundamental problem for a long time how many of those superoscillating functions
exist, until in the recent paper [12] the authors managed to find coefficients Cj(n) for
any set of given frequencies k, kj(n) ∈ C, such that the corresponding sequence (2.33)
converges as in (2.34).

While in [12] the convergence (2.34) is understood as uniform on compact subsets of C,
we will go one step further in this section and prove the A1-convergence in Theorem 2.13,
under certain additional assumptions on the frequencies kj(n). As a consequence the
resulting functions (Fn)n form a Type I superoscillating sequence.

The main preparatory result is the following Lemma 2.12, which constructs linear com-
binations of plane waves with prescribed values of its derivatives at the origin. Many
parts of the proof of this theorem are similar to the original paper [12, Theorem 2.1,
Theorem 2.2].

Lemma 2.12. Consider pairwise disjoint frequencies (kj)
n
j=0 ⊆ C and arbitrary values

(al)
n
l=0 ⊆ C. Then there exist unique coefficients (Cj)

n
j=0 ⊆ C, determined by the linear

system (2.37), such that the function

F (z) :=

n∑
j=0

Cje
ikjz, z ∈ C, (2.35)

has derivatives with values at the origin given by

F (l)(0) = aj , l ∈ {0, . . . , n}. (2.36)

Proof. The l-th derivative of the function (2.35) is given by

F (l)(z) =

n∑
j=0

Cj(ikj)
leikjz, z ∈ C, l ∈ {0, . . . , n}.

By the requirement (2.36), the values of these derivatives at z = 0 should equal

n∑
j=0

Cj(ikj)
l = al, l ∈ {0, . . . , n}.
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2.4. Type I Superoscillating sum of plane waves

This linear system of equations can now also be written in the matrix form (ik0)0 . . . (ikn)0

...
. . .

...
(ik0)n . . . (ikn)n


 C0

...
Cn

 =

 a0
...
an

 . (2.37)

Since the coefficient matrix is a Vandermonde matrix, its determinant is given by

det

 (ik0)0 . . . (ikn)0

...
. . .

...
(ik0)n . . . (ikn)n

 = i
n(n+1)

2

∏
0≤l<j≤n

(kj − kl), (2.38)

and hence nonvanishing due to the pairwise disjoint frequencies (kj)
n
j=0. This means, that

the system (2.37) is uniquely solvable and leads to the required coefficients (Cj)
n
j=0.

Consider now for every n ∈ N pairwise disjoint frequencies (kj(n))nj=0 ⊆ C, and choose

the particular values al = (ik)l for the derivatives in (2.36). Then Lemma 2.12 states
the existence of functions Fn(z) =

∑n
j=0Cj(n)eikj(n)z, for which the first n derivatives

at z = 0 equal

F (l)
n (0) = (ik)l, l ∈ {0, . . . , n}.

I.e., the first n + 1 terms of the power series expansion of Fn coincide with the one
from the plane wave eikz. Hence it is reasonable to expect some convergence Fn(z) →
eikz, as n → ∞. Indeed, under some additional assumptions on the difference between
the frequencies kj(n), the following Theorem 2.13 proves the A1-convergence of this
sequence.

Theorem 2.13. Let k0 > 0 and consider for every n ∈ N pairwise disjoint frequencies
(kj(n))nj=0 ⊆ [−k0, k0], such that there exists some δ > 0 with

n∏
l=0,l 6=j

|kl(n)− kj(n)| ≥ δn, n ∈ N, j ∈ {0, . . . , n}. (2.39)

Then, for every k ∈ R \ [−k0, k0], the sequence of functions

Fn(z) :=

n∑
j=0

( n∏
l=0,l 6=j

kl(n)− k
kl(n)− kj(n)

)
eikj(n)z, z ∈ C, n ∈ N, (2.40)

is a Type I superoscillatory sequence with limit lim
n→∞

Fn(z) = eikz in A1(C).

Remark 2.14. Note, that if we choose the frequencies kj(n) = 1 − 2j
n as it is done in

(0.1), we do not end up with the coefficients Cj(n) from (0.2). This means, that although
the coefficients in Lemma 2.12 are uniquely determined by the values of the derivatives
at z = 0, there are different ways how to linear combine the plane waves eikj(n)z and still
end up with a sequence convergent to eikz.
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2. Classification of superoscillations

Proof of Theorem 2.13. By Lemma 2.12, the coefficients Cj(n), which ensure that the
function Fn(z) =

∑n
j=0Cj(n)eikj(n) satisfies

F (l)
n (0) = (ik)l, l ∈ {0, . . . , n}, (2.41)

are uniquely determined by the linear system (2.37), i.e. (ik0(n))0 . . . (ikn(n))0

...
. . .

...
(ik0(n))n . . . (ikn(n))n


 C0(n)

...
Cn(n)

 =

 (ik)0

...
(ik)n

 .

Note, that all the imaginary units cancel and the equation reduces to k0(n)0 . . . kn(n)0

...
. . .

...
k0(n)n . . . kn(n)n


 C0(n)

...
Cn(n)

 =

 k0

...
kn

 .

Using Cramer’s rule, this system admits the solution

Cj(n) =

det

 k0(n)0 . . . kj−1(n)0 k0 kj+1(n)0 . . . kn(n)0

...
...

...
...

...
k0(n)n . . . kj−1(n)n kn kj+1(n)n . . . kn(n)n


det

 k0(n)0 . . . kn(n)0

...
. . .

...
k0(n)n . . . kn(n)n


=

∏
0≤i<j

(k − ki(n))
∏

j<l≤n
(kl(n)− k)∏

0≤i<j
(kj(n)− ki(n))

∏
j<l≤n

(kl(n)− kj(n))

=
n∏

l=0,l 6=j

kl(n)− k
kl(n)− kj(n)

, j ∈ {0, . . . , n},

where we used, that both determinants are Vandermonde determinants of the form
(2.38). Since these are exactly the coefficients of the functions (2.40), this proves that
the functions Fn admit the values (2.41) of their derivatives at z = 0.

In order verify the convergence Fn(z) → eikz, we first note, that the estimate (2.39),
together with the explicit form (2.40) implies the following estimate of the functions Fn,

|Fn(z)| ≤
n∑
j=0

( n∏
l=0,l 6=j

|kl(n)− k|
|kl(n)− kj(n)|

)
e|kj(n)z|

≤ (k0 + |k|)n
n∑
j=0

( n∏
l=0,l 6=j

1

|kl(n)− kj(n)|

)
ek0|z| (2.42)

≤ (n+ 1)
(k0 + |k|

δ

)n
ek0|z|, z ∈ C.
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2.4. Type I Superoscillating sum of plane waves

Next, we write the difference between Fn(z) and eikz as the Taylor series

Fn(z)− eikz =
∞∑
l=0

F
(l)
n (0)− (ik)l

l!
zl =

∞∑
l=n+1

F
(l)
n (0)− (ik)l

l!
zl, z ∈ C, (2.43)

where in the second equality we used the values (2.41) of the derivatives of Fn. For every
α > 1 and for every z ∈ C \ {0}, we now use the Cauchy integral formula, to estimate

|F (l)
n (0)− (ik)l| =

∣∣∣ l!
2πi

∫
|ξ|=α|z|

Fn(ξ)− eikξ

ξl+1
dξ
∣∣∣

≤ l!

2παl|z|l

∫ 2π

0

∣∣∣Fn(α|z|eiϕ)− eikα|z|eiϕ
∣∣∣dϕ

≤ l!

αl|z|l
(

(n+ 1)
(k0 + |k|

δ

)n
eαk0|z| + eα|k||z|

)
≤ l!

αl|z|l
(

(n+ 1)
(k0 + |k|

δ

)n
+ 1
)
eα|k||z|,

where in the third line we used the estimate (2.42). Plugging this into the Taylor series
(2.43), gives

|Fn(z)− eikz| ≤
(

(n+ 1)
(k0 + |k|

δ

)n
+ 1
)
eα|k||z|

∞∑
l=n+1

1

αl

=
1

(α− 1)αn

(
(n+ 1)

(k0 + |k|
δ

)n
+ 1
)
eα|k||z|, z ∈ C \ {0}.

Due to (2.43), this inequality also holds for z = 0. Choosing now α > max{k0+|k|
δ , 1}

leads to the A1-convergence

sup
z∈C
|Fn(z)− eikz|e−α|k||z| ≤ 1

(α− 1)αn

(
(n+ 1)

(k0 + |k|
δ

)n
+ 1
)
→ 0, as n→∞.

Finally, the fact that the functions Fn are of the form (2.1) is already shown in Lemma 2.4 (i).
This now proves that the sequence (Fn)n is indeed a Type I superoscillating sequence
with respect to Definition 2.1.

In the following corollary we use the more explicit condition (2.44) on the distance be-
tween the frequencies kj(n), than the one required in (2.39). In particular the frequencies
kj(n) = 1− 2j

n of (0.2) belong to this setting.

Corollary 2.15. Let k0 > 0 and consider for every n ∈ N pairwise disjoint frequencies
(kj(n))nj=0 ⊆ [−k0, k0], such that there exists some δ > 0 with

|kl(n)− kj(n)| ≥ δ

n
, n ∈ N, l 6= j ∈ {0, . . . , n}. (2.44)

Then, for every k ∈ R \ [−k0, k0], the sequence of functions

Fn(z) :=

n∑
j=0

( n∏
l=0,l 6=j

kl(n)− k
kl(n)− kj(n)

)
eikj(n)z, z ∈ C, n ∈ N,

is a Type I superoscillatory sequence with limit lim
n→∞

Fn(z) = eikz in A1(C).
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2. Classification of superoscillations

Proof. We will prove that the condition (2.44) implies the condition (2.39). Without
loss of generality we will assume that

k0(n) < k1(n) < · · · < kn(n), n ∈ N,

are in ascending order. Then the condition (2.44) implies the condition

|kj(n)− kl(n)| ≥ δ|j − l|
n

, j 6= l ∈ {0, . . . , n}.

Then the estimate (2.39) is satisfied by

n∏
l=0,l 6=j

|kl(n)− kj(n)| ≥
n∏

l=0,l 6=j

δ|j − l|
n

≥ δnj!(n− j)!
nn

=
δnn!

nn
(
n
j

) ≥ ( δ
2e

)n
,

where in the last inequality we used
(
n
j

)
≤ 2n as well as nn

n! ≤ e
n, which is a consequence

of the Stirling formula.

2.5. Energy optimized Type II superoscillating functions

While the Sections 2.1–2.4 all consider Type I superoscillating sequences, this section
will be the first dealing with Type II superoscillating functions.

The problem of constructing bandlimited functions of minimal energy (L2-norm), whose
graph passes through a prescribed set of points, was first addressed in 1965 by L. Levi
[97]. Similar methods were later on used by A. Kempf, P. Ferreira and collaborators.
In [79, 81, 83, 84, 85, 92, 95, 102] the authors construct L2-functions with compactly
supported Fourier transform, which change their sign arbitrarily often in an arbitrary
small interval and are optimal with respect to energy minimization. In [78, 80] it is
even shown, that the energy expense to create such superoscillatory behaviour grows
exponentially with the number of oscillations and polynomially with the inverse band-
width. Also additional constraints, as matching derivatives, were allowed in [57, 84].
Furthermore, a slightly different kind of optimization problem was considered in [91],
where not the energy of the whole function is minimized, but the ratio of the energy
inside the superoscillatory region and the energy of the whole wave.

The following Theorem 2.16 revisits the works mentioned above and in particular [84],
but also generalizes previous results in the sense that prescribed derivatives of higher
order are allowed.

Theorem 2.16. Let k0 > 0, a
(j)
n ∈ C, x

(j)
n ∈ R for j ∈ {0, . . . , J}, n ∈ {1, . . . , Nj}.

Furthermore, for every j ∈ {1, . . . , J} let (x
(j)
n )

Nj
n=1 be pairwise disjoint. Then one

function F ∈ L2(R) satisfying

(i) supp(F [F ]) ⊆ [−k0, k0],

(ii) F (j)(x
(j)
n ) = a

(j)
n , j ∈ {0, . . . , J}, n ∈ {1, . . . , Nj},
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2.5. Energy optimized Type II superoscillating functions

and having minimal L2-norm, is given by

F (x) =
J∑
j=0

Nj∑
n=1

c(j)
n sinc(j)

(
k0(x(j)

n − x)
)
, (2.45)

where the coefficients c
(j)
n are the unique solution of the linear system (2.49).

Note, that since the Fourier transform F [F ] is compactly supported, it follows from
the Paley-Wiener theorem that the function F is infinitely often differentiable. This in
particular means, that the requirements on the derivative in (ii) are well defined.

The following corollary is a special case of Theorem 2.16 with J = 0, i.e., only the
amplitudes of the function are prescribed.

Corollary 2.17. Let k0 > 0, (an)Nn=1 ⊆ C and pairwise disjoint points (xn)Nn=1 ⊆ R.
Then one function F ∈ L2(R) satisfying

(i) supp(F [F ]) ⊆ [−k0, k0],

(ii) F (xn) = an, n ∈ {1, . . . , N}.

and having minimal L2-norm, is given by

F (x) =
N∑
n=1

cn sinc
(
k0(xn − x)

)
, (2.46)

where the coefficients cn are the unique solution of the linear system Sc = a with the
matrix entries

Sm,n = sinc
(
k0(xm − xn)

)
.

Remark 2.18. In order to use Corollary 2.17 for the construction of superoscillations,
one can choose points (xn)Nn=1 ∈ [a, b] in ascending order and amplitudes (an)Nn=1 with
alternating sign. For example

xn = a+
n− 1

N − 1
(b− a) and an = (−1)n−1. (2.47)

This way, the resulting function F from (2.46) changes its sign at least N − 1 times
and consequently has at least N − 1 zeros in the open interval (a, b). If we choose

N − 1 ≥ k0(b−a)
π , the assumption (2.3) is satisfied. Moreover, due to the requirement (i)

in Corollary 2.17, the function F admits the representation

F (x) =
1√
2π

∫ k0

−k0

F [F ](k)eikxdk, x ∈ R.

Hence by Lemma 2.4 (ii) it is of the form (2.1), which then makes the function F a
Type II superoscillating function.

Additionally, prescribing also values of the derivatives, as it is done in Theorem 2.16,
allows to control the shape of the function, see Figure 2.5.
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Figure 2.1.: In this example we construct a function with maximum frequency k0 = 1
and want to prescribe the values in the points xn = n − 1, n ∈ {1, . . . , 6}. In the left
picture the function (2.45) is plotted when only the values F (xn) = (−1)n+1 are fixed.
While the function oscillates with a high frequency in the interval [0, 5], the shape of
the function is by no means a plane wave. In the right picture, we additionally fix the
values F ′(xn) = 0 of the derivatives, with the result, that the shape of f , inside the
superoscillatory region [0, 5], is modified and now approximates a plane wave. However,
the cost for adapting the shape lies in the outer region, which is of magnitudes larger
that in the left picture.

Remark 2.19. The optimality result (2.46) can also be interpreted in another way. If
we only consider normalized functions F ∈ L2(R) with ‖F‖L2(R) = 1, and allow the

amplitudes (an)Nn=1 being scaled to (µan)Nn=1, then the function (2.46), divided by its
normalization, allow the largest value of µ and consequently has the biggest amplitude
of superoscillations. A similar problem in maximizing the amplitude of a bandlimited
signal with normalized energy, was already considered in [96].

Proof of Theorem 2.16. We want to minimize the following problem:

min ‖F‖2L2(R), under the restrictions

supp(F [F ]) ⊆ [−k0, k0] and F (j)(x(j)
n ) = a(j)

n , j ∈ {0, . . . , J}, n ∈ {1, . . . , Nj}.

We can translate this problem into Fourier space, i.e., we look for G ∈ L2([−k0, k0]),
which is the representative for G = F [F ], satisfying the minimization problem

min ‖G‖L2([−k0,k0]), under the restrictions (2.48a)

1√
2π

∫ k0

−k0

(iξ)jeiξx
(j)
n G(ξ)dξ = a(j)

n , j ∈ {0, . . . , J}, n ∈ {1, . . . , Nj}. (2.48b)

The Lagrangian of this minimization problem is given by

L = |G(ξ)|2 +
1√
2π

J∑
j=0

Nj∑
n=1

(
λ(j)
n Re

(
(iξ)jeiξx

(j)
n G(ξ)

)
+ µ(j)

n Im
(
(iξ)jeiξx

(j)
n G(ξ)

))
,

with Lagrange multipliers λ
(j)
n , µ

(j)
n ∈ R. Differentiating with respect to Re(G) and
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2.5. Energy optimized Type II superoscillating functions

Im(G) then gives the two equations

2 Re(G(ξ)) +
1√
2π

J∑
j=0

Nj∑
n=1

(
λ(j)
n Re

(
(iξ)jeiξx

(j)
n
)

+ µ(j)
n Im

(
(iξ)jeiξx

(j)
n
))

= 0

2 Im(G(ξ)) +
1√
2π

J∑
j=0

Nj∑
n=1

(
− λ(j)

n Im
(
(iξ)jeiξx

(j)
n
)

+ µ(j)
n Re

(
(iξ)jeiξx

(j)
n
))

= 0,

which can be written as one complex valued equation

G(ξ) =

√
π√
2

J∑
j=0

Nj∑
n=1

c
(j)
n

kj+1
0

(−iξ)je−iξx
(j)
n ,

where we defined c
(j)
n = −kj+1

0
π (λ

(j)
n + iµ

(j)
n ). Multiplying (iξ)l√

2π kl0
eiξx

(l)
m , for l ∈ {0, . . . , J},

m ∈ {1, . . . , Nl} and integrating over ξ ∈ [−k0, k0], gives

a
(l)
m

kl0
=

1√
2π kl0

∫ k0

−k0

(iξ)leiξx
(l)
m g(ξ)dξ =

J∑
j=0

Nj∑
n=1

(−1)jc
(j)
n

2kj+l+1
0

∫ k0

−k0

(iξ)j+leiξ(x
(l)
m −x

(j)
n )dξ,

where in the first equation we used the conditions (2.48b). This is a linear system of
equations of the form

Sc = a, (2.49)

with the vectors

a :=

(
a

(0)
1

k0
0

, . . . ,
a

(0)
N1

k0
0

, . . . ,
a

(J)
1

kJ0
, . . . ,

a
(J)
NJ

kJ0

)>
,

c :=
(
c

(0)
1 , . . . , c

(0)
N1
, . . . , c

(J)
1 , . . . , c

(J)
NJ

)>
,

and the matrix

S :=



S
(0,0)
1,1 . . . S

(0,0)
1,N1

. . . S
(0,J)
1,1 . . . S

(0,J)
1,NJ

...
. . .

...
...

. . .
...

S
(0,0)
N1,1

. . . S
(0,0)
N1,N1

. . . S
(0,J)
N1,1

. . . S
(0,J)
N1,NJ

...
...

...
...

S
(J,0)
1,1 . . . S

(J,0)
1,N1

. . . S
(J,J)
1,1 . . . S

(J,J)
1,NJ

...
. . .

...
...

. . .
...

S
(J,0)
NJ ,1

. . . S
(J,0)
NJ ,N1

. . . S
(J,J)
NJ ,1

. . . S
(J,J)
NJ ,NJ


(2.50)

S(l,j)
m,n =

(−1)j

2kj+l+1
0

∫ k0

−k0

(iξ)j+leiξ(x
(l)
m −x

(j)
n )dξ = (−1)j sinc(j+l)

(
k0(x(l)

m − x(j)
n )
)
.
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2. Classification of superoscillations

In order to show that the matrix S is invertible, we show that it is positive definite. To
do so, let v ∈ CN1+···+NJ and consider the inner product

〈Sv,v〉 =
J∑
l=0

Nl∑
m=1

J∑
j=0

Nj∑
n=1

(−1)j

2kj+l+1
0

∫ k0

−k0

(iξ)j+leiξ(x
(l)
m −x

(j)
n )dξv(j)

n v
(l)
m

=
1

2k0

∫ k0

−k0

J∑
l=0

Nl∑
m=1

J∑
j=0

Nj∑
n=1

(−iξ)l
kl0

e−iξx
(l)
m v

(l)
m

(−iξ)j

kj0
e−iξx

(j)
n v(j)

n dξ

=
1

2k0

∫ k0

−k0

∣∣∣∣ J∑
j=0

Nj∑
n=1

(−iξ)j

kj0
e−iξx

(j)
n v(j)

n

∣∣∣∣2dξ ≥ 0.

Moreover, since for every j ∈ {0, . . . , J} the (x
(j)
n )

Nj
n=1 are pairwise disjoint, all the

functions (iξ)je−iξx
(j)
n are linear independent and it is obvious that this integral vanishes

if and only if the vector v = 0 vanishes. This shows that the matrix S is positive definite
and hence invertible. The unique solution c of (2.49) now determines the optimal solution
of the minimization problem in Fourier space (2.48). Inverse Fourier transforming then
also gives the optimal solution in real space

F (x) = F−1[G](x) =
J∑
j=0

Nj∑
n=1

c
(j)
n

2kj+1
0

∫ k0

−k0

(iξ)jeiξ(x
(j)
n −x)dξ

=

J∑
j=0

Nj∑
n=1

c(j)
n sinc(j)

(
k0(x(j)

n − x)
)
,

which is exactly the stated representation of the minimizer (2.45)

Although the result (2.45) gives an explicit solution of the minimization problem, it is

shown in [80, 82] that the actual calculation of the coefficients c
(j)
n is problematic since

the corresponding coefficient matrix S in (2.50) is highly ill conditioned as the points

x
(j)
n are located close to each other. Moreover, the sensitivity of the amplitudes a

(j)
n

with respect to errors of the coefficients c
(j)
n is investigated in [85]. Improvements of

this issue by using the technique of oversampled signal reconstruction are done in [81],
by shifting the interpolation points in [82], or by constructing only approximations of
superoscillating functions in [95].

2.6. Type II superoscillating product of shifted functions

While solving the linear system (2.49) is very difficult from a computational point of
view, we want to present a very efficient way of constructing Type II superoscillating
functions in this last section. The idea was given by A. Kempf in [63] and is to multiply
many, slightly shifted versions of a functions of low bandwidth. For example

F (x) =

n∏
j=1

sin
(x− εj

n

)
,
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2.6. Type II superoscillating product of shifted functions

with εj > 0 being small displacements which determine the final spacing between the
zeros of F . One can also consider

F (x) =
n∏
j=1

sinc
(x− εj

n

)
,

for an L2-superoscillating function.

The following theorem generalizes this idea and proves that this method indeed yields
Type II superoscillating functions.

Theorem 2.20. Let k0 > 0 and f : R → R with f(0) = 0 and f 6≡ 0. Moreover, f
admits one of the following representations:

(i) A linear combination of plane waves

f(x) =
n∑
l=0

Cle
iklx, x ∈ R, (2.51)

with coefficients Cl ∈ C and frequencies kl ∈ [−k0, k0].

(ii) f ∈ L2(R) with compactly supported Fourier transform supp(F [f ]) ⊆ [−k0, k0].

Then for any interval [a, b] ⊆ R, n ≥ k0(b−a)
π and pairwise disjoint points (εj)

n
j=1 ⊆ (a, b),

the product of shifted functions

F (x) =
n∏
j=1

f
(x− εj

n

)
, x ∈ R, (2.52)

is a Type II superoscillating function.

Proof.

(i) If we assume f to be of the form (2.51), we can rewrite the product as

F (x) =

n∏
j=1

n∑
l=0

Cle
i
n
kl(x−εj) =

n∑
l1,...,ln=0

n∏
j=1

(
Clje

i
n
klj (x−εj)

)

=
n∑

l1,...,ln=0

( n∏
j=1

Clje
− i
n
klj εj

)
e

i
n

n∑
j=1

kljx

, x ∈ R.

Hence F is a linear combination of plane waves with frequencies bounded as

1

n

∣∣∣ n∑
j=1

klj
∣∣ ≤ 1

n

n∑
j=1

k0 = k0, l1, . . . , ln ∈ {0, . . . , n},

and consequently of the form (2.1) due to Lemma 2.4 (i).

We also see immediately, that F (εj) = 0 for every j ∈ {1, . . . , n}, which means,
that F has at least n zeros in the open interval (a, b). Since F obviously extends

to an entire function, these zeros are also isolated. The assumption n ≥ k0(b−a)
π

then indeed ensures that F is a Type II superoscillating function according to
Definition 2.2.
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(ii) Considering now the second type of functions, we note, that the Fourier transform
of each individual factor is given by

F
[
f
( · − εj

n

)]
(k) = e−i

εj
n
kF
[
f
( ·
n

)]
(k) = ne−i

εj
n
kF [f ](nk), k ∈ R.

Since by assumption supp(F [f ]) ⊆ [−k0, k0], we have

supp
(
F
[
f
( · − εj

n

)])
⊆
[
− k0

n
,
k0

n

]
, j ∈ {1, . . . , n}.

By the convolution theorem about the Fourier transform of products we know,
that the Fourier transform of F is included in the sum of the individual supports

supp(F [F ]) ⊆
n∑
j=1

[
− k0

n
,
k0

n

]
= [−k0, k0].

Hence we can represent the function F via its inverse Fourier transform

F (x) =

∫ k0

−k0

F [F ](k)eikxdk, x ∈ R.

Lemma 2.4 (ii) then ensures the representation (2.1).

Since again F (εj) = 0 for every j ∈ {1, . . . , n}, the function F admits at least

n ≥ k0(b−a)
π zeros inside the interval (a, b). The compactly supported Fourier

transform of the function f in particular implies, that it extends to an entire
function by the Paley-Wiener theorem. Hence the zeros are isolated and we verified
that also in this case the function (2.52) is a Type II superoscillating function.
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3. Fresnel type integrals

In this chapter we develop the so called Fresnel integral technique, which is a method to
make sense of integrals of the form ∫

R
eiy

2
f(y)dy, (3.1)

in particular in situations where the function f itself is not integrable. The basic idea is
to use the Cauchy theorem to rotate the domain of integration into the complex plane
and consequently make the oscillating prefactor eiy

2
a Gaussian e−y

2
whose decay at

infinity ensures integrability.

The results of this chapter, in particular Corollary 3.2 with the choice a = 1 and x = 0,
will show that for holomorphic functions f which are exponentially bounded, one can
insert the Gaussian e−ε(y−y0)2

and view the integral (3.1) as the limit

lim
ε→0+

∫
R
e−ε(y−y0)2

eiy
2
f(y)dy.

Under some slightly stronger growth assumptions, which in particular implies that f is
bounded on the real line, such a regularization is not necessary and one can regard the
integral (3.1) as the limit

lim
R1,R2→∞

∫ R2

−R1

eiy
2
f(y)dy.

However, under both assumptions one has the absolutely convergent representation

eiα
∫
R
ei(ye

iα)2
f(yeiα)dy,

for some α > 0. Note, that the subsequent Fresnel type integral technique is in two ways
an improvement of the version in [7]. The first improvement lies in the fact, that we
allow an exponential growth of order p ∈ (0, 2) in (3.3) and (3.6), while in [7] only p = 1
was considered. The second improvement lies roughly speaking in the fact, that in [7]
the function f had to be holomorphic in a neighborhood of the closed cone Sα (3.20),
but here it is enough for f to be holomorphic in the interior of Sα with a continuous
extension to the boundary.

Proposition 3.1 (Fresnel type integral). Let a > 0, x ∈ R and consider for α ∈ (0, π2 )
the sector

Re(z)

Im(z)

α
S+
α

S+
α := { z ∈ C \ {0} | Arg(z) ∈ [0, α] } , (3.2)

and a continuous function f : S+
α → C which is holomorphic on the interior of S+

α . Then
the following assertions hold.
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3. Fresnel type integrals

(i) If f satisfies the estimate

|f(z)| ≤ AeB|z|p , z ∈ S+
α , (3.3)

for some and A,B ≥ 0 and p ∈ (0, 2), then for every y0 ∈ R

lim
ε→0+

∫ ∞
0

e−ε(y−y0)2
eia(y−x)2

f(y)dy = eiα
∫ ∞

0
eia(yeiα−x)2

f(yeiα)dy, (3.4)

where both integrands are absolutely integrable. Moreover, for 0 < ε < 2a
tan(α)

moreover get∫ ∞
0

e−ε(y−y0)2
eia(y−x)2

f(y)dy = eiα
∫ ∞

0
e−ε(ye

iα−y0)2
eia(yeiα−x)2

f(yeiα)dy. (3.5)

(ii) If f satisfies the estimate

|f(z)| ≤ AeB| Im(z)|p , z ∈ S+
α , (3.6)

for some A,B ≥ 0 and p ∈ (0, 2), then

lim
R→∞

∫ R

0
eia(y−x)2

f(y)dy = eiα
∫ ∞

0
eia(yeiα−x)2

f(yeiα)dy, (3.7)

where the integrand on the right hand side is absolutely integrable, and also the
integrand on the left hand side is absolutely integrable for every R > 0.

Proof. Since the calculation is the same, we will for simplicity only consider x = 0, a = 1
and y0 = 0.

We start by proving (i). For any η in the interior of S+
α and with |η| ≤ 1, we define the

shifted function
fη(z) := f(z + η), z ∈ S+

α − η. (3.8)

Then fη is holomorphic on the interior of S+
α − η and admits the exponential bound

|fη(z)| ≤ AeB|z+η|
p ≤ AeB2p(|z|p+|η|p) ≤ AeB2p(|z|p+1) = ÃeB̃|z|

p
, z ∈ S+

α − η, (3.9)

by (3.3) and using the new constants Ã := AeB2p and B̃ = B2p. Fixing R > 0, we then
consider the integration path

γ1 := { y | 0 ≤ y ≤ R } ,

γ2 :=

{
yeiα

∣∣∣∣ 0 ≤ y ≤ R

cos(α)

}
,

γ3 := {R+ iy | R tan(α) ≥ y ≥ 0 } .
Re(z)

Im(z)

γ1

γ3γ2

α
α R

S+
α

S+
α − η

−η

Since the integration paths γ1, γ2, γ3 lies inside the interior of S+
α − η, where fη is

holomorphic, Cauchy’s theorem yields for every ε > 0∫
γ1

e(i−ε)z2
fη(z)dz =

∫
γ2

e(i−ε)z2
fη(z)dz +

∫
γ3

e(i−ε)z2
fη(z)dz. (3.10)
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Using the exponential bound (3.9), we can estimate the integral along γ3 as

∣∣∣ ∫
γ3

e(i−ε)z2
fη(z)dz

∣∣∣ ≤ Ãe−εR2

∫ R tan(α)

0
eεy

2−2Ry+B̃|R+iy|pdy

≤ Ãe−εR
2+ B̃Rp

cosp(α)

∫ R tan(α)

0
e−y(2R−εy)dy

≤ ÃR tan(α)e
−εR2+ B̃Rp

cosp(α) ,

where in the last line we restricted ε ≤ 2
tan(α) to conclude εy ≤ 2R. This estimate proves

the convergence

lim
R→∞

∫
γ3

e(i−ε)z2
fη(z)dz = 0,

and consequently, in the limit R→∞, the integrals (3.10) become∫ ∞
0

e(i−ε)y2
fη(y)dy = eiα

∫ ∞
0

e(i−ε)(yeiα)2
fη(ye

iα)dy. (3.11)

Here both integrals are absolutely convergent, the left hand side because of the factor
e−εy

2
and the right hand side due to the estimate∣∣e(i−ε)(yeiα)2

fη(ye
iα)
∣∣ ≤ Ãe−(sin(2α)+ε cos(2α))y2+B̃yp ,

≤ Ãe−( 2
tan(α)

−ε) sin2(α)y2+B̃yp
, (3.12)

which is integrable for every ε < 2
tan(α) . Moreover, since the upper bound (3.12) is η-

independent, we can apply the dominated convergence theorem to both sides of (3.11)
and obtain ∫ ∞

0
e(i−ε)y2

f(y)dy = eiα
∫ ∞

0
e(i−ε)(yeiα)2

f(yeiα)dy, (3.13)

which is exactly the identity (3.5). Finally, we want to apply the limit ε → 0+ to this
equation. By the estimate (3.12) for f instead of fη, i.e., formally putting η = 0, the
integrand on the right hand side of (3.13) is bounded by some majorant which decreases
as ε→ 0+. The dominated convergence theorem then yields the stated limit (3.4).

For the proof of (ii) we again consider the function fη from (3.8) with |η| ≤ 1, which in
this case satisfies the estimate

|fη(z)| ≤ AeB| Im(z+η)|p ≤ AeB2p(| Im(z)|p+| Im(η)|p) ≤ ÃeB̃| Im(z)|p , z ∈ S+
α − η, (3.14)

using the constants Ã := AeB2p and B̃ := B2p. In the same way as we derived (3.10),
we also get ∫

γ1

eiz
2
fη(z)dz =

∫
γ2

eiz
2
fη(z)dz +

∫
γ3

eiz
2
fη(z)dz. (3.15)

With the exponential bound (3.14) we can estimate for every R >
( B̃ tanp−1(α)

2

)2−p
the
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3. Fresnel type integrals

integral along γ3 as

∣∣∣ ∫
γ3

eiz
2
fη(z)dz

∣∣∣ ≤ Ã∫ R tan(α)

0
e−y(2R−B̃yp−1)dy

≤ Ã
∫ ∞

0
e−y(2R−B̃Rp−1 tanp−1(α))dy

=
Ã

2R− B̃Rp−1 tanp−1(α)
. (3.16)

Hence also in this case the integral over γ3 vanishes in the limit R → ∞ and (3.15)
becomes

lim
R→∞

∫ R

0
eiy

2
fη(y)dy = eiα

∫ ∞
0

ei(ye
iα)2

fη(ye
iα)dy, (3.17)

where the integrand on the right hand side is absolutely integrable, since the inequality
(3.14) gives the estimate∣∣ei(yeiα)2

fη(ye
iα)
∣∣ ≤ Ãe−y2 sin(2α)+B̃yp sinp(α). (3.18)

This estimate also gives an η-uniform majorant which allows to carry the limit η → 0
inside the integral on the right hand side of (3.17), i.e.,

lim
η→0

lim
R→∞

∫ R

0
eiy

2
fη(y)dy = eiα

∫ ∞
0

ei(ye
iα)2

f(yeiα)dy. (3.19)

On the left hand side we still have to interchange the two limits, which means we have to
show that (3.17) converges uniformly in η. To do so, we use the Cauchy theorem (3.15)
to estimate∣∣∣ ∫ R

0
eiy

2
fη(y)dy − eiα

∫ ∞
0

ei(ye
iα)2

fη(ye
iα)dy

∣∣∣
≤
∣∣∣ ∫

γ3

eiz
2
fη(z)dz

∣∣∣+
∣∣∣ ∫ ∞

R
cos(α)

ei(ye
iα)2

fη(ye
iα)dy

∣∣∣.
The integral along γ3 converges uniformly due to (3.16), but also the second integral can
be estimated by the η-independent upper bound (3.18). Hence the convergence (3.17)
is indeed uniform in η and we are allowed to interchange the limits in (3.19) and get

eiα
∫ ∞

0
ei(ye

iα)2
f(yeiα)dy = lim

R→∞
lim
η→0

∫ R

0
eiy

2
fη(y)dy = lim

R→∞

∫ R

0
eiy

2
f(y)dy,

where in the second equality we were allowed to carry the limit inside the integral due to
the η-independent upper bound (3.18). This finally proves the second assertion (3.7).

The Fresnel integral technique of Proposition 3.1 can also be applied on the negative
semi axis, which leads to the following corollary.
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Corollary 3.2. Let a > 0, x ∈ R and consider for some α ∈ (0, π2 ) the double sector

Re(z)

Im(z)

α
α

Sα

Sα := { z ∈ C \ {0} | Arg(z) ∈ [0, α] ∪ [π, π + α] } , (3.20)

and a continuous function f : Sα → C which is holomorphic on the interior of Sα. Then
the following assertions hold.

(i) If f satisfies the estimate

|f(z)| ≤ AeB|z|p , z ∈ Sα, (3.21)

for some A,B ≥ 0 and p ∈ (0, 2), then for every y0 ∈ R

lim
ε→0+

∫
R
e−ε(y−y0)2

eia(y−x)2
f(y)dy = eiα

∫
R
eia(yeiα−x)2

f(yeiα)dy, (3.22)

where both integrands are absolutely integrable. Moreover, for 0 < ε < 2a
tan(α) we

even get∫
R
e−ε(y−y0)2

eia(y−x)2
f(y)dy = eiα

∫
R
e−ε(ye

iα−y0)2
eia(yeiα−x)2

f(yeiα)dy. (3.23)

(ii) If f satisfies the estimate

|f(z)| ≤ AeB| Im(z)|p , z ∈ Sα, (3.24)

for some A,B ≥ 0 and p ∈ (0, 2), then

lim
R1,R2→∞

∫ R2

−R1

eia(y−x)2
f(y)dy = eiα

∫
R
eia(yeiα−x)2

f(yeiα)dy, (3.25)

where the integrand on the right hand side is absolutely integrable, and also the
integrand on the left hand side is absolutely integrable for every R1, R2 > 0.
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4. Schrödinger equation on R

The central topic of this chapter is the investigation of the Cauchy problem (4.3) of the
time dependent Schrödinger equation. In particular we consider the Green’s function
approach, which means to write the solution Ψ as an integral of the form (4.4), where G is
the so called Green’s function. The main result of this chapter will then be Theorem 4.6,
which puts the integral (4.4) into a mathematical rigorous framework using Fresnel
integrals (3.22) and gives a continuous dependency between the initial condition F and
the solution Ψ. In the application on superoscillations in Chapter 6, we then put some
superoscillating function as initial condition and conclude from this continuity property,
that also the solution attains some superoscillatory behaviour at later times t > 0.

In the history of superoscillations, continuous dependency problems of this kind were
treated using infinite order differential operators of the form (1.17), see for example
[4, 19, 20, 22, 28, 33, 35, 36, 66, 67]. However, in our proof we avoid this detour and
follow a direct path by using estimates of the integral representation (4.4). At this
point we also want to mention the recent work [101], where the authors give sufficient
conditions on the moments

∫
R y

mG(t, x, y)dy of the Green’s function to prove some
continuous dependency of solution and initial condition of the Schrödinger equation.

We start to specify in detail in which sense we want to understand the Cauchy problem
(4.3). It will be convenient to view the solution (and its derivatives) in the context of
absolutely continuous functions. The linear space of absolutely continuous functions on
some open interval I ⊆ R will be denoted by AC(I). Recall, that a function f : I → C
is said to be absolutely continuous, if there exists some g ∈ L1

loc(I), such that

f(y)− f(x) =

∫ y

x
g(s)ds, x, y ∈ I. (4.1)

Also observe, that f ∈ AC(I) is differentiable almost everywhere and its derivative f ′

coincides with g in (4.1) almost everywhere. For T ∈ (0,∞] we shall now work with the
space

AC1,2((0, T )×R) :=

{
Ψ : (0, T )× R→ C

∣∣∣∣ Ψ( · , x) ∈ AC((0, T )), x ∈ R
Ψ(t, · ), ∂∂xΨ(t, · ) ∈ AC(R), t ∈ (0, T )

}
.

(4.2)
Let V : (0, T )×R→ C be some potential and F : R→ C some initial condition. We call
a function Ψ ∈ AC1,2((0, T )×R) a solution of the time dependent Schrödinger equation,
if it satisfies

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2
+ V (t, x)

)
Ψ(t, x), f.a.e. t ∈ (0, T ), x ∈ R, (4.3a)

lim
t→0+

Ψ(t, x) = F (x), x ∈ R. (4.3b)
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4. Schrödinger equation on R

As already mentioned, the starting point will always be the corresponding Green’s func-
tion G : (0, T )×R×R→ C, which only depends on the potential V and is independent
of the initial condition F . With this Green’s function the solution Ψ then admits the
(formal) representation

Ψ(t, x) =

∫
R
G(t, x, y)F (y)dy, t ∈ (0, T ), x ∈ R. (4.4)

Since we want to apply this theory to superoscillations, one of the important tasks of this
chapter is to make sense of this integral for exponential initial values of the form (0.1), or
more general for exponentially bounded initial conditions F ∈ Ap(C) from (1.1). It turns
out, that the integrand in (4.4) is not in L1(R) and hence the integral does not exist in
the Lebesgue sense. Instead, the Fresnel integral technique of Chapter 3 will be used
for a rigorous interpretation of the integral. Roughly speaking, the integration path is
rotated into the complex plane, where the integrand becomes absolutely integrable and
the wave function becomes

Ψ(t, x) = eiα
∫
R
G(t, x, yeiα)F (yeiα)dy, (4.5)

for some α ∈ (0, π2 ). Equivalently, (4.4) can also be interpreted as the regularized integral

Ψ(t, x) = lim
ε→0+

∫
R
e−εy

2
G(t, x, y)F (y)dy,

and under certain stronger assumptions, see Remark 4.7, even as the improper Riemann
integral

Ψ(t, x) = lim
R1,R2→∞

∫ R2

−R1

G(t, x, y)F (y)dy.

Next we collect a set of assumptions on the Green’s function, which ensure that the
wave function (4.4) is well defined (in one of the just mentioned equivalent senses) and
a solution of the Cauchy problem (4.3). The precise formulation of this statement, and
also the set of allowed initial conditions, is given in Theorem 4.6.

Assumption 4.1. Let T ∈ (0,∞] and G : (0, T )×R×R→ C. For some α ∈ (0, π2 ) let
Sα be the double sector (3.20), and suppose that G admits a continuation to a function
G : (0, T ) × R × Sα → C, such that for every fixed t ∈ (0, T ), x ∈ R the mapping
G(t, x, · ) is continuous on Sα and holomorphic on the interior of Sα. Moreover, it will
be assumed that G satisfies the following properties (i)–(iii).

(i) For every fixed z ∈ Sα, the function G( · , · , z) ∈ AC1,2((0, T )×R) is a solution of
the time dependent Schrödinger equation

i
∂

∂t
G(t, x, z) =

(
− ∂2

∂x2
+ V (t, x)

)
G(t, x, z), f.a.e. t ∈ (0, T ), x ∈ R, (4.6)

with V : (0, T )× R→ C the considered potential.

(ii) For every x ∈ R there exists some x0 > |x|, such that for every F ∈ H(C) we have
the initial condition

lim
t→0+

∫ x0

−x0

G(t, x, y)F (y)dy = F (x). (4.7)
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(iii) There exists a ∈ AC((0, T )) with a(t) > 0 and limt→0+ a(t) = ∞, such that the
function G̃ in the decomposition

G(t, x, z) = eia(t)(z−x)2
G̃(t, x, z), t ∈ (0, T ), x ∈ R, z ∈ Sα, (4.8)

is for every t ∈ (0, T ), x ∈ R exponentially bounded as

|G̃(t, x, z)| ≤ A0(t, x)eB0(t,x)|z|q , z ∈ Sα, (4.9a)∣∣∣ ∂
∂x
G̃(t, x, z)

∣∣∣, ∣∣∣ ∂2

∂x2
G̃(t, x, z)

∣∣∣, ∣∣∣ ∂
∂t
G̃(t, x, z)

∣∣∣ ≤ A1(t, x)eB1(t,x)|z|q , z ∈ Sα. (4.9b)

Here q ∈ (0, 2) and A0, A1, B0, B1 : (0, T ) × R → [0,∞) are continuous and for
every x ∈ R

A0( · , x)√
a( · )

and B0( · , x) are bounded as t→ 0+. (4.10)

We briefly comment on some of the conditions in Assumption 4.1 and also refer the
reader to Section 7.1–7.4 for explicit examples of Green’s functions.

Remark 4.2. The holomorphic extension of G in the z-variable is needed to apply the
Fresnel integral technique of Corollary 3.2. The crucial assumption is the decomposition
(4.8), where the exponential eia(t)(z−x)2

(quadratic in z) is separated from the remainder
G̃, which admits the exponential growth (4.9a) of order q < 2. The rotation of the
integration path in (3.22) from the real line into the complex plane, turns the factor
eia(t)(z−x)2

into a Gaussian, which then dominates the exponential growth of G̃ in the
integral (4.5).

Remark 4.3. Note, that the Equation (4.8) of Assumption 4.1 introduces the reduced
Green’s function G̃(t, x, z). From a practical point of view it is often easier to differentiate
G̃ instead of G. Hence we can translate the Schrödinger equation (4.6) or (4.13) for G
into an equivalent differential equation for G̃, namely

i
∂

∂t
G̃ =

(
− ∂2

∂x2
+ 4ia(z − x)

∂

∂x
+ (4a2 + a′)(z − x)2 − 2ia+ V

)
G̃. (4.11)

Since in practical applications the initial condition (4.7) is often hard to verify, the
following Assumption 4.4 gives an opportunity to replace it by the simple limit (4.14).
Roughly speaking, the limit (4.14) is one way how the Green’s function can approach
δ(x − y) as t → 0+, while (4.7) allows any approximation. However, in order to use
this simplification it is necessary for the Green’s function to be holomorphic (and satisfy
(4.9a)) not only on Sα but also in a neighborhood of the real line. More precisely, for
α ∈ (0, π2 ) and h > 0 we define the domain

Re

Im

α

α

h

-h

Sα,h
Sα,h := Sα ∪

(
R + i[−h, h]

)
, (4.12)
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4. Schrödinger equation on R

Assumption 4.4. Let T ∈ (0,∞] and G : (0, T ) × R × R → C. For some α ∈ (0, π2 ),
h > 0 suppose that G admits a continuation to a function G : (0, T ) × R × Sα,h → C,
such that for every fixed t ∈ (0, T ), x ∈ R the mapping G(t, x, · ) is continuous on Sα,h
and holomorphic on the interior of Sα. Moreover, it will be assumed that G satisfies the
following properties (i)–(iii).

(i) For every fixed z ∈ Sα, the function G( · , · , z) ∈ AC1,2((0, T )×R) is a solution of
the time dependent Schrödinger equation

i
∂

∂t
G(t, x, z) =

(
− ∂2

∂x2
+ V (t, x)

)
G(t, x, z), f.a.e. t ∈ (0, T ), x ∈ R, (4.13)

with V : (0, T )× R→ C the considered potential.

(ii) With the function a(t) from (4.15), the Green’s function admits the limit

lim
t→0+

G(t, x, x)√
a(t)

=
1√
iπ
, x ∈ R. (4.14)

(iii) There exists a ∈ AC((0, T )) with a(t) > 0 and limt→0+ a(t) = ∞, such that the
function G̃ in the decomposition

G(t, x, z) = eia(t)(z−x)2
G̃(t, x, z), t ∈ (0, T ), x ∈ R, z ∈ Sα,h, (4.15)

is for every t ∈ (0, T ), x ∈ R exponentially bounded as

|G̃(t, x, z)| ≤ A0(t, x)eB0(t,x)|z|q , z ∈ Sα,h (4.16a)∣∣∣ ∂
∂x
G̃(t, x, z)

∣∣∣, ∣∣∣ ∂2

∂x2
G̃(t, x, z)

∣∣∣, ∣∣∣ ∂
∂t
G̃(t, x, z)

∣∣∣ ≤ A1(t, x)eB1(t,x)|z|q , z ∈ Sα. (4.16b)

Here q ∈ (0, 2) and A0, A1, B0, B1 : (0, T ) × R → [0,∞) are continuous and for
every x ∈ R

A0( · , x)√
a( · )

and B0( · , x) are bounded as t→ 0+. (4.17)

The following lemma proves that the Assumption 4.4 is indeed stronger than the As-
sumption 4.1.

Lemma 4.5. If G : (0, T ) × R × R → C satisfies Assumption 4.4, it also satisfies
Assumption 4.1.

Proof. The only thing to check is the initial condition (4.7). For fixed x ∈ R, we first

generalize (4.14) in the sense, that for any z(t) ∈ Sα,h, with z(t)
t→0+

−→ x, we have

lim
t→0+

G̃(t, x, z(t))√
a(t)

=
1√
iπ
. (4.18)

Note, that any closed ball of radius 0 < r < h around x is contained in the interior of
Sα,h, where G̃(t, x, · ) is holomorphic.
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Re

Im

rα

α

h

-h

x

Sα,h

Hence we are allowed to apply the Cauchy integral formula to write

G̃(t, x, z(t))− G̃(t, x, x) =
1

2πi

∫
|z−x|=r

(G̃(t, x, z)

z − z(t)
− G̃(t, x, z)

z − x

)
dz

=
z(t)− x

2πi

∫
|z−x|=r

G̃(t, x, z)

(z − z(t))(z − x)
dz

=
z(t)− x

2π

∫ 2π

0

G̃(t, x, x+ reiθ)

x+ reiθ − z(t)
dθ.

Using (4.9a), we can further estimate the integrand to get∣∣G̃(t, x, z(t))− G̃(t, x, x)
∣∣ ≤ A0(t, x)|z(t)− x|

2π

∫ 2π

0

eB0(t,x)|x+reiθ|q

|x+ reiθ − z(t)|
dθ

≤ A0(t, x)|z(t)− x|
r − |z(t)− x|

eB0(t,x)(|x|+r)q .

Since A0(t,x)√
a(t)

and B0(t, x) are bounded as t→ 0+ and limt→0+ z(t) = x, it follows, that

lim
t→0+

|G̃(t, x, z(t))− G̃(t, x, x)|√
a(t)

= 0.

With (4.14) and the decomposition (4.8), we then obtain the limit (4.18), namely

lim
t→0+

G̃(t, x, z(t))√
a(t)

= lim
t→0+

G̃(t, x, x)√
a(t)

= lim
t→0+

G(t, x, x)√
a(t)

=
1√
iπ
.

For the actual proof of the initial condition (4.7), we choose any x0 > |x| and use the
Cauchy theorem to change the integration path [−x0, x0] to∫ x0

−x0

G(t, x, y)F (y)dy =

∫
γ1

G(t, x, z)F (z)dz +

∫
γ2

G(t, x, z)F (z)dz

+

∫
γ3

G(t, x, z)F (z)dz +

∫
γ4

G(t, x, z)F (z)dz,

γ1 = { −x0 − is | s ∈ [0, h] } ,
γ2 = { −x0 − ih+ s(x+ x0 + ih) | s ∈ [0, 1] } ,
γ3 = { x+ s(x0 − x+ ih) | s ∈ [0, 1] } ,
γ4 = { x0 + i(h− s) | s ∈ [0, h] } .

Re

Im

h

-h

γ1

γ2

γ3 γ4Sα,h

x0+ih

-x0-ih

-x0

x x0
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4. Schrödinger equation on R

Since F is holomorphic, it is in particular bounded on [−x0, x0] + i[−h, h], i.e.

|F (z)| ≤ AF , z ∈ [−x0, x0] + i[−h, h].

Using this, together with the estimate (4.16a), the integral along γ4 can be estimated by∣∣∣ ∫
γ4

G(t, x, z)F (z)dz
∣∣∣ =

∣∣∣ ∫ h

0
G(t, x, x0 + i(h− s))F (x0 + i(h− s))ds

∣∣∣
≤ AFA0(t, x)

∫ h

0
e−2a(t)(x0−x)(h−s)eB0(t,x)|x0+i(h−s)|qds

≤ AFA0(t, x)eB0(t,x)|x0+ih|q
∫ h

0
e−2a(t)(x0−x)sds

≤ AFA0(t, x)

2a(t)(x0 − x)
eB0(t,x)|x0+ih|q .

Since A0( · ,x)√
a( · )

and B0( · , x) are bounded as t → 0+ and a(t)
t→0+

−→ ∞, this inequality

proves the convergence

lim
t→0+

∫
γ4

G(t, x, z)F (z)dz = 0. (4.19)

In the same way one proves that also

lim
t→0+

∫
γ1

G(t, x, z)F (z)dz = 0. (4.20)

The integral along γ3 can be written as∫
γ3

G(t, x, z)F (z)dz

= (x0 − x+ ih)

∫ 1

0
G
(
t, x, x+ s(x0 − x+ ih)

)
F
(
x+ s(x0 − x+ ih)

)
ds

=
x0 − x+ ih√

a(t)

∫ √a(t)

0
G
(
t, x, x+

s(x0 − x+ ih)√
a(t)

)
F
(
x+

s(x0 − x+ ih)√
a(t)

)
ds.

Since the integrand is bounded as∣∣∣ 1√
a(t)

G
(
t, x, x+

s(x0 − x+ ih)√
a(t)

)
F
(
x+

s(x0 − x+ ih)√
a(t)

)∣∣∣
≤ AFA0(t, x)√

a(t)
e−2h(x0−x)s2e

B0(t,x)
∣∣x+

s(x0−x+ih)√
a(t)

∣∣q
≤ AFA0(t, x)√

a(t)
e−2h(x0−x)s2eB0(t,x)(|x|+s|x0−x+ih|)q ,

where we chose t > 0 small enough, such that a(t) ≥ 1. Since A0(t,x)√
a(t)

and B0(t, x) are

bounded as t→ 0+, this upper bound can be made t independent and integrable. Hence
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we are allowed to apply the dominated convergence theorem and carry the limit inside
the integral

lim
t→0+

∫
γ3

G(t, x, z)F (z)dz = (x0 − x+ ih)

∫ ∞
0

lim
t→0+

G
(
t, x, x+ s(x0−x+ih)√

a(t)

)
√
a(t)

F (x)ds.

=
F (x)(x0 − x+ ih)√

iπ

∫ ∞
0

eis
2(x0−x+ih)2

ds =
F (x)

2
. (4.21)

where in the first line we used the continuity of the function F and in the second line
the convergence (4.18) from the first part of the proof. In the same way we also get

lim
t→0+

∫
γ2

G(t, x, z)F (z)dz =
F (x)

2
. (4.22)

Combining now the limits (4.19), (4.20), (4.21) and (4.22), we conclude the initial value
(4.7) and consequently proved that G indeed satisfies the Assumption 4.1.

The following Theorem 4.6 is the main result of this chapter. It will be shown that
under Assumption 4.1 or Assumption 4.4 the integral (4.4) is meaningful as a Fresnel
type integral and that the resulting function Ψ is a solution of the time dependent
Schrödinger equation (4.3). We also show that the solution continuously depends on
the initial condition. Note, that the assumed Ap-convergence on the initial conditions is
stronger than the resulting uniform convergence on compact sets (4.25) of the solutions.
However, this Ap-convergence is justified, since A1(C) is the natural space in which
superoscillations are normally treated, see Definition 2.1 and Aq(C) is also a suitable
space for the applications on the supershift, see Theorem 6.5 and Theorem 6.7.

Theorem 4.6. Let G : (0, T )×R×R→ C be as in Assumption 4.1 or Assumption 4.4.
Then for every F ∈ Ap(C), p ∈ (0, 2), the wave function

Ψ(t, x) := lim
ε→0+

∫
R
e−εy

2
G(t, x, y)F (y)dy, t ∈ (0, T ), x ∈ R, (4.23)

exists and Ψ ∈ AC1,2((0, T )× R) is a solution of the Cauchy problem

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2
+ V (t, x)

)
Ψ(t, x), f.a.e. t ∈ (0, T ), x ∈ R, (4.24a)

lim
t→0+

Ψ(t, x) = F (x), x ∈ R. (4.24b)

Moreover, for any sequence of initial conditions (Fn)n ⊆ Ap(C) which converge as

Fn
n→∞−→ F in Ap(C), also the corresponding solutions (4.23) converge as

lim
n→∞

Ψ(t, x;Fn) = Ψ(t, x;F ), (4.25)

for fixed t ∈ (0, T ) and uniformly on compact subsets of R.

Note, that for convenience we used the notation Ψ(t, x;F ) to emphasize the initial con-
dition.
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4. Schrödinger equation on R

Remark 4.7. If one replaces the growth condition (4.9a) in Assumption 4.1 by the
stronger condition

|G̃(t, x, z)| ≤ A0(t, x)eB0(t,x)| Im(z)|q , t ∈ (0, T ), x ∈ R, z ∈ Sα, (4.26)

for some q ∈ (0, 2), and also choose some initial condition F ∈ Ap(C), p ∈ (0, 2) which
is bounded as

|F (z)| ≤ AeB| Im(z)|p , z ∈ Sα, (4.27)

then it follows from Corollary 3.2 (ii), that the wave function (4.23) can be written in
the equivalent form

Ψ(t, x) = lim
R1,R2→∞

∫ R2

−R1

G(t, x, y)F (y)dy, t ∈ (0, T ), x ∈ R.

We point out that the stronger growth condition (4.26) on the Green’s function is for
q = 1 satisfied in all the examples of Chapter 7. However, the growth condition (4.27)
for the initial condition F is rather restrictive and it is desirable to allow also initial
conditions that may be unbounded on the real line. See for example the type of initial
conditions which arise naturally for the supershift property in Theorem 6.5.

Proof of Theorem 4.6. Since Assumption 4.4 is stronger than Assumption 4.1 due to
Lemma 4.5, it is sufficient to prove the theorem for Green’s functions satisfying As-
sumption 4.1. First we note, that due to F ∈ Ap(C), there exists A,B ≥ 0 such that

|F (z)| ≤ AeB|z|p , z ∈ Sα. (4.28)

Step 1. In the first step we want to apply Corollary 3.2 (i), to show, that the expression
(4.23) for the wave function is meaningful and give a representation using Fresnel type
integrals. For this, we fix t ∈ (0, T ), x ∈ R and use the estimates (4.9a) and (4.28) to
get

|G̃(t, x, z)F (z)| ≤ AA0(t, x)eB0(t,x)|z|q+B|z|p

≤ AA0(t, x)e(B+B0(t,x))(1+|z|)max{p,q}

≤ AA0(t, x)e(B+B0(t,x))2max{p,q}(1+|z|max{p,q})

= Ã0(t, x)eB̃0(t,x)|z|p̃ , z ∈ Sα, (4.29)

where we introduced the new coefficients

p̃ := max{p, q}, B̃0(t, x) := (B +B0(t, x))2p̃, Ã0(t, x) := AA0(t, x)eB̃0(t,x), (4.30)

Hence, due to the decomposition (4.8), the assumptions of Corollary 3.2 are satisfied,
which means, that the wave function (4.23) exists and admits the absolute integrable
representation

Ψ(t, x) = lim
ε→0+

∫
R
e−εy

2
eia(t)(y−x)2

G̃(t, x, y)F (y)dy

= eiα
∫
R
eia(t)(yeiα−x)2

G̃(t, x, yeiα)F (yeiα)dy

= eiα
∫
R
G(t, x, yeiα)F (yeiα)dy. (4.31)
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Step 2. We show that the function Ψ in (4.23), is a solution of the Schrödinger equation
(4.24a). Roughly speaking, since G is already a solution of (4.6) by Assumption 4.1 (i),
it is sufficient to carry the derivatives inside the integral (4.31).

For the time derivative we note, that G( · , x, z) ∈ AC((0, T )) for every x ∈ R, z ∈ Sα by
Assumption 4.1 (i). Hence, for any t0 ∈ (0, T ) we have

G(t, x, z) = G(t0, x, z) +

∫ t

t0

∂

∂τ
G(τ, x, z)dτ, t ∈ (0, T ), x ∈ R, z ∈ Sα,

which leads to the following integral representation of the wave function (4.31)

Ψ(t, x) = Ψ(t0, x) + eiα
∫
R

∫ t

t0

∂

∂τ
G(τ, x, yeiα)dτF (yeiα)dy. (4.32)

Using the decomposition (4.8), we can write the derivative as

∂

∂τ
G(τ, x, yeiα) =

(
ia′(τ)(yeiα − x)2G̃(τ, x, yeiα) +

∂

∂τ
G̃(τ, x, yeiα)

)
eia(τ)(yeiα−x)2

.

Using the estimate (4.29) and a similar estimate for ∂
∂τ G̃(t, x, z)F (z) with the coefficients

B̃1(t, x) := (B +B1(t, x))2p̃ and Ã1(t, x) := AA1(t, x)eB̃1(t,x),

we get∣∣∣ ∂
∂τ
G(τ, x, yeiα)F (yeiα)

∣∣∣
=
∣∣∣ia′(τ)(yeiα − x)2G̃(τ, x, yeiα) +

∂

∂τ
G̃(τ, x, yeiα)

∣∣∣∣∣eia(τ)(yeiα−x)2
F (yeiα)

∣∣
≤
(
|a′(τ)||yeiα − x|2Ã0(τ, x) + Ã1(τ, x)

)
e−a(τ) sin(2α)y2

eB̃0(τ,x)|y|p̃+2a(τ) sin(α)|xy|.

Since Ã0, Ã1, B̃0, B̃1 and a are assumed to be continuous and a′ ∈ L1
loc((0, T )) due to

the absolute continuity of a, the right hand side of this estimate is integrable on [t0, t].
Additionally, the factor e−a(τ) sin(2α)y2

implies integrability with respect to y ∈ R. Hence
we observe absolute integrability on [t0, t]× R and are allowed to interchange the order
of integration in (4.32) by the Fubini theorem. I.e., we obtain

Ψ(t, x) = Ψ(t0, x) + eiα
∫ t

t0

∫
R

∂

∂τ
G(τ, x, yeiα)F (yeiα)dydτ.

In particular, this shows Ψ( · , x) ∈ AC((0, T )), the t-derivative exists almost everywhere
and is given by

∂

∂t
Ψ(t, x) = eiα

∫
R

∂

∂t
G(t, x, yeiα)F (yeiα)dy.

Using the same argument, also Ψ(t, · ) and ∂
∂xΨ(t, · ) are absolutely continuous on R,

with spatial derivatives almost everywhere given by

∂

∂x
Ψ(t, x) = eiα

∫
R

∂

∂x
G(t, x, yeiα)F (yeiα)dy, (4.33)

∂2

∂x2
Ψ(t, x) = eiα

∫
R

∂2

∂x2
G(t, x, yeiα)F (yeiα)dy.
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4. Schrödinger equation on R

This means Ψ ∈ AC1,2((0, T ) × R) and from (4.6) we conclude, that the Schrödinger
equation (4.24a) is satisfied for almost every t ∈ (0, T ), x ∈ R.

In Step 3 we verify the initial condition (4.24b). To do so, we fix x ∈ R, let x0 > |x| be
from Assumption 4.1 (ii) and split up the integral (4.23) as

Ψ(t, x) = lim
ε→0+

∫ −x0

−∞
e−εy

2
G(t, x, y)F (y)dy︸ ︷︷ ︸

=:Ψ1(t,x)

+ lim
ε→0+

∫ x0

−x0

e−εy
2
G(t, x, y)F (y)dy︸ ︷︷ ︸

=:Ψ2(t,x)

+ lim
ε→0+

∫ ∞
x0

e−εy
2
G(t, x, y)F (y)dy︸ ︷︷ ︸

=:Ψ3(t,x)

.

We will now investigate all three integrals separately. Starting with Ψ3, we can, similar
as for (4.31), use Proposition 3.1 for the shifted integrand z 7→ G(t, x, x0 + z)F (x0 + z)
to write the integral as

Ψ3(t, x) = lim
ε→0+

∫ ∞
0

e−ε(x0+y)2
G(t, x, x0 + y)F (x0 + y)dy

= eiα
∫ ∞

0
G(t, x, x0 + yeiα)F (x0 + yeiα)dy.

Using the inequality (4.29), we can now estimate this integral as

|Ψ3(t, x)| ≤ Ã0(t, x)

∫ ∞
0

e−a(t) sin(2α)y2−2a(t) sin(α)(x0−x)y+B̃0(t,x)|x0+yeiα|p̃dy

≤ Ã0(t, x)

∫ ∞
0

e−a(t) sin(2α)y2−2a(t) sin(α)(x0−x)y+B̃0(t,x)(x0+y)p̃dy

=
Ã0(t, x)√

a(t)

∫ ∞
0

e
− sin(2α)y2−2

√
a(t) sin(α)(x0−x)y+B̃0(t,x)

(
x0+ y√

a(t)

)p̃
dy.

According to (4.10) and (4.30) we know that Ã0√
a

and B̃0 remain finite in the limit t→ 0+,

and also that limt→0+ a(t) = ∞. Therefore, since x0 > x, the integrand vanishes in the
limit t→ 0+ and so does the whole function

lim
t→0+

Ψ3(t, x) = 0. (4.34)

In the same way we also get
lim
t→0+

Ψ1(t, x) = 0. (4.35)

For the function Ψ2(t, x) we first note, that due to the dominated convergence theorem
we are allowed to carry the limit ε→ 0+ inside the integral and get

Ψ2(t, x) =

∫ x0

−x0

G(t, x, y)F (y)dy.

Since F ∈ Ap(C) is an entire function, the initial value

lim
t→0+

Ψ2(t, x) = F (x) (4.36)
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follows from assumption (4.7). Combining now (4.34), (4.35) and (4.36) gives the initial
value (4.24b) of Ψ(t, x) and hence finishes Step 3 of the proof.

Step 4. It remains to check the continuous dependency (4.25) of the wave function on
the initial condition. According to the Ap-convergence (1.2) of the initial conditions, we
define the coefficients

An := sup
z∈C
|F (z)− Fn(z)|e−C|z|p , n ∈ N,

for which obviously

lim
n→∞

An = 0 and |F (z)− Fn(z)| ≤ AneC|z|
p
, z ∈ C, (4.37)

holds true. Let x0 > 0 be arbitrary and for every t ∈ (0, T ), x ∈ [−x0, x0] we split up
the Ψ-integral (4.23) into

Ψ(t, x;F ) = Ψ1(t, x;F ) + Ψ2(t, x;F ) + Ψ3(t, x;F ),

with

Ψ1(t, x;F ) := lim
ε→0+

∫ −x0

−∞
e−εy

2
G(t, x, y)F (y)dy,

Ψ2(t, x;F ) := lim
ε→0+

∫ x0

−x0

e−εy
2
G(t, x, y)F (y)dy,

Ψ3(t, x;F ) := lim
ε→0+

∫ ∞
x0

e−εy
2
G(t, x, y)F (y)dy.

We will now prove the convergence (4.25) for the three parts of the wave function
separately. Starting with Ψ3, we use Proposition 3.1 with the shifted integrand z 7→
G(t, x, x0 + z)F (x0 + z), to write the integral as

Ψ3(t, x;F ) = eiα
∫ ∞

0
G(t, x, x0 + yeiα)F (x0 + yeiα)dy,

and estimate the difference by

|Ψ3(t, x;F )−Ψ3(t, x;Fn)|

=
∣∣∣eiα ∫ ∞

0
G(t, x, x0 + yeiα)

(
F (x0 + yeiα)− Fn(x0 + yeiα)

)
dy
∣∣∣

≤ AnA0(t, x)

∫ ∞
0

e−a(t) sin(2α)y2−2a(t)(x0−x)y sin(α)+B0(t,x)|x0+yeiα|q+C|x0+yeiα|pdy

≤ AnA0(t, x)√
a(t)

∫ ∞
0

e
− sin(2α)y2−2

√
a(t) (x0−x)y sin(α)+B0(t,x)

(
x0+ y√

a(t)

)q
+C
(
x0+ y√

a(t)

)p
dy,

Since A0 and B0 are continuous by Assumption 4.1 (iii), they are in particular bounded
on the compact set [−x0, x0] and therefore can be made x-independent. Also, the right
hand side converges to zero as An

n→∞−→ 0 by (4.37), which proves that

lim
n→∞

Ψ3(t, x;Fn) = Ψ3(t, x;F )
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4. Schrödinger equation on R

for every fixed t ∈ (0, T ) and uniformly on [−x0, x0]. Following the same arguments, one
obtains the same convergence for Ψ1, namely

lim
n→∞

Ψ1(t, x;Fn) = Ψ1(t, x;F ),

for every fixed t ∈ (0, T ) and uniformly on [−x0, x0]. Finally, the difference between the
Ψ2-functions can be estimated by

|Ψ2(t, x;F )−Ψ2(t, x;Fn)| = lim
ε→0+

∣∣∣ ∫ x0

−x0

e−εy
2
G(t, x, y)(F (y)− Fn(y))dy

∣∣∣
≤ AnA0(t, x)

∫ x0

−x0

eB0(t,x)|y|q+C|y|pdy

≤ 2AnA0(t, x)x0e
B0(t,x)xq0+Cxp0 .

Also here, since A0 and B0 are continuous by Assumption 4.1 (ii), they in particular are
bounded on the compact set [−x0, x0] and the right hand side can be made independent
of x. Since also An

n→∞−→ 0 by (4.37), this proves that

lim
n→∞

Ψ2(t, x;Fn) = Ψ2(t, x;F )

for every fixed t > 0 and uniformly on [x0, x0]. Since x0 > 0 was arbitrary, the uniform
convergence holds on any compact subset K ⊆ R, which verifies the convergence (4.25)
and hence finishes the proof.
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5. Schrödinger equation on R \ {0}

In comparison to the previous Chapter 4, where we considered the Schrödinger equation
on the whole real line, we remove the point x = 0 now. This means, that we consider
the Schrödinger equation on R \ {0}, and allow boundary or transmission conditions at
x = 0. The latter also implies distributional potentials as the Dirac δ- or δ′-potential,
since they are mathematically implemented via transmission conditions at the point of
interaction. Similar as in (4.2), it is convenient to view derivatives in the context of
absolutely continuous functions. In particular we define

AC(Ṙ) :=
{
f : Ṙ→ C

∣∣∣ f |(0,∞) ∈ AC((0,∞)) and f |(−∞,0) ∈ AC((−∞, 0)
}

to work for T ∈ (0,∞] with the space

AC1,2((0, T )× Ṙ) :=

{
Ψ : (0, T )× Ṙ→ C

∣∣∣∣ Ψ( · , x) ∈ AC((0, T )), x ∈ Ṙ
Ψ(t, · ), ∂∂xΨ(t, · ) ∈ AC(Ṙ), t ∈ (0, T )

}
,

(5.1)
where for a shorter notation we introduced the notion Ṙ := R \ {0}.

Let V : (0, T ) × Ṙ → C be some potential, M,N ∈ C2×2 matrices describing the
transmission condition and F : Ṙ → C some initial condition. We call a function
Ψ ∈ AC1,2((0, T ) × Ṙ) a solution of the time dependent Schrödinger equation, if it
satisfies

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2
+ V (t, x)

)
Ψ(t, x), f.a.e. t ∈ (0, T ), x ∈ Ṙ, (5.2a)

M

(
Ψ(t, 0+)
Ψ(t, 0−)

)
= N

(
∂
∂xΨ(t, 0+)

− ∂
∂xΨ(t, 0−)

)
, t ∈ (0, T ), (5.2b)

lim
t→0+

Ψ(t, x) = F (x), x ∈ Ṙ. (5.2c)

The corresponding Green’s function is a function G : (0, T )× Ṙ× Ṙ→ C, which depends
on the potential V and the matrices M,N , but not on the initial condition F , such that
the solution Ψ admits the (formal) representation

Ψ(t, x) =

∫
R
G(t, x, y)F (y)dy, t ∈ (0, T ), x ∈ Ṙ. (5.3)

In Assumption 4.1 and Assumption 4.4 we already introduced a set of properties for
the Green’s function on R. The following adapted Assumption 5.1 and Assumption 5.2
for the Green’s function on Ṙ are similar, the main difference only lies in the additional
transmission condition (5.5).
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5. Schrödinger equation on R \ {0}

Assumption 5.1. Let T ∈ (0,∞] and G : (0, T )× Ṙ× Ṙ→ C. For some α ∈ (0, π2 ) let
Sα be the double sector (3.20), and suppose that G admits a continuation to a function
G : (0, T ) × Ṙ × Sα → C, such that for every fixed t ∈ (0, T ), x ∈ Ṙ the mapping
G(t, x, · ) is continuous on Sα and holomorphic on the interior of Sα. Moreover, it will
be assumed that G satisfies the following properties (i)–(iii).

(i) For every fixed z ∈ Sα, the function G( · , · , z) ∈ AC1,2((0, T )× Ṙ) is a solution of
the time dependent Schrödinger equation

i
∂

∂t
G(t, x, z) =

(
− ∂2

∂x2
+ V (t, x)

)
G(t, x, z), f.a.e. t ∈ (0, T ), x ∈ Ṙ, (5.4)

with V : (0, T ) × Ṙ → C the considered potential. Moreover, for every y ∈ Ṙ the
Green’s function satisfies the transmission condition

M

(
G(t, 0+, y)
G(t, 0−, y)

)
= N

(
∂
∂xG(t, 0+, y)

− ∂
∂xG(t, 0−, y)

)
, t ∈ (0, T ), (5.5)

with matrices M,N ∈ C2×2.

(ii) For every x ∈ Ṙ there exists some x0 > |x|, such that for every F ∈ H(C) we have
the initial condition

lim
t→0+

∫ x0

−x0

G(t, x, y)F (y)dy = F (x). (5.6)

(iii) There exists a ∈ AC((0, T )) with a(t) > 0 and limt→0+ a(t) = ∞, such that the
function G̃ in the decomposition

G(t, x, z) = eia(t)(z−x)2
G̃(t, x, z), t ∈ (0, T ), x ∈ Ṙ, z ∈ Sα, (5.7)

is for every t ∈ (0, T ), x ∈ Ṙ exponentially bounded as∣∣G̃(t, x, z)
∣∣ ≤ A0(t, x)eB0(t,x)|z|q , z ∈ Sα, (5.8a)∣∣∣ ∂

∂x
G̃(t, x, z)

∣∣∣ ≤ A1(t, x)eB1(t,x)|z|q , z ∈ Sα, (5.8b)∣∣∣ ∂2

∂x2
G̃(t, x, z)

∣∣∣, ∣∣∣ ∂
∂t
G̃(t, x, z)

∣∣∣ ≤ A2(t, x)eB2(t,x)|z|q , z ∈ Sα. (5.8c)

Here q ∈ (0, 2) and A0, A1, A2, B0, B1, B2 : (0, T )× Ṙ→ [0,∞) are continuous and
for every x ∈ Ṙ

A0( · , x)√
a(t)

and B0( · , x) are bounded as t→ 0+, (5.9)

and for every t ∈ (0, T ):

◦ If M = N = 0, no further assumptions.

◦ If M 6= 0, N = 0, then A0(t, · ), B0(t, · ) are bounded as x→ 0±.

◦ If N 6= 0, then A0(t, · ), A1(t, · ), B0(t, · ), B1(t, · ) are bounded as x→ 0±.
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Note, that the Remarks 4.2 & 4.3 are still valid for this Assumption 5.1. Moreover, see
the Sections 7.5 & 7.6 for explicit examples of Green’s functions which satisfy Assump-
tion 5.1.

Similar as we replaced the initial condition (4.7) by the simple limit (4.14) in Assump-
tion 4.4, we can also replace (5.6) by the upcoming limit (5.13) for the Schrödinger
equation on Ṙ. However, in order to use this simplification it is necessary for the Green’s
function to be holomorphic (and satisfy (5.8a)) not only on Sα but also in a neighborhood
of Ṙ. More precisely, for α ∈ (0, π2 ) and h > 0 on the domain

Dα,h := { z ∈ C \ {0} | Arg(z) ∈ [−α, α] and Im(z) ≥ −h }
∪ { z ∈ C \ {0} | Arg(z) ∈ [π − α, π + α] and Im(z) ≤ h } . (5.10)

Re

Im

αα
αα

h

-h

Dα,h

Assumption 5.2. Let T ∈ (0,∞] and G : (0, T ) × Ṙ × Ṙ → C. For some α ∈ (0, π2 ),

h > 0 suppose that G admits a continuation to a function G : (0, T ) × Ṙ ×Dα,h → C,
such that for every fixed t ∈ (0, T ), x ∈ Ṙ the mapping G(t, x, · ) is continuous on Dα,h

and holomorphic on the interior of Dα,h. Moreover, it will be assumed that G satisfies
the following properties (i)–(iii).

(i) For every fixed z ∈ Sα, the function G( · , · , z) ∈ AC1,2((0, T )× Ṙ) is a solution of
the time dependent Schrödinger equation

i
∂

∂t
G(t, x, z) =

(
− ∂2

∂x2
+ V (t, x)

)
G(t, x, z), f.a.e. t ∈ (0, T ), x ∈ Ṙ, (5.11)

with V : (0, T ) × Ṙ → C the considered potential. Moreover, for every y ∈ Ṙ the
Green’s function satisfies the transmission condition

M

(
G(t, 0+, y)
G(t, 0−, y)

)
= N

(
∂
∂xG(t, 0+, y)

− ∂
∂xG(t, 0−, y)

)
, t ∈ (0, T ), (5.12)

with matrices M,N ∈ C2×2.

(ii) With the function a(t) from (5.14), the Green’s function admits the limit

lim
t→0+

G(t, x, x)√
a(t)

=
1√
iπ
, x ∈ Ṙ. (5.13)

(iii) There exists a ∈ AC((0, T )) with a(t) > 0 and limt→0+ a(t) = ∞, such that the
function G̃ in the decomposition

G(t, x, z) = eia(t)(z−x)2
G̃(t, x, z), t ∈ (0, T ), x ∈ Ṙ, z ∈ Dα,h, (5.14)
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is for every t ∈ (0, T ), x ∈ Ṙ exponentially bounded as∣∣G̃(t, x, z)
∣∣ ≤ A0(t, x)eB0(t,x)|z|q , z ∈ Dα,h, (5.15a)∣∣∣ ∂

∂x
G̃(t, x, z)

∣∣∣ ≤ A1(t, x)eB1(t,x)|z|q , z ∈ Sα, (5.15b)∣∣∣ ∂2

∂x2
G̃(t, x, z)

∣∣∣, ∣∣∣ ∂
∂t
G̃(t, x, z)

∣∣∣ ≤ A2(t, x)eB2(t,x)|z|q , z ∈ Sα. (5.15c)

Here q ∈ (0, 2) and A0, A1, A2, B0, B1, B2 : (0, T )× Ṙ→ [0,∞) are continuous and
for every x ∈ Ṙ

A0( · , x)√
a(t)

and B0( · , x) are bounded as t→ 0+, (5.16)

and for every t ∈ (0, T ):

◦ If M = N = 0, no further assumptions.

◦ If M 6= 0, N = 0, then A0(t, · ), B0(t, · ) are bounded as x→ 0±.

◦ If N 6= 0, then A0(t, · ), A1(t, · ), B0(t, · ), B1(t, · ) are bounded as x→ 0±.

The following lemma proves that the Assumption 5.2 is indeed stronger than the As-
sumption 5.1.

Lemma 5.3. If G : (0, T ) × Ṙ × Ṙ → C satisfies Assumption 5.2, it also satisfies
Assumption 5.1.

Proof. The only thing to check is the initial condition (5.6). Since the calculation is
principally the same for x < 0, we only consider x > 0 here. First of all, we generalize
(5.13) in the sense that for any z(t) ∈ Dα,h with lim

t→0+
z(t) = x we have

lim
t→0+

G̃(t, x, z(t))√
a(t)

=
1√
iπ
. (5.17)

In order to prove this, we follow the same steps as in the proof of (4.18) with the only
difference, that we consider a closed ball Br(x) with radius 0 < r < min{h, x sin(α)}
around x. This ball is then obviously included in the interior of Dα,h.

Re

Im

α
α

h

-h

Dα,h

r

x

Choose now any x0 > x and let F ∈ H(C). then there exist δ1, δ2 > 0 such that
−x0 − iδ, x − δ2e

iα lie in the interior of Dα,h, and we can use the Cauchy theorem to
change the integration path [−x0, x0] in (5.6) to∫ x0

−x0

G(t, x, y)F (y)dy =

∫
γ1

G(t, x, z)F (z)dz +

∫
γ2

G(t, x, z)F (z)dz

+

∫
γ3

G(t, x, z)F (z)dz +

∫
γ4

G(t, x, z)F (z)dz +

∫
γ5

G(t, x, z)F (z)dz,
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γ1 = { −x0 − is | 0 ≤ s ≤ δ1 } ,
γ2 = { s(x0 + iδ1) | −1 ≤ s ≤ 0 } ,
γ3 =

{
s(x− δ2e

iα
∣∣ 0 ≤ s ≤ 1

}
,

γ4 =

{
x+ seiα

∣∣∣∣ −δ ≤ s ≤ x0 − x
cos(α)

}
,

γ5 = { x0 + is | (x0 − x) tan(α) ≥ s ≥ 0 } .

Re

Im

h

-h

γ1

γ2
γ3

γ4 γ5
Dα,h-x0

-x0-iδ1

x-δ2eiα
x

x0+i(x0-x) tan(α)

x0

Since F is holomorphic, it is in particular bounded on { z ∈ Dα,h | |Re(z)| ≤ x0 }, i.e.

|F (z)| ≤ AF , z ∈ Dα,h with |Re(z)| ≤ x0.

Using this, together with the estimate (5.15a), the integral along γ1 can be estimated by∣∣∣ ∫
γ1

G(t, x, z)F (z)dz
∣∣∣ =

∣∣∣ ∫ δ1

0
G(t, x,−x0 − is)F (−x0 − is)ds

∣∣∣
≤ AFA0(t, x)

∫ δ1

0
e−2a(t)(x0+x)seB0(t,x)|x0+is|qds

≤ AFA0(t, x)eB0(t,x)|x0+iδ1|q
∫ δ1

0
e−2a(t)(x0+x)sds

≤ AFA0(t, x)

2a(t)(x0 + x)
eB0(t,x)|x0+iδ1|q .

Since A0( · ,x)√
a( · )

and B0( · , x) are bounded as t → 0+ and a(t)
t→0+

−→ ∞, this inequality

proves the convergence

lim
t→0+

∫
γ1

G(t, x, z)F (z)dz = 0. (5.18)

In the same way one proves that also

lim
t→0+

∫
γ2

G(t, x, z)F (z)dz = lim
t→0+

∫
γ3

G(t, x, z)F (z)dz = lim
t→0+

∫
γ5

G(t, x, z)F (z)dz = 0.

(5.19)
The integral along γ4 can be written as∫

γ4

G(t, x, z)F (z)dz = eiα
∫ x0−x

cos(α)

−δ2
G(t, x, x+ seiα)F (x+ seiα)ds

=
eiα√
a(t)

∫ x0−x
cos(α)

√
a(t)

−δ2
√
a(t)

G
(
t, x, x+

seiα√
a(t)

)
F
(
x+

seiα√
a(t)

)
ds.

Since the integrand is bounded as∣∣∣ 1√
a(t)

G
(
t, x, x+

seiα√
a(t)

)
F
(
x+

seiα√
a(t)

)∣∣∣ ≤ AFA0(t, x)√
a(t)

e−s
2 sin(2α)e

B0(t,x)
∣∣x+ seiα√

a(t)

∣∣q
≤ AFA0(t, x)√

a(t)
e−s

2 sin(2α)eB0(t,x)(x+|s|)q ,
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5. Schrödinger equation on R \ {0}

where in the second inequality we chose t > 0 small enough, such that a(t) ≥ 1.

Since A0(t,x)√
a(t)

and B0(t, x) are bounded as t → 0+, the right hand side can be made

t-independent. Hence we are allowed to apply the dominated convergence theorem and
carry the limit inside the integral

lim
t→0+

∫
γ4

G(t, x, z)F (z)dz = eiα
∫ ∞
−∞

eis
2e2iα lim

t→0+

G̃
(
t, x, x+ seiα√

a(t)

)
√
a(t)

F
(
x+

seiα√
a(t)

)
ds

=
eiαF (x)√

iπ

∫ ∞
−∞

eis
2e2iαds = F (x), (5.20)

where in the second line we used the continuity of the function F as well as the conver-
gence (5.17) from the first part of the proof. Combining now the limits (5.18), (5.19)
and (5.20), we conclude the initial value (5.6) and consequently proved that G indeed
satisfies the Assumption 5.1.

In the following Threorem 5.4 a similar result as Theorem 4.6 is given for the Schrödinger
equation on Ṙ and hence for the Green’s function satisfying Assumption 5.1. In partic-
ular, transmission conditions at x = 0± are included.

Theorem 5.4. Let G : (0, T )× Ṙ× Ṙ→ C be as in Assumption 5.1 of Assumption 5.2.
Then for every F ∈ Ap(C), p ∈ (0, 2), the wave function

Ψ(t, x) := lim
ε→0+

∫
R
e−εy

2
G(t, x, y)F (y)dy, t ∈ (0, T ), x ∈ Ṙ, (5.21)

exists and Ψ ∈ AC1,2((0, T )× Ṙ) is a solution of the Cauchy problem

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2
+ V (t, x)

)
Ψ(t, x), f.a.e. t ∈ (0, T ), x ∈ Ṙ, (5.22a)

M

(
Ψ(t, 0+)
Ψ(t, 0−)

)
= N

(
∂
∂xΨ(t, 0+)

− ∂
∂xΨ(t, 0−)

)
, t ∈ (0, T ), (5.22b)

lim
t→0+

Ψ(t, x) = F (x), x ∈ Ṙ. (5.22c)

Moreover, for any sequence of initial conditions (Fn)n ⊆ Ap(C) which converge as

Fn
n→∞−→ F in Ap(C), also the corresponding solutions (5.21) converge as

lim
n→∞

Ψ(t, x;Fn) = Ψ(t, x;F ), (5.23)

for fixed t ∈ (0, T ) and uniformly on compact subsets of Ṙ.

Note, that for convenience we used the notation Ψ(t, x;F ) to emphasize the initial con-
dition.

Remark 5.5. If we replace the growth condition (5.8a) in Assumption 5.1 by the
stronger condition

|G̃(t, x, z)| ≤ A0(t, x)eB0(t,x)| Im(z)|q , t ∈ (0, T ), x ∈ Ṙ, z ∈ Sα, (5.24)
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for some q ∈ (0, 2), and also choose some initial condition F ∈ Ap(C), p ∈ (0, 2), which
is bounded as

|F (z)| ≤ AeB| Im(z)|p , z ∈ Sα, (5.25)

then it follows from Corollary 3.2 (ii), that the wave function (5.21) can be written in
the equivalent form

Ψ(t, x) = lim
R1,R2→∞

∫ R2

−R1

G(t, x, y)F (y)dy, t ∈ (0, T ), x ∈ Ṙ.

We point out that the stronger growth condition (5.24) on the Green’s function is for
q = 1 satisfied in all examples in Section 7.5 & 7.6. However, the growth condition
(5.25) for the initial condition F is rather restrictive and it is desirable to allow also
initial conditions that may be unbounded on the real line. See for example the type of
initial conditions which arise naturally for the supershift property in Theorem 6.5.

Proof of Theorem 5.4. The proof of the existence of the wave function (5.21) and the
fact that Ψ ∈ AC1,2((0, T )× Ṙ) is a solution of (5.22a) and (5.22c) is the same as in the
proof of Theorem 4.6. Also the continuous dependency result (5.23) can be proven in
the same way.

It remains to verify the transmission condition (5.22b). If M = N = 0, the transmission
condition (5.22b) is trivially satisfied. In the case M 6= 0 and N = 0, we can estimate
the integrand of the integral (4.31) as∣∣G(t, x, yeiα)F (yeiα)

∣∣ ≤ AA0(t, x)e−a(t) sin(2α)y2+2a(t) sin(α)|xy|+B0(t,x)|y|p+B|y|q ,

using the decomposition (5.7) as well as the estimate (5.8a). Since by Assumption 5.1
(iii) the coefficients A0(t, · ) and B0(t, · ) are bounded in the limit x → 0±, the right
hand side can be replaced by some integrable and x-independent majorant, at least in
a neighborhood of x = 0. Hence we can apply the dominated convergence theorem to
(4.31), which gives the boundary value

Ψ(t, 0±) = eiα
∫
R
G(t, 0±, yeiα)F (yeiα)dy, t ∈ (0, T ). (5.26)

Since moreover the estimate (5.8a) in the limit x→ 0± shows that

|G̃(t, 0±, z)| ≤ A0(t)eB0(t)|z|p , t ∈ (0, T ), z ∈ Sα,

where A0(t) and B0(t) are upper bounds of A0(t, · ) and B0(t, · ) in the limit x → 0±,
we can apply Corollary 3.2 to rewrite the integral (5.26) into the form

Ψ(t, 0±) = lim
ε→0+

∫
R
e−εy

2
G(t, 0±, y)F (y)dy, t ∈ (0, T ). (5.27)

Since the Green’s function satisfies the transmission condition (5.5) withN = 0, the same
equation carries over to the wave function Ψ and we end up with the stated (5.22b).

In the situation N 6= 0, also the coefficients A1(t, · ) and B1(t, · ) are bounded as x→ 0±

by Assumption 5.1 (iii). In the same way as we derived (4.33) in the proof of Theorem 4.6,
we also get the Fresnel type integral representation

∂

∂x
Ψ(t, x) = eiα

∫
R

∂

∂x
G(t, x, yeiα)F (yeiα)dy, t ∈ (0, T ), x ∈ Ṙ, (5.28)
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5. Schrödinger equation on R \ {0}

of the spatial derivative. Using the decomposition (5.7) as well as the estimate (5.8a)
and (5.8b) to estimate the integrand as∣∣∣ ∂

∂x
G(t, x, yeiα)F (yeiα)

∣∣∣
=
∣∣∣2ia(t)(x− yeiα)G̃(t, x, yeiα) +

∂

∂x
G̃(t, x, yeiα)

∣∣∣∣∣eia(t)(yeiα−x)2
F (yeiα)

∣∣
≤ A

(
2A0(t, x)a(t)|x− yeiα|eB0(t,x)|y|p

+A1(t, x)eB1(t,x)|y|p
)
eB|y|

q
e2a(t) sin(α)|xy|e−a(t) sin(2α)y2

.

Since, by assumption the coefficients A0, A1, B0, B1 are bounded as x → 0±, the right
hand side can be replaced by some integrable and x-independent majorant, at least in
a neighborhood of x = 0. Hence we can apply the dominated convergence theorem to
(5.28), which gives the boundary value

∂

∂x
Ψ(t, 0±) = eiα

∫
R

∂

∂x
G(t, 0±, yeiα)F (yeiα)dy, t ∈ (0, T ).

In the same way as above, Corollary 3.2 then transforms this integral back into the form

∂

∂x
Ψ(t, 0±) = lim

ε→0+

∫
R
e−εy

2 ∂

∂x
G(t, 0±, y)F (y)dy, t ∈ (0, T ). (5.29)

Since we already know by assumption that G satisfies the transmission condition (5.5),
the integral representations (5.27) and (5.29) show, that it carries over to Ψ and gives
(5.22b).
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6. Stability of superoscillations and
supershifts

It is a question almost as old as superoscillations itself: What happens to a superoscil-
lating function as it evolves in time, when interacting with some quantum mechanical
system? Or in other words: Does a frequency shift of the initial condition at t = 0
survives the time evolution and leads to a similar shift for the solution at times t > 0?
As one can imagine, this time persistence of superoscillations is of crucial importance in
applications, since one has to guarantee that the superoscillating wave is not right away
destroyed by some potential or perturbation. Since, as mentioned in the introduction,
superoscillations always appear with an exponentially small amplitude, one could think
of them being quickly destroyed by the exponentially large amplitudes of the outside
regions. However, it was shown in [51], that at least in the potential free case, super-
oscillations survive for an unexpected amount of time. An experimental verification of
this fact is for example done in [3, 27].

The particular case of the quantum mechanical evolution problem with respect to the
one dimensional Schrödinger equation will be the main topic of this chapter. This means,
for some potential V (t, x) we consider the Cauchy problem

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2
+ V (t, x)

)
Ψ(t, x), (6.1a)

Ψ(0, x) = F (x), (6.1b)

and ask, what happens to the wave function Ψ(t, x) if we put some superoscillatory
function F as its initial condition. Will the solution Ψ(t, x) still be superoscillating at
times t > 0? The first mathematical rigorous treatment of this question was the paper
[15], where for the free particle the authors proved a superoscillatory behaviour for any
time t > 0. Subsequent works then also consider nonconstant potentials as the harmonic
oscillator in [22, 33, 35, 55, 56, 68], the electric field in [19, 22, 35, 55], the magnetic
field in [22, 66], the centrifugal potential in [22, 33, 67, 68], the step potential in [20]
and distributional potentials as δ and δ′ in [5, 6, 36]. But also the time persistence
with respect to other evolution equations as the Klein-Gordon equation in [21, 88] or
the Dirac equation in [72, 88] were considered.

While all the previous works only consider specific potentials and investigate them one
by one, the main novelty of the unified approach of this thesis is, that it is based only
on certain regularity and growth conditions of the corresponding Green’s function but
avoids its explicit form, see Assumption 4.1 and Assumption 5.1. It will turn out that
all the above mentioned potentials are covered by our unified approach, as verified in
Chapter 7.

In order to motivate the structure of this chapter and in particular the time persistence
result of Theorem 6.5, we start in Chapter 2 where we introduced two different types
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6. Stability of superoscillations and supershifts

of superoscillating functions. The Type II superoscillations of Definition 2.2, which are
characterized by their number of sign changes, will not be treated here. We will only
consider the Type I superoscillations of Definition 2.1, where the convergence

lim
n→∞

Fn(z) = eikz in A1(C),

plays a central role. This limit perfectly harmonizes with the continuous dependency
results of Theorem 4.6 and Theorem 5.4 and already indicates some convergence of the
form

lim
n→∞

Ψ(t, x;Fn) = Ψ(t, x; eik · ),

and hence some superoscillatory property of the wave function. However, although the
limit function Ψ(t, x; eik · ) may admit some oscillatory behaviour, it is by no means
expected (and also not true) that it is again a plane wave eik(t)x with some frequency
k(t). Hence, the sequence Ψ(t, x;Fn) is no longer superoscillating in the sense that it
converges to some plane wave with high frequency. A second issue is, that the desired A1-
convergence in the variable x may in general fail since some arbitrary potential, having
for example discontinuities, leads to a wave function which is no longer holomorphic
although the initial value was. To overcome this dilemma, the notion of supershift
was introduced in [68]. The upcoming definition of supershift mainly means, that we
forget about the oscillatory behaviour of the plane waves eikz and replace them by
some arbitrary functions ϕk(z). The only property we stick to is the convergence (6.4).
Whether the functions ϕk admit any kind of oscillatory behaviour has to be investigated
independently and is not part of the general theory in this chapter.

Definition 6.1 (Supershift). Let O,U ⊆ C with U ( O and X be a metric space.
Consider a family

ϕk : X → C, k ∈ O, (6.2)

of complex valued functions, such that for every s ∈ X the mapping k 7→ ϕk(s) is
bounded on U . We say that a sequence of functions (Φn)n of the form

Φn(s) =

∫
U
ϕκ(s)dµn(κ), s ∈ X, (6.3)

with complex Borel measures µn on U , admits a supershift, if there exists some k ∈ O\U ,
such that

lim
n→∞

Φn(s) = ϕk(s), s ∈ X, (6.4)

converges uniformly on compact subsets of X.

Remark 6.2. Note, that the integral (6.3) is well defined since any complex measure
µn is in particular finite and the integrand κ 7→ ϕκ(s) is bounded by assumption.

Remark 6.3. If the sequence (Φn)n in (6.3) admits a supershift, then the values of ϕk
for some k ∈ O \ U , outside the smaller set U , can be calculated by only using values
ϕk at the points κ inside U . Hence, informally speaking, when considering the mapping
k 7→ ϕk, there is a breeze of analyticity in the air, see also Theorem 6.7 and Corollary 6.8.
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Since we introduced the supershift property with the aim to generalize superoscillations,
the following example shows, that the superoscillating sequence (0.1) indeed admits the
supershift property.

Example 6.4. Let X = C and consider for every k ∈ O = R the exponentials

ϕk(z) = eikz, z ∈ C.

Then the functions Fn from Definition 2.1 can be written as

Fn(z) =

∫ k0

−k0

ϕκ(z)dµn(κ), z ∈ C,

due to the representation (2.1). Moreover, by (2.2) it follows that

lim
n→∞

Fn(z) = ϕk(z) in A1(C),

for some k ∈ R \ [−k0, k0]. Since this A1-convergence in particular implies the uniform
convergence on compact subsets of C, the superoscillating sequence (Fn)n indeed admits
a supershift according to Definition 6.1.

The main result of this chapter is the following Theorem 6.5 on the supershift property
of the solution of the Schrödinger equation, which can be viewed as a corollary of the
continuous dependence results of Theorem 4.6 and Theorem 5.4. Roughly speaking, we
consider a family of initial conditions that admits a supershift (with respect to a slightly
stronger form of convergence as in Definition 6.1) and conclude that the correspond-
ing solutions of the Schrödinger equation admit a similar type of supershift, see also
Remark 6.6.

Theorem 6.5. Let the function G be as in Assumption 4.1 (or Assumption 5.1) and
O,U ⊆ C with U ( O. Moreover, for some p ∈ (0, 2) let ϕk ∈ Ap(C), k ∈ O, be a family
of functions, such that the required Ap-boundedness is satisfied by

|ϕk(z)| ≤ A(k)eB(k)|z|p , z ∈ C, (6.5)

for some A(k), B(k) which are bounded on U . For complex Borel measures µn, the
functions

Fn(z) =

∫
U
ϕκ(z)dµn(κ), z ∈ C, (6.6)

are elements in Ap(C) and if they converge as

lim
n→∞

Fn = ϕk in Ap(C), (6.7)

to some ϕk with k ∈ O \ U , then also the sequence of solutions of the Cauchy problem
(4.24) (or (5.22)) converges as

lim
n→∞

Ψ(t, x;Fn) = lim
n→∞

∫
U

Ψ(t, x;ϕκ)dµn(κ) = Ψ(t, x;ϕk), (6.8)

for every t ∈ (0, T ) and uniformly on compact subsets of R (or Ṙ).
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6. Stability of superoscillations and supershifts

Proof. In the first step we want to show that Fn is an entire function. To do so, we
choose any closed triangle ∆ ⊆ C and consider the path integral∫

∆
Fn(z)dz =

∫
∆

∫
U
ϕκ(z)dµn(κ)dz.

Due to (6.5) and the uniform bounds A(κ) ≤ A∞ and B(κ) ≤ B∞ for every κ ∈ U , the
integrand can be estimated by

|ϕκ(z)| ≤ A∞eB∞|z|
p
, κ ∈ U , z ∈ ∆.

Hence the double integral over ∆ × U is absolute convergent and we are allowed to
interchange the order of integration, which leaves us with∫

∆
Fn(z)dz =

∫
U

∫
∆
ϕκ(z)dzdµn(κ) =

∫
U

0 dµn(κ) = 0,

where the integral
∫

∆ ϕκ(z)dz vanishes due to the holomorphicity of ϕκ. By the Theorem
of Morera this implies that Fn is an entire function. The fact that it is also exponentially
bounded follows from the simple estimate

|Fn(z)| ≤
∫
U
|ϕκ(z)|d|µn|(κ) ≤ A∞|µn|(U)eB∞|z|

p
, z ∈ C,

where |µn| is the variation of the complex measure µn. Hence we verified Fn ∈ Ap(C).

The fact, that the convergence (6.7) leads to the convergence (6.8), was already proven
in Theorem 4.6 and Theorem 5.4. It is left to show that it is possible to write

Ψ(t, x;Fn) =

∫
U

Ψ(t, x;ϕκ)dµn(κ).

Using the representation (4.31) of the solution gives

Ψ(t, x;Fn) = eiα
∫
R
G(t, x, yeiα)Fn(yeiα)dy

= eiα
∫
R
G(t, x, yeiα)

∫
U
ϕκ(yeiα)dµn(κ)dy

= eiα
∫
U

∫
R
G(t, x, yeiα)ϕκ(yeiα)dydµn(κ)

=

∫
U

Ψ(t, x;ϕκ)dµn(κ),

where we were allowed to interchange the order of integration because of the estimate

|G(t, x, yeiα)ϕκ(yeiα)| ≤ A∞A0(t, x)e−a(t) sin(2α)y2+2a(t) sin(α)|xy|+B0(t,x)|y|q+B∞|y|p .

Since the complex measure µn is finite, and due to the decaying Gausssian e−a(t) sin(2α)y2
,

the double is absolute convergent and we are allowed to apply the Fubini theorem.
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Remark 6.6. Since the convergence (6.7) implies uniform convergence on all compact
subsets of R, it is clear, that the initial conditions (Fn)n in (6.6) admit the supershift
property of Definition 6.1 with respect to the metric space X = R. Furthermore, at
any time t ∈ (0, T ), the convergence (6.8) shows that the sequence (Ψ(t, x;Fn))n again
admits a supershift with the functions (6.2) chosen as φk(x) := Ψ(t, x;ϕk).

In the next result we continue the theme of Theorem 6.5 and return to the analyticity
issue of Remark 6.3. In fact, the following Theorem 6.7 shows, that analyticity in
the variable k of the initial condition implies analyticity in the k-variable in the wave
function.

Theorem 6.7. Let G be as in Assumption 4.1 (or Assumption 5.1) and Ψ(t, x;F ) the
solution of the corresponding Cauchy problem (4.24) (or (5.22)). For some open set
Ω ⊆ C and p ∈ (0, 2), we consider a family of functions ϕk ∈ Ap(C), k ∈ Ω, such that

|ϕk(z)| ≤ A(k)eB(k)|z|p , z ∈ C, (6.9)

is satisfied for some A(k), B(k) ≥ 0, locally bounded. If for every z ∈ C the mapping

Ω 3 k 7→ ϕk(z)

is holomorphic, then for every fixed t ∈ (0, T ), x ∈ R (or Ṙ), the mapping

Ω 3 k 7→ Ψ(t, x;ϕk)

is holomorphic as well.

Proof. Fix t ∈ (0, T ), x ∈ R (or Ṙ). Then for any closed triangle ∆ ⊆ Ω, we have the
path integral ∫

∆
Ψ(t, x;ϕk)dk =

∫
∆
eiα
∫
R
G(t, x, yeiα)ϕk(ye

iα)dydk, (6.10)

due to the representation (4.31) of the wave function. Here α ∈ (0, π2 ) is the angle of
the double sector Sα in Assumption 4.1 (or Assumption 5.1). In order to interchange
the order of integration, we have to prove absolute integrability of the double integral.
Firstly, the estimate∣∣G(t, x, yeiα)ϕk(ye

iα)
∣∣ ≤ A(k)A0(t, x)e−a(t) sin(2α)y2+2a(t) sin(α)|xy|+B0(t,x)|y|q+B(k)|y|p ,

(6.11)
follows from (4.9a) (or (5.8a)) as well as (6.9), and shows that the y-integral is absolutely
convergent. Moreover, the coefficients A(k), B(k) are assumed to be bounded on the
compact triangle ∆. This means, that the right hand side of (6.11) can be replaced by
some k-independent and y-integrable upper bound. Hence, the double integral (6.10) is
absolutely convergent and we are allowed to interchange the order of integration and get∫

∆
Ψ(t, x;ϕk)dk = eiα

∫
R
G(t, x, yeiα)

∫
∆
ϕk(ye

iα)dkdy.

Since the mapping Ω 3 k 7→ ϕk(ye
iα) is holomorphic the path integral along ∆ vanishes

and we get ∫
∆

Ψ(t, x;ϕk)dκ = 0.

Due to the Theorem of Morera this implies the analyticity of Ω 3 k 7→ Ψ(t, x;ϕk).
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6. Stability of superoscillations and supershifts

In order to appreciate our main results, the following corollary shows how the above
Theorem 6.5 and Theorem 6.7 combine in the special case of exponentials ϕk(z) = eikz,
i.e. in the case of a Type I superoscillating sequence of Definition 2.1.

Corollary 6.8. Let G be as in Assumption 4.1 (or Assumption 5.1) and (Fn)n a Type I
superoscillating sequence. Then the sequence of solutions of the Cauchy problem (4.24)
(or (5.22)) converges as

lim
n→∞

Ψ(t, x;Fn) = lim
n→∞

∫ k0

−k0

Ψ(t, x; eiκ · )dµn(κ) = Ψ(t, x; eik · ), (6.12)

for every t ∈ (0, T ) and uniformly on compact subsets of R (or Ṙ). That is, the sequence
Ψ(t, x;Fn) admits a supershift. Moreover, for every fixed t ∈ (0, T ), x ∈ R (or x ∈ Ṙ),
the mapping

C 3 κ 7→ Ψ(t, x; eiκ · ) is analytic.

Proof. Since the functions ϕκ(z) = eiκz satisfy the estimate

|ϕκ(z)| ≤ e|κ||z|, κ, z ∈ C,

the assumptions of Theorem 6.5 and Theorem 6.7 are satisfied and the statement of the
corollary follows.
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7. Examples of Green’s functions

In this chapter we apply the theory of the previous Chapters 4, 5 and 6 to some specific
potentials and transmission conditions, where the corresponding Green’s function is
known explicitly. We start by the simplest case, the free particle V = 0 in Section 7.1,
and proceed with the electric field V ∼ x in Section 7.2, the harmonic oscillator V ∼ x2

in Section 7.3, the Pöschl Teller potential V ∼ 1
cosh2(x)

in Section 7.4, which are all

applications of the Schrödinger equation on R, i.e. Section 4. As examples for the
Schrödinger equation on Ṙ := R \ {0} of Section 5, we consider the centrifugal potential
V ∼ 1

x2 in Section 7.5 as well as arbitrary point interactions in Section 7.6. The main task
in the above mentioned examples is to verify either Assumption 4.1 or Assumption 4.4
is satisfied for the potentials on R and either Assumption 5.1 or Assumption 5.2 is
satisfied for the potentials on Ṙ. Hence in all the cases the corresponding Theorem 4.6
or Theorem 5.4 is applicable and in particular the time persistence of the supershift
property in Theorem 6.5 holds true.

While the forthcoming examples of Section 7.1–7.4 were already considered in the paper
[7], the centrifugal potential of Section 7.5, in particular in the attractive case λ < 0,
is a potential for which the time persistence of supershifts is proven for the first time.
For arbitrary point interactions this result is already known, see [6], but Section 7.6 at
least shows that also these distributional potentials fit into the general framework of the
unified approach.

7.1. Free particle

The free particle V (t, x) = 0 is the easiest example and also the one which was investi-
gated first in the history of time evolution of superoscillations, see [15]. The correspond-
ing Green’s function is given by

G(t, x, y) =
1

2
√
iπt

e−
(y−x)2

4it , t > 0, x, y ∈ R. (7.1)

Theorem 7.1. The Green’s function (7.1) satisfies Assumption 4.4 for the potential
V (t, x) = 0.

Proof. It is obvious by simply replacing y → z in (7.1), that G(t, x, · ) extends to an
entire function. Moreover, the decomposition (4.15) is satisfied using a(t) = 1

4t and

G̃(t, x, z) =
1

2
√
iπt

, t > 0, x ∈ R, z ∈ C.

Next we verify the properties (i)–(iii) of Assumption 4.4.
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7. Examples of Green’s functions

(i) In order to see, that (7.1) is a solution of the time dependent Schrödinger equation
(4.13), or equivalently that G̃ is a solution of (4.11), we explicitly calculate its
derivatives, which are

∂

∂x
G̃(t, x, z) = 0,

∂2

∂x2
G̃(t, x, z) = 0 and

∂

∂t
G̃(t, x, z) =

−1

4
√
iπ t

3
2

. (7.2)

Hence, G̃(t, x, z) satisfies

i
∂

∂t
G̃(t, x, z) =

(
− ∂2

∂x2
+
z − x
it

∂

∂x
− i

2t

)
G̃(t, x, z),

which is exactly (4.11) with a(t) = 1
4t and V (t, x) = 0.

(ii) For any x ∈ R, we trivially obtain the limit (4.14) as

lim
t→0+

G(t, x, x)√
a(t)

= lim
t→0+

1√
iπ

=
1√
iπ
. (7.3)

(iii) The absolute value of G̃ and its derivatives are∣∣G̃(t, x, z)
∣∣ =

1

2
√
πt
,∣∣∣ ∂

∂x
G̃(t, x, z)

∣∣∣ =
∣∣∣ ∂2

∂x2
G̃(t, x, z)

∣∣∣ = 0, (7.4)∣∣∣ ∂
∂t
G̃(t, x, z)

∣∣∣ =
1

4
√
π t

3
2

.

This shows, that the exponential bound (4.16a) is satisfied with A0(t, x) = 1
2
√
πt

and B0(t, x) = 0, for which

A0(t, x)√
a(t)

=
1√
π

and B0(t, x) = 0,

are obviously bounded as t→ 0+, as claimed in (4.17). By the explicit form (7.2)
of the derivatives we immediately see, that also the exponential bounds (4.16b)
are satisfied.

Hence the Green’s function indeed satisfies Assumption 4.4 and Theorem 7.1 is proven.

7.2. Time dependent electric field

In this section we consider V (t, x) = λ(t)x, for some continuous λ : [0,∞) → R. For
the special case of a constant strength λ(t) = λ, this type of potential was already
investigated with respect to the time persistence of superoscillations in [19, Theorem
3.6]. Even for some generalized Schrödinger equation, i.e. − ∂

∂x2 replaced by f(−i ∂∂x)
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7.2. Time dependent electric field

where f is a polynomial of even degree, the electric field potential was investigated in
[22]. The Green’s function, associated with electric field potential, is given by

G(t, x, y) =
1

2
√
iπt

eiβ(t)+itα′(t)x+iα(t)y− (y−x)2

4it , t > 0, x, y ∈ R, (7.5)

where the parameters α, β : (0,∞) → C are the solutions of the ordinary differential
equations

tα′′(t) + 2α′(t) = −λ(t) and β′(t) = −t2α′(t)2, t > 0, (7.6)

with initial conditions

lim
t→0+

α(t) = lim
t→0+

β(t) = lim
t→0+

tα′(t) = 0. (7.7)

For the particular special case of a time independent electric field λ(t) = λ with constant
strength λ ∈ R, the solutions of the initial value problems (7.6) and (7.7) are in this case
explicitly given by

α(t) = −λt
2

and β(t) = −λ
2t3

12
.

Consequently, the Green’s function (7.5) becomes

G(t, x, y) =
1

2
√
iπt

e−
iλ2t3

12
− iλt(x+y)

2
− (y−x)2

4it , t > 0, x, y ∈ R.

Note, that this Green’s function coincides with the ones the authors used in [35, 101].

Theorem 7.2. The Green’s function (7.5) satisfies Assumption 4.4 for the potential
V (t, x) = λ(t)x.

Proof. It is obvious by simply replacing y → z in (7.5), that G(t, x, · ) extends to an
entire function. Moreover, the decomposition (4.15) is satisfied using a(t) = 1

4t and

G̃(t, x, z) =
1

2
√
iπt

eiβ(t)+itα′(t)x+iα(t)z, t > 0, x ∈ R, z ∈ C.

Next we verify the properties (i)–(iii) of Assumption 4.4.

(i) In order to see, that (7.5) is a solution of the time dependent Schrödinger equation
(4.13), or equivalently that G̃ is a solution of (4.11), we explicitly calculate its
derivatives, which are

∂

∂x
G̃(t, x, z) = itα′(t)G̃(t, x, z),

∂2

∂x2
G̃(t, x, z) = −t2α′(t)2G̃(t, x, z), (7.8)

∂

∂t
G̃(t, x, z) =

(
iβ′(t) + iα′(t)(z − x)− ixλ(t)− 1

2t

)
G̃(t, x, z),

where for the time derivative we used the differential equation (7.6). Hence
G̃(t, x, z) satisfies

i
∂

∂t
G̃(t, x, z) =

(
− ∂2

∂x2
+
x− z
it

∂

∂x
+

1

2it
+ λ(t)x

)
G̃(t, x, z),

which is exactly (4.11).
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7. Examples of Green’s functions

(ii) For any x ∈ R, we obtain the limit (4.14) as

lim
t→0+

G(t, x, x)√
a(t)

=
1√
iπ

lim
t→0+

eiβ(t)+itα′(t)x+iα(t)z =
1√
iπ
,

where we used the initial conditions (7.7) of the parameters α and β.

(iii) The function G̃ is exponentially bounded by

|G̃(t, x, y)| ≤ 1

2
√
πt
e−α(t) Im(z), t > 0, x ∈ R, z ∈ C, (7.9)

and hence satisfies (4.9a) with the coefficients

A0(t, x) =
1

2
√
πt

and B0(t, x) = |α(t)|.

Moreover, the coefficients

A0(t, x)√
a(t)

=
1√
π
e− Im(β(t))−t Im(α′(t))x and B0(t, x) = |α(t)|,

are bounded in the limits t → 0+, again by the initial conditions (7.7). By the
explicit form (7.8) of its derivatives, we immediately see, that also the exponential
bounds (4.16b) are satisfied.

Hence the Green’s function indeed satisfies Assumption 4.4 and Theorem 7.2 is proven.

7.3. Time dependent harmonic oscillator

One particularly important potential is the harmonic oscillator V (t, x) = ω(t)x2, with
some continuous frequency ω : [0,∞)→ R. The reason for this is, that in many approx-
imations the potential gets Taylor expanded up to the quadratic term, which is mainly
the first interesting one. This approximation is often called semiclassical approximation
or WKB approximation. The particular case of constant frequency ω(t) = ω > 0 is
already treated in [33, 35, 55, 68] and a numerical illustration of the superoscillating
solution is displayed in [56]. Also the time dependent case ω(t) = ±t was considered in
[22, Theorem 2.1 & Theorem 2.3].

The Green’s function of the harmonic oscillator is given by

G(t, x, y) =
1

2
√
iπα(t)

e
−α
′(t)x2−2xy+β(t)y2

4iα(t) , t ∈ (0, T ), x, y ∈ R. (7.10)

where the parameters α and β are solutions of the ordinary differential equations

α′′(t) = −4ω(t)α(t) and β′′(t) = −4ω(t)β(t), t > 0, (7.11)

with initial conditions

α(0+) = β′(0+) = 0 and α′(0+) = β(0+) = 1. (7.12)
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7.3. Time dependent harmonic oscillator

Moreover, T > 0 is chosen as the smallest positive zero of either α(t) or β(t), or T =∞
if α(t) and β(t) have no zeros on (0,∞). With this choice of T , it follows from the initial
conditions that α(t) > 0 and β(t) > 0 for t ∈ (0, T ) and (7.10) is well defined.

In the special case of a time independent harmonic oscillator, we obtain the following
explicit forms of the Green’s function.

◦ If V (t, x) = ω2x2 for some ω > 0, the differential equation (7.11) has the two linear
independent solutions sin(2ωt) and cos(2ωt). With the initial values (7.12), this
gives the solutions

α(t) =
sin(2ωt)

2ω
and β(t) = cos(2ωt).

The smallest positive zero of those functions is T = π
4ω , which is then also the

maximum time for which our unified approach works. Plugging these solutions
into (7.10), gives the Green’s function

G(t, x, y) =

√
ω√

2iπ sin(2ωt)
e
−iωxy tan(ωt)− ω(x−y)2

2i tan(2ωt) , t ∈
(

0,
π

4ω

)
, x, y ∈ R.

Note, that we obtain the same results as in [7, Remark 5.2], with the only difference,
that the upper bound is π

2ω instead of π
4ω there, which is an error in the paper.

◦ If V (t, x) = −ω2x2 for some ω > 0, the differential equation (7.11) has the two lin-
ear independent solutions sinh(2ωt) and cosh(2ωt). With the initial values (7.12),
this gives the solutions

α(t) =
sinh(2ωt)

2ω
and β(t) = cosh(2ωt).

Since both functions do not have positive zeros, we get T =∞, which means, that
the Green’s function is valid for all times t > 0. Plugging these solutions into
(7.10), gives the Green’s function

G(t, x, y) =

√
ω√

2iπ sinh(2ωt)
e
iωxy tanh(ωt)− ω(x−y)2

2i tanh(2ωt) , t > 0, x, y ∈ R.

◦ For vanishing potential ω(t) = 0, the initial value problem (7.11) and (7.12) has
the solution

α(t) = t and β(t) = 1.

These solutions also have no positive zeros, i.e. T =∞, and the Green’s function
becomes

G(t, x, y) =
1

2
√
iπt

e−
(x−y)2

4it , t > 0, x, y ∈ R,

which means, that we regained the one from the free particle (7.1).

Theorem 7.3. The Green’s function (7.10) satisfies Assumption 4.4.
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7. Examples of Green’s functions

Proof. It is obvious by simply replacing y → z in (7.10), that G(t, x, · ) extends to an

entire function. Moreover, the decomposition (4.15) is satisfied using a(t) = β(t)
4α(t) and

G̃(t, x, z) =
1

2
√
iπα(t)

e
(β(t)−α′(t))x2+2(1−β(t))xz

4iα(t) , t ∈ (0, T ), x ∈ R, z ∈ C.

Next we verify the properties (i)–(iii) of Assumption 4.4.

(i) In order to see, that (7.10) is a solution of the time dependent Schrödinger equation
(4.13), or equivalently that G̃ is a solution of (4.11), we explicitly calculate its
derivatives, which are

∂

∂x
G̃(t, x, z) =

(β(t)− α′(t))x+ (1− β(t))z

4iα(t)
G̃(t, x, z),

∂2

∂x2
G̃(t, x, z) =

( i(α′(t)− β(t))

4α(t)
−
(
(β(t)− α′(t))x+ (1− β(t))z

)2
8α(t)2

)
G̃(t, x, z), (7.13)

∂

∂t
G̃(t, x, z) =

((α′(t)2 − 1)x2

8iα(t)2
+

(1− α′(t))xz
4iα(t)2

− α′(t)

4α(t)
− iω(t)x2

)
G̃(t, x, z),

where for the time derivative we used the differential equations (7.11) of the pa-
rameters and that the Wronskian has the constant value

α′(t)β(t)− α(t)β′(t) = 1, t > 0. (7.14)

Plugging in a(t) = β(t)
4α(t) and using once more the Wronskian (7.14), turns the

differential equation (4.11) into

i
∂

∂t
G̃(t, x, z) =

(
− ∂2

∂x2
+
β(t)(x− z)

iα(t)

∂

∂x
+

(β(t)2 − 1)(z − x)2

4α(t)2
+

β(t)

2iα(t)
+ω(t)x2

)
G̃(t, x, z).

which is clearly satisfied if one plugs in (7.13).

(ii) In order to conclude the initial value (4.14), we first note, that it follows from
(7.12) and L’Hospitals rule, that

lim
t→0+

1− β(t)

α(t)
= lim

t→0+

−β′(t)
α′(t)

=
0

1
= 0, (7.15a)

lim
t→0+

β(t)− α′(t)
α(t)

= lim
t→0+

β′(t)− α′′(t)
α′(t)

= lim
t→0+

β′(t) + 4ω(t)α(t)

α′(t)
= 0. (7.15b)

Hence, for every x ∈ R we obtain the limit

lim
t→0+

G(t, x, x)√
a(t)

= lim
t→0+

1√
iπβ(t)

e
(β(t)−α′(t))x2+2(1−β(t))x2

4iα(t) =
1√
iπ
.

(iii) Since the parameters α and β are real valued, the absolute value of the function
G̃ equals∣∣G̃(t, x, z)

∣∣ =
1

2
√
πα(t)

e
(1−β(t))x

2α(t)
Im(z)

, t ∈ (0, T ), x ∈ R, z ∈ C, (7.16)

82



7.4. Pöschl-Teller potential

and hence satisfies (4.16a) with the coefficients

A0(t, x) =
1

2
√
πα(t)

and B0(t, x) =
|1− β(t)||x|

2α(t)
.

It also follows from the above limits (7.15), that

lim
t→0+

A0(t, x)√
a(t)

= lim
t→0+

1√
πβ(t)

=
1√
π
,

lim
t→0+

B0(t, x) = lim
t→0+

(1− β(t))|x|
2α(t)

= 0,

and hence are bounded as claimed in (4.17). By the explicit form (7.13) of its
derivatives, we immediately see, that also the exponential bounds (4.16b) are sat-
isfied.

Hence the Green’s function indeed satisfies Assumption 4.4 and Theorem 7.3 is proven.

7.4. Pöschl-Teller potential

In this section we consider the Pöschl-Teller potential V (t, x) = − l(l+1)

cosh2(x)
, l ∈ N0. This

potential was already investigated with respect to superoscillations for example in [7].
Using the function R in (A.26) and Pml from (A.30), the Green’s function of the Pöschl-
Teller potential reads for every t > 0, x, y ∈ R as

G(t, x, y) =

(
1

2
√
iπt

+
l∑

m=1

m(l −m)!

2(l +m)!
Pml (x)Pml (y)R

(
m2t,m(y − x)

))
e−

(y−x)2

4it . (7.17)

This Green’s function can for example be found in [87, Section 6.6.3].

Theorem 7.4. The Green’s function (7.17) satisfies Assumption 4.4.

Proof. Since R(mt2, · ) is an entire function and Pml is holomorphic on C\ iπ(Z+ 1
2), the

Green’s funcion G(t, x, · ) trivially admits a holomorphic extension to Sα,h from (4.12)
for every α ∈ (0, π2 ), h ∈ (0, π2 ), by simply replacing y → z in (7.17). Moreover, the
decomposition (4.15) is satisfied using a(t) = 1

4t and

G̃(t, x, z) =
1

2
√
iπt︸ ︷︷ ︸

=:G̃free(t,x,z)

+
l∑

m=1

m(l −m)!

2(l +m)!
Pml (x)Pml (z)R

(
m2t,m(z − x)

)︸ ︷︷ ︸
=:G̃m(t,x,z)

, z ∈ Sα,h.

(7.18)
Next we verify the properties (i)–(iii) of Assumption 4.4. Note, that we already treated
G̃free in Section 7.1, and we will refer to these results in the following.

83



7. Examples of Green’s functions

(i) In the first step, we check whether G̃m is a solution of (4.11). From the differential
equation (A.31) of Pml and the derivatives (A.27) of the function R, we immediately

derive the derivatives of G̃m by

∂

∂x
G̃m(t, x, z) =

x− z
2it

G̃m(t, x, z) +
2√
iπt
Pml (x)Pml (z) sinh(m(z − x))

+ Pm′l (x)Pml (z)R
(
m2t,m(z − x)

)
∂2

∂x2
G̃m(t, x, z) =

( 1

2it
− (x− z)2

4t2
+m2 − l(l + 1)

cosh2(x)

)
G̃m(t, x, z) (7.19)

+
1√
iπt
Pml (x)Pml (z)

(x− z
it

sinh(m(z − x))− 2m cosh(m(z − x))
)

+ Pm′l (x)Pml (z)
( 4√

iπt
sinh(m(z − x)) +

x− z
it

R
(
m2t,m(z − x)

))
∂

∂t
G̃m(t, x, z) = i

(
m2 +

(z − x)2

4t2

)
G̃m(t, x, z)

+
1

i
√
iπt
Pml (x)Pml (z)

(x− z
it

sinh(m(z − x))− 2m cosh(m(z − x))
)
.

These derivatives now show, that G̃m satisfies

(
i
∂

∂t
+

∂2

∂x2
+
z − x
it

∂

∂x
− 1

2it

)
G̃m(t, x, z)

= − l(l + 1)

cosh2(x)
G̃m(t, x, z) +

4√
iπt

d

dx

(
Pml (z)Pml (x) sinh(m(z − x))

)
.

The derivatives of G̃free(t, x, z) were already calculated in (7.2) and give

(
i
∂

∂t
+

∂2

∂x2
+
z − x
it

∂

∂x
− 1

2it

)
G̃free(t, x, z) = 0.

Using now the identity (A.33), this immediately shows that indeed

(
i
∂

∂t
+

∂2

∂x2
+
z − x
it

∂

∂x
− 1

2it

)
G̃(t, x, z)

= − l(l + 1)

cosh2(x)

l∑
m=1

m(l −m)!

2(l +m)!
G̃m(t, x, z)

+
2√
iπt

d

dx

l∑
m=1

m(l −m)!

(l +m)!
Pml (z)Pml (x) sinh(m(z − x))

= − l(l + 1)

cosh2(x)

(
G̃(t, x, z)− G̃free(t, x, z)

)
+
l(l + 1)

2
√
iπt

d

dx

(
tanh(z)− tanh(x)

)
= − l(l + 1)

cosh2(x)
G̃(t, x, z),

is a solution of (4.11).
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7.4. Pöschl-Teller potential

(ii) For every x ∈ R, we obtain the limit

lim
t→0+

G̃m(t, x, x) = Pml (x)2(Λ(0)− Λ(0)) = 0,

by the explicit form (A.26) of the function R. In the decomposition (7.18) this
then gives the limit

lim
t→0+

G(t, x, x)√
a(t)

= lim
t→0+

Gfree(t, x, x)√
a(t)

=
1√
iπ
,

where the respective limit of Gfree was taken from (7.3).

(iii) For the estimate (4.16a) of G̃m, we will use, that

e|Re(z)|

| cosh(z)|
≤ Dα,h, z ∈ Sα,h,

for some Cα,h ≥ 0. Together with the estimate (A.29) of the function R and the
estimate (A.32) of Pml , this gives the bounds

|G̃m(t, x, z)| ≤ 2C2
l,m,α,hΛ

(
− m
√
t√

2

)( e|Re(z)|

| cosh(z)|

)m( e|x|

cosh(x)

)m
≤ 2C2

l,m,α,hC
2m
α,hΛ

(
− m
√
t√

2

)
. (7.20)

Plugging now (7.20) into the decomposition (7.18) shows, that the estimate (4.16a)
is satisfied with

A0(t, x) =
1

2
√
πt

+

l∑
m=1

m(l −m)!

(l +m)!
C2
l,m,α,hC

2m
α,hΛ

(
− m
√
t√

2

)
and B0(t, x) = 0.

With these coefficients the values A0√
a

and B0 are obviously bounded in the limit

t→ 0+ as claimed in (4.10). By the explicit form (7.19) of the derivatives, we imme-
diately see, that also the exponential bounds (4.9b) are satisfied for the derivatives
of G̃m and hence also for the derivatives of G̃.

Hence the Green’s function indeed satisfies Assumption 5.2 and Theorem 7.4 is proven.

The Pöschl-Teller potential was the last example, for which the potential was defined on
the whole real line R. In the upcoming Sections 7.5 & 7.6 we consider potentials on Ṙ,
and consequently the Schrödinger equation (5.22) on (0, T ) × Ṙ including transmission
conditions.
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7.5. Centrifugal potential

In this section we consider the strongly singular centrifugal potential V (t, x) = λ
x2 of

strength λ ∈ R \ {0}. We want to mention, that the repulsive potential V (t, x) = λ
x2 ,

λ > 0, was already investigated with respect to superoscillations in [67, 22]. In [33]
even the combined centrifugal and harmonic oscillator potential V (t, x) = λ

x2 + ωx2 is
considered, which would also be possible in our case by combining the ideas of this
section with the ones in Section 7.3. However, for simplicity we will omit this discussion
and concentrate on the pure centrifugal potential here. The case λ < 0 on the other
hand is not yet treated with respect to stability of superoscillations and is a novelty of
this thesis.

For λ > 0, the Green’s function of the centrifugal potential V (t, x) = λ
x2 is given by

G(t, x, y) =
Θ(xy)

√
xy

2iν+1t
e−

x2+y2

4it Jν

(xy
2t

)
, t > 0, x, y ∈ Ṙ, (7.21)

and for λ < 0 by

G(t, x, y) =
Θ(xy)

√
xy

4iν+1t
e−

x2+y2

4it H(2)
ν

(xy
2t

)
, t > 0, x, y ∈ Ṙ. (7.22)

Here Θ(ξ) =

{
1, if ξ > 0,
0, if ξ < 0,

is the step function, ν :=
√

1
4 + λ is either nonnegative

or purely imaginary with positive imaginary part, Jν is the Bessel function of the first

kind and H
(2)
ν the Hankel function of the second kind. Note, that the Green’s function

vanishes for xy < 0, which is due to the fact that the 1
x2 -potential is too singular at

x = 0 to allow any information exchange between the two halflines. Additionally, this
nonintegrable singularity automatically implies a Dirichlet boundary condition of the
form Ψ(t, 0+) = Ψ(t, 0−) = 0, see for example [76] for justification.

Theorem 7.5.

a) The Green’s function (7.21) satisfies the Assumption 5.1 for the repulsive centrifu-
gal potential V (t, x) = λ

x2 , λ > 0, and the transition matrices M = I, the identity
matrix, and N = 0.

b) The Green’s function (7.22) satisfies Assumption 5.2 for the attractive centrifugal
potential V (t, x) = λ

x2 , λ < 0, and the transition matrices M = I, the identity
matrix, and N = 0.

Proof of Theorem 7.5 b). First of all note, that the Green’s function (7.22) can be writ-
ten as

G(t, x, y) =
Θ(xy)

2iν+1
√

2t
e−

(x−y)2

4it H(2)
ν

(xy
2t

)
, t > 0, x, y ∈ Ṙ, (7.23)

using the modification (A.36) of the Hankel function. It will now be shown, that G
satisfies the Assumption 5.2. First of all, the function G(t, x, · ) holomorphically extends
to C \ iR by

G(t, x, z) =
Θ(±x)

2iν+1
√

2t
e−

(x−z)2
4it H(2)

ν

(xz
2t

)
, ±Re(z) > 0.
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In particular, G(t, x, · ) is holomorphic in the interior of Dα,h in (5.10) for any α ∈ (0, π2 ),
h > 0. Moreover, the decomposition (5.7) is satisfied using a(t) = 1

4t and

G̃(t, x, z) =
Θ(±x)

2iν+1
√

2t
H(2)
ν

(xz
2t

)
, ±Re(z) > 0.

Next we verify the properties (i)–(iii) of Assumption 5.2.

(i) It is obvious, that for fixed z ∈ C \ iR we have G( · , · , z) ∈ AC1,2((0, T )× Ṙ) and
in order to see, that it is a solution of the time dependent Schrödinger equation
(5.11), it is equivalent to show that G̃ is a solution of (4.11). Hence, for every
t ∈ (0, T ), x ∈ Ṙ and z ∈ C \ iR we explicitly calculate its derivatives

∂

∂x
G̃(t, x, z) =

Θ(±x)z

4iν+1
√

2 t
3
2

H(2)′
ν

(xz
2t

)
,

∂2

∂x2
G̃(t, x, z) =

ν2 − 1
4

x2
G̃(t, x, z) +

Θ(±x)z2

4iν
√

2 t
5
2

H(2)′
ν

(xz
2t

)
, (7.24)

∂

∂t
G̃(t, x, z) = − 1

2t
G̃(t, x, z)− Θ(±x)xz

4iν+1
√

2 t
5
2

H(2)′
ν

(xz
2t

)
,

where for the second spatial derivative we used the differential equation (A.37).
This shows, that G̃(t, x, z) is a solution of

i
∂

∂t
G̃(t, x, z) =

(
− ∂2

∂x2
+
x− z
it

∂

∂x
+

1

2it
+
ν2 − 1

4

x2

)
G̃(t, x, z),

which is exactly (4.11) after using ν2 − 1
4 = λ. Moreover, the boundary values of

G in (5.12) follow from (A.45) and are given by

G(t, 0±, y) =
Θ(±y)

2iν+1
√

2t
e−

y2

4it lim
x→0±

H(2)
ν

(xy
2t

)
= 0.

(ii) From the first limit (A.45) of the Hankel function, we obtain for every x ∈ Ṙ the
initial value (5.13) by

lim
t→0+

G(t, x, x)√
a(t)

=
1

iν+1
√

2
lim
t→0+

H(2)
ν

(x2

2t

)
=

1√
iπ
.

(iii) Using (A.44a), the absolute value of G̃ can be estimated by

|G̃(t, x, z)| = Θ(±x)

2
√

2t

∣∣∣H(2)
ν

(xz
2t

)∣∣∣ ≤ Cν,α

2
√

2t
, |Arg(±z)| ≤ α, (7.25)

and hence satisfies (5.15a) with the coefficients

A0(t, x) =
Cν,α

2
√

2t
and B0(t, x) = 0. (7.26)
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These coefficients are bounded as x→ 0± and also A0√
a

and B0 are also bounded as

t → 0+, as requested in (5.16). Due to the explicit form (7.24) of the derivatives
of G̃ and the additional estimate (A.44b) of the derivative of the Hankel function,
one immediately sees, that also the exponential bounds (5.15b) and (5.15c) are
satisfied.

Hence the Green’s function (7.22) indeed satisfies Assumption 5.2.

Next we prove the repulsive case a) of Theorem 7.5. Although some parts will be similar,
especially the verification of the initial condition is different in the sense that in this case
the simple limit (5.13) is no longer satisfied and we really have to check the initial
condition (5.6).

Proof of Theorem 7.5 a). First of all, G(t, x, · ) holomorphically extends to C \ iR by

G(t, x, z) =
Θ(±x)

√
xz

2iν+1t
e−

x2+z2

4it Jν

(xz
2t

)
, ±Re(z) > 0.

In particular, G(t, x, · ) is holomorphic in the interior of the double sector Sα, for any
α ∈ (0, π2 ). Moreover, the decomposition (5.7) is satisfied using a(t) = 1

4t and

G̃(t, x, z) =
Θ(±x)

√
xz

2iν+1t
ei
xz
2t Jν

(xz
2t

)
, ±Re(z) > 0.

Next we verify the properties (i)–(iii) of Assumption 5.1.

(i) It is obvious, that for fixed z ∈ C\iR we have G( · , · , z) ∈ AC1,2((0, T )×Ṙ) and in
order to see, that it is a solution of the time dependent Schrödinger equation (5.4),
it is equivalent to show that G̃ is a solution of (4.11). Hence, for every t ∈ (0, T ),
x ∈ Ṙ and z ∈ C \ iR we explicitly calculate its derivatives

∂

∂x
G̃(t, x, z) =

( 1

2x
+
iz

2t

)
G̃(t, x, z) +

Θ(±x)
√
x z

3
2

4iν+1t2
ei
xz
2t J ′ν

(xz
2t

)
, (7.27a)

∂2

∂x2
G̃(t, x, z) =

( iz
2tx
− z2

2t2
+
ν2 − 1

4

x2

)
G̃(t, x, z) +

Θ(±x)
√
x z

5
2

4iνt3
ei
xz
2t J ′ν

(xz
2t

)
,

(7.27b)

∂

∂t
G̃(t, x, z) =

(
− 1

t
− ixz

2t2

)
G̃(t, x, z)− Θ(±x)(xz)

3
2

4iν+1t3
ei
xz
2t J ′ν

(xz
2t

)
, (7.27c)

where for the second spatial derivative we used the differential equation (A.35a).
Hence G̃(t, x, z) is a solution of

i
∂

∂t
G̃(t, x, z) =

(
− ∂2

∂x2
+
x− z
it

∂

∂x
+

1

2it
+
ν2 − 1

4

x2

)
G̃(t, x, z),

which is exactly (4.11) after using ν2 − 1
4 = λ. Moreover, the boundary values of

G in (5.5) follow from the fact, that Jν(z)
z→0−→ 0 and are given by

G(t, 0±, y) =
Θ(±y)

2iν+1t
e−

y2

4it lim
x→0±

√
xy Jν

(xy
2t

)
= 0, t > 0, y ∈ Ṙ.
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7.5. Centrifugal potential

(ii) In order to check the initial condition (5.6), we fix x ∈ Ṙ and without loss of
generality we will only consider x > 0. The calculations for x < 0 are the same.
Let now x0 > x be arbitrary, F ∈ H(C) and consider the function

Ψ0(t, x) :=

∫ x0

−x0

G(t, x, y)F (y)dy =
1

2iν+1t

∫ x0

0

√
xy e−

x2+y2

4it Jν

(xy
2t

)
F (y)dy,

as well as, motivated by (A.54), the approximated function

Ψ̃0(t, x) :=
1

iν+1
√
πt

∫ x0

0
e−

x2+y2

4it cos
(xy

2t
− (2ν + 1)π

4

)
F (y)dy.

In the inequality (A.50), we can interpolate between |z|−
1
2 and |z|−

3
2 to get an

inequality of the form∣∣∣Jν(z)−
√

2√
πz

cos
(
z − (2ν + 1)π

4

)∣∣∣ ≤ Ẽν

|z|
5
4

e| Im(z)|, Re(z) > 0.

With this one, we can now estimate the error of the approximative function by

|Ψ0(t, x)− Ψ̃0(t, x)| ≤
∫ x0

0

√
xy

2t

∣∣∣Jν(xy
2t

)
− 2

√
t

√
πxy

cos
(xy

2t
− (2ν + 1)π

4

)∣∣∣|F (y)|dy

≤ Ẽν(2t)
1
4

∫ x0

0

1

(xy)
3
4

|F (y)|dy

≤ 4Ẽν(2tx0)
1
4

x
3
4

‖F |[0,x0]‖∞.

Since the right hand side converges to zero as t→ 0+, we get

lim
t→0+

Ψ0(t, x) = lim
t→0+

Ψ̃0(t, x), (7.28)

and we reduced the problem (5.6) to the one of the initial value of Ψ̃0(t, x). Writing
the cosine as an exponential function we can split up the integral as

Ψ̃0(t, x) =
1

2iν+1
√
πt

∫ x0

0
e−

x2+y2

4it

(
ei
xy
2t
−i (2ν+1)π

4 + e−i
xy
2t

+i
(2ν+1)π

4

)
F (y)dy

=
1

2
√
iπt

∫ x0

0

(
(−1)ν+ 1

2 e−
(x+y)2

4it + e−
(x−y)2

4it

)
F (y)dy.

Using the derivative d
dz erf(z) = 2√

π
e−z

2
of the error function and applying inte-

gration by parts, one can rewrite this integral as

Ψ̃0(t, x) =
1

2

∫ x0

0

d

dy

(
(−1)ν+ 1

2 erf
(x+ y

2
√
it

)
− erf

(x− y
2
√
it

))
F (y)dy

=
(−1)ν+1

2

(
erf
(x+ x0

2
√
it

)
F (x0)− erf

( x

2
√
it

)
F (0)−

∫ x0

0
erf
(x+ y

2
√
it

)
F ′(y)dy

)
− 1

2

(
erf
(x− x0

2
√
it

)
F (x0)− erf

( x

2
√
it

)
F (0)−

∫ x0

0
erf
(x− y

2
√
it

)
F ′(y)dy

)
.
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Applying now the limit t→ 0+ and carrying it inside the integral is allowed since
the integrand is uniformly bounded. Using also 0 < x < x0 as well as the limit
limξ→±∞ erf( ξ√

i
) = ±1 of the error function gives the initial value

lim
t→0+

Ψ̃0(t, x) =
(−1)ν+1

2

(
ϕ(x0)− ϕ(0)−

∫ x0

0
ϕ′(y)dy

)
− 1

2

(
− ϕ(x0)− ϕ(0)−

∫ x0

0
sgn(x− y)ϕ′(y)dy

)
= ϕ(x).

Together with (7.28) this proves the initial value (5.6).

(iii) Using (A.49), the absolute value of G̃ can be estimated by

|G̃(t, x, z)| ≤
Θ(±x)

√
|xz|

2t
e−

x Im(z)
2t

∣∣∣Jν(xz
2t

)∣∣∣
≤ CνΘ(±x)√

2t
e−

x Im(z)
2t e|

x Im(z)
2t
| ≤ Cν√

2t
, ±z ∈ S+

α ,

where we used that |x Im(z)| = x Im(z) since ±z ∈ S+
α and ±x > 0. Hence G̃

satisfies the bound (5.8a) with the coefficients

A0(t, x) =
Cν

2
√

2t
and B0(t, x) = 0. (7.29)

These coefficients are bound as x → 0± and also A0√
a

and B0 are bounded as

t→ 0+, as requested in (5.9). Due to the explicit form (7.27) of the derivatives of
G̃ and the additional estimate (A.49) of the derivative of the Bessel function, one
immediately sees, that also the exponential bounds (5.8b) and (5.8c) are satisfied.

Hence we also proved (i), namely that the Green’s function (7.21) of the repulsive cen-
trifugal potential satisfies Assumption 5.1.

7.6. Arbitrary point interactions

In this section we consider the classical potential V (t, x) = 0 on (0,∞) × Ṙ, and allow
all possible self-adjoint singular interactions at the origin. In particular the Dirac δ- and
δ′-potential or boundary conditions of Dirichlet-, Neumann- or Robin-type are included.
In a mathematical rigorous way, those distributional potentials manifest themselves as
interface conditions at the point of interaction x = 0.

There are various ways to describe the complete family of self-adjoint interface condi-
tions, see for example [54, 59, 62, 77, 105, 106], but for our purposes it is convenient to
use the one from [37, Chapter 2.2], namely

(I − J)

(
Ψ(t, 0+)
Ψ(t, 0−)

)
= i(I + J)

(
∂
∂xΨ(t, 0+)

− ∂
∂xΨ(t, 0−)

)
(7.30)

where I is the 2 × 2 identity matrix and J is some arbitrary 2 × 2 unitary matrix, see
(7.32). The class of interface conditions (7.30) coincides with the class of self-adjoint
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interface conditions at x = 0. In other words, each unitary matrix J ∈ C2×2 leads to
a self-adjoint realization of the Laplacian in L2(R) with a generalized point interaction
supported at x = 0, and conversely, for each self-adjoint Laplacian with a generalized
point interaction there exists a unitary matrix J ∈ C2×2 such that the interface condition
(7.30) is satisfied.

For an arbitrary point interaction (7.30), we can now use this function Λ from (A.16) to
write the Green’s function as the linear combination

G(t, x, y) :=µ
(x,y)
+ Λ

( |x|+ |y|
2
√
it

+ ω+

√
it
)
e−

(|x|+|y|)2
4it

+ µ
(x,y)
− Λ

( |x|+ |y|
2
√
it

+ ω−
√
it
)
e−

(|x|+|y|)2
4it (7.31)

+
µ

(x,y)
0

2
√
iπt

e−
(|x|+|y|)2

4it +
1

2
√
iπt

e−
(x−y)2

4it , t > 0, x, y ∈ Ṙ.

The value of the coefficients µ
(x,y)
± , µ

(x,y)
0 and ω± will be specified in terms of the unitary

matrix J in the following. First, we note that any 2×2-unitary matrix can be represented
as

J = eiφ
(
α −β
β α

)
, (7.32)

with parameters φ ∈ [0, π) and α, β ∈ C satisfying |α|2 + |β|2 = 1. Moreover, it is
convenient to use

η(x,y) :=
1√

1− Re(α)2


− Im(α), if x, y > 0,

−iβ, if x > 0, y < 0,
iβ, if x < 0, y > 0,
Im(α), if x, y < 0,

if |Re(α)| 6= 1, (7.33a)

η(x,y) := 0, if |Re(α)| = 1. (7.33b)

In order to define now the coefficients of the Green’s function (7.31) we distinguish three
different cases.

Case I: If Re(α) 6= − cos(φ), then

ω± =
− sin(φ)±

√
1− Re(α)2

cos(φ) + Re(α)
, µ

(x,y)
± =

ω±
2

(
Θ(xy) + η(x,y)

)
, µ

(x,y)
0 = sgn(xy).

Case II: If Re(α) = − cos(φ) 6= −1, then ω− = µ
(x,y)
− = 0 and

ω+ = cot(φ), µ
(x,y)
+ = −ω+

2

(
Θ(xy) + η(x,y)

)
, µ

(x,y)
0 = η(x,y) −Θ(−xy).

Case III: If Re(α) = − cos(φ) = −1, then ω± = µ
(x,y)
± = 0 and µ

(x,y)
0 = −1.

These three cases correspondent to the rank of the matrix I + J on the right hand side
of the interface condition (7.30). More precisely, in Case I we have rank(I + J) = 2, in
Case II we have rank(I + J) = 1 and in Case III we have rank(I + J) = 0.
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Theorem 7.6. The Green’s function (7.31) satisfies Assumption 5.1 with the vanishing
potential V (t, x) = 0 and the transition matrices M = I + J and N = i(I + J).

Before we do the actual proof of Theorem 7.6, we first verify the transmission condition
(5.12) separately.

Lemma 7.7. With the coefficients µ
(x,y)
0 , µ

(x,y)
± and ω± specified as above, the Green’s

function G from (7.31) satisfies the transmission condition

(I − J)

(
G(t, 0+, y)
G(t, 0−, y)

)
= i(I + J)

(
∂
∂xG(t, 0+, y)

− ∂
∂xG(t, 0−, y)

)
, t > 0, y ∈ Ṙ. (7.34)

Proof. Using the derivative (A.17) of the function Λ, the spatial derivative of the function
G is given by

∂

∂x
G(t, x, y) = µ

(x,y)
+ sgn(x)

(
ω+Λ

( |x|+ |y|
2
√
it

+ ω+

√
it
)
− 1√

iπt

)
e−

(|x|+|y|)2
4it

+ µ
(x,y)
− sgn(x)

(
ω−Λ

( |x|+ |y|
2
√
it

+ ω−
√
it
)
− 1√

iπt

)
e−

(|x|+|y|)2
4it

− 1

4it
√
iπt

(
µ

(x,y)
0 sgn(x)

(
|x|+ |y|

)
e−

(|x|+|y|)2
4it + (x− y)e−

(x−y)2

4it

)
.

For the interface condition (7.34) we have to evaluate G and ∂
∂xG at x = 0±. This will

be done in a vector form, where the first entry is the limit x = 0+ and the second entry
the limit x = 0−. We have(

G(t, 0+, y)
G(t, 0−, y)

)
=

((
µ

(+,y)
+

µ
(−,y)
+

)
Λ

(
|y|

2
√
it

+ ω+

√
it

)
+

(
µ

(+,y)
−
µ

(−,y)
−

)
Λ
( |y|

2
√
it

+ ω−
√
it
)

+
1

2
√
iπt

(
µ

(+,y)
0 + 1

µ
(−,y)
0 + 1

))
e−

y2

4it ,(
∂
∂xG(t, 0+, y)

− ∂
∂xG(t, 0−, y)

)
=

((
µ

(+,y)
+

µ
(−,y)
+

)
ω+Λ

( |y|
2
√
it

+ ω+

√
it
)

+

(
µ

(+,y)
−
µ

(−,y)
−

)
ω−Λ

( |y|
2
√
it

+ ω−
√
it
)

− 1√
iπt

(
µ

(+,y)
+ + µ

(+,y)
−

µ
(−,y)
+ + µ

(−,y)
−

)
− |y|

4it
√
iπt

(
µ

(+,y)
0 − sgn(y)

µ
(−,y)
0 + sgn(y)

))
e−

y2

4it ,

and since (7.34) has to be satisfied for all y ∈ Ṙ, it suffices to compare and match the
coefficients corresponding to the terms

Λ

(
|y|

2
√
it

+ ω±
√
it

)
,

1

2
√
iπt

, and
|y|

4it
√
iπt

.
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This leads to the following four equations

(A±) : (I − J)

(
µ

(+,y)
±
µ

(−,y)
±

)
= iω±(I + J)

(
µ

(+,y)
±
µ

(−,y)
±

)
,

(B) : (I − J)

(
µ

(+,y)
0 + 1

µ
(−,y)
0 + 1

)
= −2i(I + J)

(
µ

(+,y)
+ + µ

(+,y)
−

µ
(−,y)
+ + µ

(−,y)
−

)
,

(C) :

(
0
0

)
= (I + J)

(
µ

(+,y)
0 − sgn(y)

µ
(−,y)
0 + sgn(y)

)
.

Since the variable y only appears as sgn(y) each equation splits up in one for y > 0 and
one for y < 0. We will consider this by writing (A±), (B), and (C) as matrix equations,
where the first column is for y > 0 and the second column for y < 0. For a shorter
notation we will use the matrices

1 :=

(
1 1
1 1

)
, N :=

(
η(+,+) η(+,−)

η(−,+) η(−,−)

)
, Mj :=

(
µ

(+,+)
j µ

(+,−)
j

µ
(−,+)
j µ

(−,−)
j

)
, (7.35)

where j ∈ {0,±}. Note that the matrix N satisfies the identity√
1− Re(α)2N =

(
− Im(α) −iβ̄
iβ Im(α)

)
(7.36)

by (7.33a) for |Re(α)| 6= 1 and also for |Re(α)| = 1, since then Im(α) = β = 0 due to
|α|2 + |β|2 = 1. From (7.36) and |α|2 + |β|2 = 1 it immediately follows that

N2 =
1

1− Re(α)2

(
− Im(α) −iβ̄
iβ Im(α)

)2

=
Im(α)2 + |β|2

1− Re(α)2
I = I, if |Re(α)| 6= 1,

and, consequently,

(N + I)(N − I) = N2 −N +N − I = N2 − I = 0, if |Re(α)| 6= 1, (7.37)

to which we will refer throughout the proof. With the help of the matrices (7.35) we
now rewrite the equations (A±), (B), and (C) above in the matrix form

(A±) : (I − J)M± = iω±(I + J)M±,

(B) : (I − J)(M0 + 1) = −2i(I + J)(M+ +M−),

(C) : 0 = (I + J)(M0 + 1− 2I).

Plugging in the matrix J from (7.32) and multiplying by e−iφ these equations turn into

(A±) :

(
e−iφ − α β̄
−β e−iφ − ᾱ

)
M± = iω±

(
e−iφ + α −β̄

β e−iφ + ᾱ

)
M±, (7.38a)

(B) :

(
e−iφ − α β̄
−β e−iφ − ᾱ

)
(M0 + 1) = −2i

(
e−iφ + α −β̄

β e−iφ + ᾱ

)
(M+ +M−),

(7.38b)

(C) : 0 =

(
e−iφ + α −β̄

β e−iφ + ᾱ

)
(M0 + 1− 2I). (7.38c)
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In the following we will discuss the three cases above Lemma 7.7 separately and verify
that in each case with the proper choice of the coefficients ω± and µ±, µ0 the equations
(A±), (B) and (C) are satisfied; that is, the jump condition (7.34) holds.

Case I. Observe first that the equation (7.38c) is satisfied since µ
(x,y)
0 = sgn(xy) in this

case, and hence we conclude M0 = 2I − 1. Next we use |α|2 + |β|2 = 1 to compute

det

(
e−iφ + α −β̄

β e−iφ + ᾱ

)
= 2e−iφ

(
cos(φ) + Re(α)

)
6= 0,

where we also used the assumption Re(α) 6= − cos(φ) in Case I. It follows that the matrix
on the right hand side of (A±) and (B) is invertible with the inverse(

e−iφ + α −β̄
β e−iφ + ᾱ

)−1

=
eiφ

2(cos(φ) + Re(α))

(
e−iφ + ᾱ β̄
−β e−iφ + α

)
,

and this leads to(
e−iφ + α −β̄

β e−iφ + ᾱ

)−1(
e−iφ − α β̄
−β e−iφ − ᾱ

)
=

−i
cos(φ) + Re(α)

(
sin(φ) + Im(α) iβ̄

−iβ sin(φ)− Im(α)

)
=

−i
cos(φ) + Re(α)

(
sin(φ) I −

√
1− Re(α)2N

)
,

where in the last line we used the identity (7.36). Hence the equations (7.38a) and
(7.38b) turn into

(A±) :
sin(φ) I −

√
1− Re(α)2N

cos(φ) + Re(α)
M± = −ω±M±,

(B) :
sin(φ) I −

√
1− Re(α)2N

cos(φ) + Re(α)
(M0 + 1) = 2(M+ +M−).

Using the explicit form ω± =
− sin(φ)±

√
1−Re(α)2

cos(φ)+Re(α) in (A±) and M0 = 2I − 1 in (B) these
equations reduce to

(A±) :
√

1− Re(α)2(N ∓ I)M± = 0,

(B) :
sin(φ) I −

√
1− Re(α)2N

cos(φ) + Re(α)
= M+ +M−.

Since we treat Case I we have µ
(x,y)
± = −ω±

2

(
Θ(xy)± η(x,y)

)
and from that we conclude

M± = −ω±
2

(I ±N). (7.39)

In particular, this yields

M+ +M− = −(ω+ + ω−)I + (ω+ − ω−)N

2
=

sin(φ)I −
√

1− Re(α)2N

cos(φ) + Re(α)
,
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which shows that equation (B) is valid. It remains to check (A±). These equations are
obviously valid if |Re(α)| = 1 and if |Re(α)| 6= 1 they follow from the identities (7.37)
and (7.39).

Case II. Here we assume Re(α) = − cos(φ) 6= −1, which implies, in particular, φ 6= 0
and consequently sin(φ) 6= 0. The matrices in the equations (A±), (B), and (C) in (7.38)
now have the form(

e−iφ − α β̄
−β e−iφ − ᾱ

)
=
(
2 cos(φ)− i sin(φ)

)
I + i

(
− Im(α) −iβ̄
iβ Im(α)

)
= −i sin(φ)

(
(2i cot(φ) + 1)I −N

)
,(

e−iφ + α −β̄
β e−iφ + ᾱ

)
= −i sin(φ)I − i

(
− Im(α) −iβ̄
iβ Im(α)

)
= −i sin(φ)(I +N),

where in both cases we used (7.36) and
√

1− Re(α)2 = sin(φ), which is due to the
assumption Re(α) = − cos(φ) in Case II. Using this in (7.38) leads to

(A±) :
(
(2i cot(φ) + 1)I −N

)
M± = iω±(I +N)M±,

(B) :
(
(2i cot(φ) + 1)I −N

)
(M0 + 1) = −2i(I +N)(M+ +M−),

(C) : 0 = (I +N)(M0 + 1− 2I).

Since in Case II we have µ
(x,y)
− = 0, that is, M− = 0, the equation (A−) is trivially

satisfied. Furthermore, with our choice ω+ = cot(φ) the equation (A+) reduces to

(A+) : (i cot(φ) + 1)(I −N)M+ = 0.

By our choice of µ
(x,y)
+ we have M+ = −ω+

2 (I + N) as in the previous case (cf. (7.39))
and hence we conclude together with (7.37) that equation (A+) is valid; note that we
can apply (7.37) since Re(α) 6= −1 by the assumption in Case II and also because of
Re(α) = − cos(φ) 6= 1 as φ ∈ [0, π). Next, we observe that also equation (C) holds by

(7.37) and µ
(x,y)
0 = η(x,y)−Θ(−xy), which gives M0 = N −1+ I. In order to check (B),

we plug in the above values for M0 and M± and obtain

(B) :
(
1 + i cot(φ)

)
(I −N)(N + I) = 0,

which holds by (7.37).

Case III. Here we assume Re(α) = − cos(φ) = −1 and hence Im(α) = β = φ = 0
follows from the condition |α|2 + |β|2 = 1. Therefore, the equations (A±), (B), and (C)
in (7.38) have the particularly simple form

(A±) : 2M± = 0,

(B) : M0 + 1 = 0,

(C) : 0 = 0,

and are all obviously satisfied by the definition of the coefficients in Case III.
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Once we verified the transmission condition of the Green’s function, we are ready to
prove Theorem 7.6.

Proof. First of all, we split up the Green’s function (7.31) into the four parts

G(t, x, y) = µ
(x,y)
+ G1(t, x, y;ω+) + µ

(x,y)
− G1(t, x, y;ω−) + µ

(x,y)
0 G0(t, x, y) +Gfree(t, x, y),

(7.40)
where

G0(t, x, y) :=
1

2
√
iπt

e−
(|x|+|y|)2

4it ,

G1(t, x, y;ω) := Λ
( |x|+ |y|

2
√
it

+ ω
√
it
)
e−

(|x|+|y|)2
4it ,

Gfree(t, x, y) :=
1

2
√
iπt

e−
(x−y)2

4it .

These functions then extend holomorphically to C \ iR by

G0(t, x, z) :=
1

2
√
iπt

e−
(|x|±z)2

4it , ± Re(z) > 0,

G1(t, x, z;ω) := Λ
( |x| ± z

2
√
it

+ ω
√
it
)
e−

(|x|±z)2
4it , ± Re(z) > 0,

Gfree(t, x, z) :=
1

2
√
iπt

e−
(x−z)2

4it , Re(z) 6= 0.

Moreover, the reduced Green’s functions, according to a(t) = 1
4t in the decomposition

(5.7), are given by

G̃0(t, x, z) =
1

2
√
iπt

e
iΘ(±x)xz

t , ± Re(z) > 0, (7.41a)

G̃1(t, x, z;ω) := Λ
( |x| ± z

2
√
it

+ ω
√
it
)
e
iΘ(±x)xz

t , ± Re(z) > 0, (7.41b)

G̃free(t, x, z) :=
1

2
√
iπt

, Re(z) 6= 0. (7.41c)

We will now verify the properties (i)–(iii) of Assumption 5.1.

(i) In order to see, thatG is a solution of the Schrödinger equation (5.4), it is equivalent
to verify that G̃ is a solution of (4.11). We will verify this for the functions G̃0,
G̃1 and G̃free separately by explicitly calculating its derivatives. For G̃0 they are
given by

∂

∂x
G̃0(t, x, z) =

iΘ(±x)z

t
G̃0(t, x, z), (7.42a)

∂2

∂x2
G̃0(t, x, z) = −Θ(±x)z2

t2
G̃0(t, x, z), (7.42b)

∂

∂t
G̃0(t, x, z) =

(Θ(±x)xz

it2
− 1

2t

)
G̃0(t, x, z). (7.42c)
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For G̃1, we use the derivative (A.17) of the function Λ and get

∂

∂x
G̃1(t, x, z;ω) = sgn(x)

( |x| ± z
2it

+ ω
)
G̃1(t, x, z;ω)− sgn(x)√

iπt
, (7.43a)

∂2

∂x2
G̃1(t, x, z;ω) =

(( |x| ± z
2it

+ ω
)2

+
1

2it

)
G̃1(t, x, z;ω)− 1√

iπt

( |x| ± z
2it

+ ω
)
,

(7.43b)

∂

∂t
G̃1(t, x, z;ω) = i

((|x| ± z)2

4t2
+ ω2

)
G̃1(t, x, z;ω) +

i√
iπt

( |x| ± z
2it

− ω
)
.

(7.43c)

Since the derivatives of G̃free were already calculated in (7.2), we conclude that all
three functions G̃0, G̃1 and G̃free satisfy

i
∂

∂t
G̃j(t, x, z) =

(
− ∂2

∂x2
+
x− z
it

∂

∂x
+

1

2it

)
G̃j(t, x, z), j ∈ {0, 1, free},

which is exactly (4.11) for a(t) = 1
4t and V (t, x) = 0. Hence G0, G1 and Gfree

satisfy (5.4) and since the coefficients µ
(x,y)
0 and µ

(x,y)
1 are constant in x on each

half line x > 0 and x < 0, the whole Green’s function G is a solution of (5.4) as
well.

The fact, thatG satisfies the transmission condition (5.5) was proven in Lemma 7.7.

(ii) The initial condition (5.6) will again be proven for the three functions G0, G1 and
Gfree separately. Fix x ∈ Ṙ and choose x0 > |x| arbitrary and F ∈ H(C). For
Gfree, we can use the derivative d

dξ erf(ξ) = 2√
π
e−ξ

2
and apply integration by parts

to write the integral as∫ x0

−x0

Gfree(t, x, y)F (y)dy =
−1

2

∫ x0

−x0

d

dy
erf
(x− y

2
√
it

)
F (y)dy

=
1

2
erf
(x+ x0

2
√
it

)
F (−x0)− 1

2
erf
(x− x0

2
√
it

)
F (x0) +

1

2

∫ x0

−x0

erf
(x− y

2
√
it

)
F ′(y)dy.

Applying the limit t→ 0+ and using the limit lims→±∞ erf( s√
i
) = ±1, we get the

initial value

lim
t→0+

∫ x0

−x0

Gfree(t, x, y)F (y)dy =
F (−x0) + F (x0)

2
+

∫ x0

−x0

sgn(x− y)

2
F ′(y)dy = F (x).

(7.44)
For the initial value of G0 we similarly write∫ x0

−x0

G0(t, x, y)F (y)dy =
1

2

∫ x0

−x0

d

dy
erf
( |x|+ |y|

2
√
it

)
sgn(y)F (y)dy

=
1

2
erf
( |x|+ |x0|

2
√
it

)
F (x0)− erf

( |x|
2
√
it

)
F (0) +

1

2
erf
( |x|+ |x0|

2
√
it

)
F (−x0)

− 1

2

∫ x0

−x0

erf
( |x|+ |y|

2
√
it

)
sgn(y)F ′(y)dy.

97



7. Examples of Green’s functions

In the limit t→ 0+ this equations now becomes

lim
t→0+

∫ x0

−x0

G0(t, x, y)F (y)dy =
F (x0)

2
−F (0) +

F (−x0)

2
−
∫ x0

−x0

sgn(y)

2
F ′(y)dy = 0.

(7.45)
Also for the function G1 we get∫ x0

−x0

G1(t, x, y;ω)F (y)dy

=
1

2

∫ x0

−x0

d

dy
erf
( |x|+ |y|

2
√
it

)
sgn(y)Λ

( |x|+ |y|
2
√
it

+ ω
√
it
)
F (y)dy

=
1

2
erf
( |x|+ |x0|

2
√
it

)
Λ
( |x|+ |x0|

2
√
it

+ ω
√
it
)
F (−x0)

+
1

2
erf
( |x|+ |x0|

2
√
it

)
Λ
( |x|+ |x0|

2
√
it

+ ω
√
it
)
F (x0)

− erf
( |x|

2
√
it

)
Λ
( |x|

2
√
it

+ ω
√
it
)
F (0)

− 1

4
√
it

∫ x0

−x0

erf
( |x|+ |y|

2
√
it

)
Λ′
( |x|+ |y|

2
√
it

+ ω
√
it
)
F (y)dy

− 1

2

∫ x0

−x0

sgn(y) erf
( |x|+ |y|

2
√
it

)
Λ
( |x|+ |y|

2
√
it

+ ω
√
it
)
F ′(y)dy.

Due to the asymptotics (A.22) and the derivative (A.17) we get the following
asymptotics of the derivative of the function Λ

Λ′(z) = 2zΛ(z)− 2√
π

= 2z
( 1√

πz
+O

( 1

|z|2
))
− 2√

π
= O

( 1

|z|

)
,

as z → ∞, Re(z) ≥ 0. Hence all terms in the above representation vanish in the
limit t→ 0+, which leads to the initial value

lim
t→0+

∫ x0

−x0

G1(t, x, y;ω)F (y)dy = 0. (7.46)

Using now the three limits (7.44), (7.45) and (7.46) in the decomposition (7.40)
gives the initial value (5.6).

(iii) In order to derive the estimate (5.8a) of the functions (7.41), we use the mono-
tonicity and the estimate (A.21) of the function Λ to get for every ±z ∈ S+

α ,

|G̃0(t, x, z)| = 1

2
√
πt
e−

Θ(±x)x Im(z)
t ≤ 1

2
√
πt
,

|G̃1(t, x, z;ω)| ≤ Λ
( |x| ± Re(z)± Im(z)

2
√

2t
+
ω
√
t√

2

)
e−

Θ(±x)x Im(z)
t ≤ Λ

(ω√t√
2

)
,

|G̃free(t, x, z)| =
1

2
√
πt
.
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Note, that for G̃0 and G̃1 we used that ±Re(z)± Im(z) ≥ 0, but also the fact that
Θ(x)x Im(z) ≥ 0 for all z ∈ S+

α and also Θ(−x)x Im(z) ≥ 0 for all −z ∈ S+
α . Hence

the estimate (5.8a) is satisfied with

A0,0(t, x) =
1

2
√
πt

and B0,0(t, x) = 0,

A0,1(t, x) = Λ
(ω√t√

2

)
and B0,1(t, x) = 0,

A0,free(t, x) =
1

2
√
πt

and B0,free(t, x) = 0.

These coefficients are bounded as x → 0± and also the boundedness (5.9) in the
limit t → 0+ is satisfied. Moreover, the estimates of the first spatial derivatives
(7.42a), (7.43a) and (7.2) are∣∣∣ ∂

∂x
G̃0(t, x, z)

∣∣∣ ≤ |z|
t
A0,0(t, x),∣∣∣ ∂

∂x
G̃1(t, x, z;ω)

∣∣∣ ≤ ( |x|+ |z|
2t

+ |ω|
)
A0,1(t, x) +

1√
πt
,∣∣∣ ∂

∂x
G̃free(t, x, z)

∣∣∣ = 0.

If we additionally use that |z| ≤ e|z|−1, the estimates (5.8b) are satisfied with the
coefficients

A1,0(t, x) =
A0,0(t, x)

et
and B1,0(t, x) = 1,

A1,1(t, x) =
( |x|+ 1

e

2t
+ |w|

)
A0,1(t, x) +

1√
πt

and B1,1(t, x) = 1,

A1,free(t, x) = 0 and B1,free(t, x) = 0.

These coefficients are obviously bounded as x → 0±. Finally, also the second
spatial and the time derivatives of G̃0, G̃1 and G̃free in (7.42), (7.43) and (7.2) are
exponentially bounded as claimed in (5.8c).

Hence the Green’s function indeed satisfies Assumption 5.1 and Theorem 7.6 is proven.

Next we want to have a closer look at certain special point interactions and derive the
explicit form of the corresponding Green’s function in those cases. As an almost trivial
case we start with the free particle in Section 7.6.1, discuss the well-known δ and δ′-
interactions afterwards in Section 7.6.2 and Section 7.6.3, and in the Sections 7.6.4–7.6.6
we treat decoupled systems with Dirichlet, Neumann, and Robin boundary conditions
at the origin, and also show in Section 7.6.7 that these are the only decoupled systems.
In each of the examples we first provide the corresponding matrix J for the interface
condition (7.30) with parameters φ, α, β of the matrix J in (7.32). Then we determine
which of the Cases I–III above Lemma 7.7 appears, and finally we compute the coeffi-
cients in the Green’s function (7.31). The special Green’s functions in this section are
well known from the mathematical and physical literature.
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7. Examples of Green’s functions

7.6.1. Free particle

We start with the easiest case, the free particle, where there is no interaction at x =
0 happening. This means that both the wave function as well as its derivative are
continuous, i.e.

Ψ(t, 0−) = Ψ(t, 0+) and
∂

∂x
Ψ(t, 0−) =

∂

∂x
Ψ(t, 0+), t > 0.

These continuity conditions are described in (7.30) with the unitary matrix

J =

(
0 1
1 0

)
.

This matrix is of the form (7.32) with α = 0, β = −i and φ = π
2 . In this situation the

coefficient η(x,y) in (7.33a) is

η(x,y) =


0, if x, y > 0,
1, if x > 0, y < 0,
1, if x < 0, y > 0,
0, if x, y < 0,

= Θ(−xy).

Since we are in Case II the coefficients of the corresponding Green function in (7.31)
have the explicit form

ω− = 0, µ
(x,y)
− = 0,

ω+ = cot
(π

2

)
= 0, µ

(x,y)
+ = −ω+

2

(
Θ(xy) + η(x,y)

)
= 0,

µ
(x,y)
0 = η(x,y) −Θ(−xy) = 0.

Therefore, the Green’s function of the free particle is given by

G(t, x, y) =
1

2
√
iπt

e−
(x−y)2

4it ,

which clearly coincided with the Green’s function (7.1) of the free particle on the whole
real line.

7.6.2. δ-potential

In the next example we treat the classical δ-point interaction located at the origin. Such
singular potentials were studied intensively in the mathematical and physical literature;
we refer the interested reader to the standard monograph [31] for a detailed treatment
and further references. The particular Green’s function that appears below can also be
found (sometimes in a slightly different form) in the papers [58, 86, 98].

We consider the standard δ-interaction of strength 2c ∈ R \ {0} located at the point
x = 0. This situation is described by the formal Schrödinger equation

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2
+ 2cδ(x)

)
Ψ(t, x), t > 0, x ∈ R,
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7.6. Arbitrary point interactions

and is made mathematically rigorous in the form

i
∂

∂t
Ψ(t, x) = − ∂2

∂x2
Ψ(t, x), t > 0, x ∈ Ṙ, (7.47a)

Ψ(t, 0+) = Ψ(t, 0−), t > 0, (7.47b)

∂

∂x
Ψ(t, 0+)− ∂

∂x
Ψ(t, 0−) = 2cΨ(t, 0±), t > 0. (7.47c)

The jump condition (7.47b)–(7.47c) is realized in (7.30) by using the matrix

J =
1

i− c

(
c i
i c

)
.

In fact, with this choice of J and multiplication by (c− i) the condition (7.30) reads as(
2c− i i
i 2c− i

)(
Ψ(t, 0+)
Ψ(t, 0−)

)
=

(
1 1
1 1

)(
∂
∂xΨ(t, 0+)

− ∂
∂xΨ(t, 0−)

)
,

or, more explicitly, we have the two equations

(2c− i)Ψ(t, 0+) + iΨ(t, 0−) =
∂

∂x
Ψ(t, 0+)− ∂

∂x
Ψ(t, 0−),

iΨ(t, 0+) + (2c− i)Ψ(t, 0−) =
∂

∂x
Ψ(t, 0+)− ∂

∂x
Ψ(t, 0−).

By subtracting these equations from each other we first conclude (7.47b) and adding the
equations leads to (7.47c). In order to write the matrix J in the form (7.32), we choose
φ ∈ (0, π) such that cot(φ) = c. Next we set α = − cos(φ) and β = −i sin(φ). It follows
in particular, that

cos(φ) =
c√

1 + c2
and sin(φ) =

1√
1 + c2

,

and therefore

eiφ
(
α −β̄
β ᾱ

)
=

1

i− c

(
c i
i c

)
= J.

Plugging these values in (7.33a) gives

η(x,y) =


0, if x, y > 0,
1, if x > 0, y < 0,
1, if x < 0, y > 0,
0, if x, y < 0,

= Θ(−xy),

and since we are in Case II, the coefficients of the Green’s function are

ω− = 0, µ
(x,y)
− = 0,

ω+ = cot(φ) = c, µ
(x,y)
+ = − c

2

(
Θ(xy) + Θ(−xy)

)
= − c

2
,

µ
(x,y)
0 = Θ(−xy)−Θ(−xy) = 0.

With these quantities we conclude that the Green’s function (7.31) of the δ-potential is
given by

G(t, x, y) = − c
2

Λ
( |x|+ |y|

2
√
it

+ c
√
it
)
e−

(|x|+|y|)2
4it +

1

2
√
iπt

e−
(x−y)2

4it .
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7. Examples of Green’s functions

7.6.3. δ′-potential

Now consider the δ′-interaction of strength 2
c ∈ R\{0} located at the point x = 0, which

is another popular singular potential that appears in various situations. The formal
Schrödinger equation

i
∂

∂t
Ψ(t, x) =

(
− ∂2

∂x2
+

2

c
δ′(x)

)
Ψ(t, x), t > 0, x ∈ R,

which in a mathematically rigorous form reads as

i
∂

∂t
Ψ(t, x) = − ∂2

∂x2
Ψ(t, x), t > 0, x ∈ Ṙ,

∂

∂x
Ψ(t, 0+) =

∂

∂x
Ψ(t, 0−), t > 0,

Ψ(t, 0+)−Ψ(t, 0−) =
2

c

∂

∂x
Ψ(t, 0), t > 0.

One verifies in a similar way as for the δ-potential that the jump conditions are realized
in (7.30) by the matrix

J =
1

i− c

(
i −c
−c i

)
.

This matrix is of the form (7.32) if we choose φ ∈ (0, π) \ {π2 } such that tan(φ) = −c
and set α = cos(φ) and β = −i sin(φ). The coefficient η(x,y) in (7.33a) then becomes

η(x,y) =


0, if x, y > 0,
1, if x > 0, y < 0,
1, if x < 0, y > 0,
0, if x, y < 0,

= Θ(−xy),

and since we are in Case I the coefficients of the Green’s function are

ω− = − tan(φ) = c, µ
(x,y)
− = − c

2

(
Θ(xy)−Θ(−xy)

)
= −c sgn(xy)

2
,

ω+ = 0, µ
(x,y)
+ = 0,

µ
(x,y)
0 = sgn(xy).

It follows that the Green’s function (7.31) of the δ′-potential is given by

G(t, x, y) =− c sgn(xy)

2
Λ
( |x|+ |y|

2
√
it

+ c
√
it
)
e−

(|x|+|y|)2
4it

+
1

2
√
iπt

(
sgn(xy)e−

(|x|+|y|)2
4it + e−

(x−y)2

4it

)
.

7.6.4. Dirichlet boundary conditions

Now we turn to generalized point interactions that lead to decoupled systems. In the
following examples we discuss Dirichlet, Neumann, and Robin boundary conditions at
the origin. For a characterization of all decoupled systems see also Section 7.6.7.
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7.6. Arbitrary point interactions

We consider the free Schrödinger equation on the two half lines Ṙ with Dirichlet boundary
conditions

i
∂

∂t
Ψ(t, x) = − ∂2

∂x2
Ψ(t, x), t > 0, x ∈ Ṙ,

Ψ(t, 0+) = Ψ(t, 0−) = 0, t > 0.

These boundary conditions are realized in (7.30) using the matrix

J =

(
−1 0
0 −1

)
, (7.48)

that is, with the coefficients φ = 0, α = −1 and β = 0 in (7.32). Hence, Case III applies
and the coefficients of the Green’s function are given by

ω± = 0, µ
(x,y)
± = 0, and µ

(x,y)
0 = −1.

This leads to the Green’s function

G(t, x, y) =
1

2
√
iπt

(
e−

(x−y)2

4it − e−
(|x|+|y|)2

4it

)
. (7.49)

7.6.5. Neumann boundary conditions

We consider the free Schrödinger equation on the two half lines Ṙ with Neumann bound-
ary conditions

i
∂

∂t
Ψ(t, x) = − ∂2

∂x2
Ψ(t, x), t > 0, x ∈ Ṙ,

∂

∂x
Ψ(t, 0+) =

∂

∂x
Ψ(t, 0−) = 0, t > 0.

These boundary conditions are realized in (7.30) using the matrix

J =

(
1 0
0 1

)
, (7.50)

that is, with the coefficients φ = 0, α = 1 and β = 0 in (7.32). Hence, Case I applies
and the coefficients of the Green’s function are given by

ω± = 0, µ
(x,y)
± = 0, and µ

(x,y)
0 = sgn(xy).

This leads to the Green’s function

G(t, x, y) =
1

2
√
iπt

(
e−

(x−y)2

4it + sgn(xy)e−
(|x|+|y|)2

4it

)
. (7.51)
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7.6.6. Robin boundary conditions

In the next example we consider the free Schrödinger equation on the two half lines Ṙ
and Robin boundary conditions at the origin x = 0, i.e.

i
∂

∂t
Ψ(t, x) = − ∂2

∂x2
Ψ(t, x), t > 0, x ∈ R \ {0},

∂

∂x
Ψ(t, 0+) = aΨ(t, 0+), t > 0,

∂

∂x
Ψ(t, 0−) = bΨ(t, 0−), t > 0,

for some a, b ∈ R.

If one notes, that the minus sign for the derivative at x = 0− on the right hand side is
omitted here, these boundary conditions are realized by (7.30) with the matrix

J =

( i+a
i−a 0

0 i−b
i+b

)
. (7.52)

This matrix is of the form (7.32) with the coefficients

α = sgn(b− a)
(1− ia)(1− ib)√

1 + a2
√

1 + b2
, and β = 0,

and φ ∈ [0, π) chosen such that

eiφ = sgn(b− a)
(1− ia)(1 + ib)√

1 + a2
√

1 + b2
,

where we use the convention sgn(0) = 1. One immediately sees that we are always in
Case I and the coefficients reduce to

η(x,y) =

{
sgn(b− a) sgn(a+ b) sgn(x)Θ(xy), if (a, b) 6= (0, 0),
0, if (a, b) = (0, 0),

ω± =
(a− b)± sgn(b− a) sgn(b+ a)(a+ b)

2

=

{
a, if ± sgn(b− a) sgn(b+ a) > 0,
−b, if ± sgn(b− a) sgn(b+ a) < 0,

µ
(x,y)
± =

{
a
2

(
1± sgn(x)

)
Θ(xy), if ± sgn(b− a) sgn(b+ a) > 0,

b
2

(
1∓ sgn(x)

)
Θ(xy), if ± sgn(b− a) sgn(b+ a) < 0,

=

{
aΘ(x)Θ(y), if ± sgn(b− a) sgn(b+ a) > 0,
bΘ(−x)Θ(−y), if ± sgn(b− a) sgn(b+ a) < 0,

µ
(x,y)
0 = sgn(xy).

Plugging these coefficients into (7.31) gives the Green’s function for the Robin boundary
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7.6. Arbitrary point interactions

conditions

G(t, x, y) =

(
bΘ(−x)Θ(−y)Λ

( |x|+ |y|
2
√
it
− b
√
it
)

− aΘ(x)Θ(y)Λ
( |x|+ |y|

2
√
it

+ a
√
it
))

e−
(|x|+|y|)2

4it (7.53)

+
1

2
√
iπt

(
sgn(xy)e−

(|x|+|y|)2
4it + e−

(x−y)2

4it

)
.

Remark 7.8. It is clear, that for a = b = 0 the boundary condition and the Green’s
function reduces to those of the Neumann boundary condition in Section 7.6.5. More-
over, also the boundary condition and Green’s function for the Dirichlet decoupling of
Section 7.6.4 can be formally recovered by considering the limits a→∞ and b→ −∞ of
the coefficients. In this case the matrix J in (7.52) tends to the one in (7.48) and using
the asymptotics (A.22) of the function Λ we also obtain

Λ
( |x|+ |y|

2
√
it

+ a
√
it
)
∼ 1

a
√
iπt

and Λ
( |x|+ |y|

2
√
it
− b
√
it
)
∼ −1

b
√
iπt

.

These asymptotics show, that the Green’s function (7.53) turns into (7.49).

7.6.7. Decoupled systems

A decoupled system is when the transmission condition (7.30) reduces to one boundary
condition for Ψ(t, 0+) and ∂

∂xΨ(t, 0+) on the right half line, and a second one for Ψ(t, 0−)

and ∂
∂xΨ(t, 0−) of the left half line. One can easily see, that this is the case if and only

if the matrix J from (7.32) has the value β = 0. I.e., the matrix J is a unitary diagonal
matrix and hence of the form

J =

(
γ 0
0 δ

)
, γ, δ ∈ C, |γ| = |δ| = 1.

Since every complex number, except 1, with absolute value 1, can be written in the form
a+i
a−i , for some a ∈ R, we see from Section 7.6.4, Section 7.6.5 and Section 7.6.6, that the
only decoupled systems are the Dirichlet, Neumann and Robin boundary conditions.

As the following lemma shows, the situation of a decoupled system also manifests itself
in the fact that the Green’s function (7.31) vanishes if the values for x and y lie in
different half spaces. This property is plausible since in the decoupled case there is no
information exchange between the two half spaces and the wave function evolves on each
half space independently. See for example also the Green’s functions (7.22) and (7.21)
where also a decoupling takes place due to the very singular potential V ∼ 1

x2 .

Proposition 7.9. The transmission condition (7.30) is the one of a decoupled system
(β = 0) if and only if for the Green’s function G in (7.31) we have

G(t, x, y) = 0, t > 0, x, y ∈ Ṙ with xy < 0.

Proof. If we assume that β = 0, then it follows by definition (7.33), that

η(x,y) = 0, x, y ∈ Ṙ with xy < 0.
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In all the three Cases I, II and III below (7.33), where we specify the parameters of the
Green’s function, we immediately see, that

µ
(x,y)
± = 0 and µ

(x,y)
0 = −1, x, y ∈ Ṙ with xy < 0.

With this coefficients, the Green’s function then vanishes as

G(t, x, y) =
1

2
√
iπt

(
− e−

(|x|+|y|)2
4it + e−

(x−y)2

4it

)
= 0, t > 0, x, y ∈ Ṙ with xy < 0.

For the inverse implication, we assume, that the Green’s function (7.31) vanishes for all
x, y ∈ Ṙ with xy < 0, i.e.

G(t, x, y) =

(
µ

(x,y)
+ Λ

( |x|+ |y|
2
√
it

+ ω+

√
it
)

+ µ
(x,y)
− Λ

( |x|+ |y|
2
√
it

+ ω−
√
it
)

+
µ

(x,y)
0 + 1

2
√
iπt

)
e−

(x−y)2

4it
!

= 0.

First of all, if |Re(α)| = 1, it immediately follows from the condition |α|+ |β| = 1, that
β = 0 in this case. Because of this we only consider |Re(α)| < 1 in the following. In
Case I we note, that ω+ 6= ω− follows from |Re(α)| < 1, and hence the bracket term of
the above Green’s function is a linear combination of three linear independent functions

Λ
( |x|+ |y|

2
√
it

+ ω+

√
it
)
, Λ

( |x|+ |y|
2
√
it

+ ω−
√
it
)

and
1

2
√
iπt

.

In order to make the Green’s function vanish, it is necessary to make all the coefficients
vanish, i.e.

µ
(x,y)
+ = 0, µ

(x,y)
− = 0 and µ

(x,y)
0 = −1, x, y ∈ Ṙ with xy < 0.

Since µ
(x,y)
0 = 0 by definition, it remains to check whether

µ
(x,y)
+ =

ω+

2
η(x,y) = 0 and µ

(x,y)
− =

ω−
2
η(x,y) = 0.

Since ω+ 6= ω−, it is only possible for both terms to vanish if η(x,y) = 0 vanishes.
However, this is by definition (7.33a) only possible if β = 0.

In Case II we already have µ
(x,y)
− = 0 by definition. Hence the Green’s function is a

linear combination of the linear independent terms

Λ
( |x|+ |y|

2
√
it

+ ω+

√
it
)

and
1

2
√
iπt

.

In order to make both terms vanish we have to make sure that both prefactors vanish
independently, i.e.

µ
(x,y)
+ = 0 and µ

(x,y)
0 = −1, x, y ∈ Ṙ with xy < 0.

However, already from µ
(x,y)
0 = η(x,y) − 1

!
= −1 it follows that η(x,y) = 0 has to vanish

and hence β = 0 by definition (7.33a).

Finally, the Case III is not possible since |Re(α)| < 1 and we finished the proof.
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A. Appendix

In this appendix we consider some special functions and derive corresponding properties,
which will be used throughout the paper.

A.1. The complex square root

For this section let
√
· be the complex square root, chosen such that 0 ≤ Arg(

√
· ) < π.

In the upcoming Lemma A.1 and Lemma A.2 we derive two basic inequalities which are
used to prove the A1-convergence in Theorem 2.9.

Lemma A.1. For any a > 1 and b :=
√
a2 − 1 there holds the lower bound∣∣√z2 − 2iaz − 1− az + i
∣∣ ≥ min

{
b2, b(a− b)

}
, z ∈ C. (A.1)

Proof. Since we have to prove (A.1) for every z ∈ C, we can shift the variable z 7→ z+ ia
and verify ∣∣√z2 + b2 − az − ib2

∣∣ ≥ min
{
b2, b(a− b)

}
, z ∈ C, (A.2)

instead. First of all note that our used square root, satisfying Arg(
√
w) ∈ [0, π), acts as

√
w =

sgn(Im(w))√
2

√
|w|+ Re(w) +

i√
2

√
|w| − Re(w), w ∈ C, (A.3)

using the convention sgn(x) :=

{
1, if x ≥ 0,
−1, if x < 0.

Writing z = x+ iy and choosing

w := z2 + b2 = x2 − y2 + b2 + 2ixy, (A.4)

we determine the absolute value of f(z) :=
√
w − az − ib2 by

|f(z)|2 =|w|+ a2(x2 + y2) + 2ab2y + b4

−
√

2
(
ax sgn(xy)

√
|w|+ Re(w) + (b2 + ay)

√
|w| − Re(w)

)
. (A.5)

For a further estimate we distinguish three cases.

◦ If y < 0, we write (A.5) as

|f(z)|2 =|w|+ a2(x2 + y2) + 2ab2y + b4

+
√

2
(
a|x|

√
|w|+ Re(w)− (b2 + ay)

√
|w| − Re(w)

)
. (A.6)
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The bracket term is obviously nonnegative for x = 0, but also for x 6= 0 we can
estimate

a|x|
√
|w|+ Re(w)− (b2 + ay)

√
|w| − Re(w)

=
a|x|(|w|+ Re(w)) + 2(b2 + ay)|x|y√

|w|+ Re(w)

≥ |x|(ay
2 + 2b2y + ab2)√
|w|+ Re(w)

≥ 0,

where in the first inequality we used |w| ≥ 0 and Re(w) ≥ b2 − y2 and in the
second inequality that the parabola y 7→ ay2 + 2b2y+ab2 attains its minimal value
at y = − b2

a and consequently is bounded from below by b2

a and hence also by 0.
We can then estimate (A.6) by

|f(z)|2 ≥ |w|+ a2y2 + 2ab2y + b4 ≥ |b2 − y2|+ a2y2 + 2ab2y + b4 ≥ b2(a− b)2,

where in the second inequality we used |w| ≥ |b2− y2| and the third inequality can
easily be verified by seeing that the expression admits its minimal value at y = −b.
This leaves us with the inequality |f(z)| ≥ b(a− b), as stated in (A.1). Note that
this lower bound is obtained for z = −ib.

◦ If y = 0, the absolute value (A.5) can be estimated as

|f(z)|2 = (1 + a2)x2 + b2 + b4 − 2ax
√
x2 + b2

=
√

4a2x2(x2 + b2) + b4(x2 − 1)2 + b4 − 2ax
√
x2 + b2 ≥ b4,

which shows that |f(z)| ≥ b2. Note, that this lower bound is obtained for z = 1.

◦ If y > 0, the expression (A.5) turns into

|f(z)|2 − b4 =|w|+ a2(x2 + y2) + 2ab2y

−
√

2
(
a|x|

√
|w|+ Re(w) + (b2 + ay)

√
|w| − Re(w)

)
. (A.7)

In order to show that the right hand side is nonnegative, we note that it is the
difference of two nonnegative terms. Hence it is equivalent to consider the difference
of the square of the respective terms, namely

δ :=
(
|w|+a2(x2+y2)+2ab2y

)2
−2
(
a|x|

√
|w|+ Re(w)+(b2+ay)

√
|w| − Re(w)

)2
,

and prove its nonnegativity. This term reduces to

δ

b4
= (x2 + y2)2 + 2b2 + 1 + 4a2y2 − 2|w|+ 4ay(x2 + y2 + 1)

≥ (x2 + y2 − 1)2 + 4a2y2 + 4y3 + 4(a− 1)y(x2 + y2 + 1) ≥ 0,

where in the second line we used

|w| ≤ |Re(w)|+ | Im(w)| ≤ x2 + y2 + b2 + 2|x|y ≤ x2 + y2 + b2 + 2(x2 + 1)y.

This shows, that the right hand side of (A.7) is nonnegative and hence |f(z)| ≥ b2
also in this case.
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Lemma A.2. For any a > 1 there holds the upper bound∣∣ Im (√z2 − 2iaz − 1 + az − i
)∣∣ ≤ (a+ 1)|z|, z ∈ C. (A.8)

Proof. Writing z = x+ iy and choosing b :=
√
a2 − 1 as well as

w := z2 − 2iaz − 1 = x2 − y2 + 2ay − 1 + 2ix(y − a),

we use the representation (A.3) of the complex square root to write the imaginary part
of f(z) :=

√
w + az − i as

Im(f(z)) = ay − 1 +
1√
2

√
|w| − Re(w). (A.9)

In the first step we calculate an upper bound of the imaginary part (A.9) and use the
estimate

|w| =
√

(x2 + y2 − 2ay + 1)2 + 4b2x2 ≤ |x2 + y2 − 2ay + 1|+ 2b|x|, (A.10)

to do so.

◦ In the case x2 + y2 − 2ay + 1 ≥ 0, we can use (A.10) in (A.9) to estimate

Im(f(z)) ≤ ay − 1 +
√
y2 − 2ay + 1 + b|x|.

In order to show that the right hand side is bounded by (a+ 1)|z|, i.e.√
y2 − 2ay + 1 + b|x| ≤ (a+ 1)|z| − ay + 1, (A.11)

we note, that both sides of this inequality are nonnegative and we are allowed to
equivalently consider the difference of the respective squares, namely(

(a+ 1)|z| − ay + 1
)2 − y2 + 2ay − 1− b|x|

= (a+ 1)2x2 + 2(a+ 1)(ay2 − ay|z|+ |z|)− b|x|
≥ (a+ 1)2x2 + 2(a+ 1)(ay2 − a|yz|+ |z|)− b|x|
≥ (a+ 1)x2 + (2a+ 2− b)|x| ≥ 0,

where in the last line we used that |yz| ≤ x2

2 + y2 as well as |z| ≥ |x|. This proves,
that the estimate (A.11) is satisfied and hence Im(f(z)) ≤ (a+ 1)|z|.

◦ If x2 + y2 − 2ay + 1 ≤ 0, the inequality (A.10) used in (A.9) leads to

Im(f(z)) ≤ ay − 1 +
√
b|x| − x2.

We want to show that also in this case the right hand side is bounded by (a+1)|z|,
i.e. √

b|x| − x2 ≤ (a+ 1)|z| − ay + 1.

Since the left hand side is y-independent, we minimize the right hand side with
respect to y. Standard analysis shows, that the minimum value is attained at
y = a|x|√

2a+1
and we need to verify the inequality√

b|x| − x2 ≤ |x|
√

2a+ 1 + 1.

By squaring both sides one immediately sees that this inequality is satisfied. Hence
we conclude, that also in this case there holds Im(f(z)) ≤ (a+ 1)|z|.
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In the second step we derive the lower bound of Im(f(z)). To do so we distinguish two
different cases.

◦ If |y − a| ≥ b we can use |w| ≥ x2 + y2 − 2ay + 1 in (A.9) to get

Im(f(z)) ≥ ay − 1 +
√
y2 − 2ay + 1

≥


0, if y ≥ a+ b,
−by, if 0 ≤ y ≤ a− b,
(a− 1)y, if y ≤ 0,

 ≥ −(a+ 1)|z|.

◦ If |y − a| ≤ b we can use |w| − Re(w) ≥ 0 to estimate (A.9) as

Im(f(z)) ≥ ay − 1 ≥ −by ≥ −(a+ 1)|z|.

If we combine the complex square root with the sinus cardinalis

sinc(z) :=

{
sin(z)
z , if z ∈ C \ {0},

1, if z = 0.

we obtain the following integral representation.

Lemma A.3. For any b > 0, there holds

sinc
(√

z2 + b2
)

=
1

2

∫ 1

−1
eikzJ0(b

√
1− k2)dk, z ∈ C.

where J0 is the Bessel function of order zero.

Proof. In Step 1 we consider the function

S(z) := sinc
(√

z2 + b2
)
, z ∈ C,

which is an entire function due to the power series expansion

S(z) =

∞∑
n=0

(−1)n

(2n+ 1)!

(√
z2 + b2

)2n
=

∞∑
n=0

(−1)n

(2n+ 1)!
(z2 + b2)n, z ∈ C.

Since the restriction S|R is square integrable, its Fourier transform is given by the im-
proper Riemann integral

F [S|R](k) =
1√
2π

lim
R1,R2→∞

∫ R2

−R1

e−ikxS(x)dx, k ∈ R.

For simplicity we will write
∫
R instead of limR1,R2→∞

∫ R2

−R1
in the following, but always

interpret the integral as this limit. Starting with |k| ≤ 1, the imaginary part of the
Fourier transform vanishes due to the symmetry of S, i.e., we get

F [S|R](k) =
1√
2π

∫
R

cos(kx)S(x)dx.
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Substituting x = b sinh(t), we rewrite this integral as

F [S|R](k) =
b√
2π

∫
R

cos
(
kb sinh(t)

)
S
(
b sinh(t)

)
cosh(t)dt

=
1√
2π

∫
R

cos
(
kb sinh(t)

)
sin
(
b cosh(t)

)
dt (A.12)

=
1

2
√

2π

∫
R

(
sin
(
b cosh(t) + kb sinh(t)

)
+ sin

(
b cosh(t)− kb sinh(t)

))
dt,

where in the last line we used the trigonometric identity 2 sin(u) cos(v) = sin(u + v) +
sin(u− v). Distinguishing further the two cases |k| < 1 and |k| = 1 we get

◦ For |k| < 1, there exists some t0 ∈ R such that e2t0 = 1+k
1−k , and hence we get the

hyperbolic identity

cosh(t)± k sinh(t) =
√

1− k2 cosh(t± t0),

with which we can write the above integral as

F [S|R](k) =
1

2
√

2π

∫
R

(
sin
(
b
√

1− k2 cosh(t+ t0)
)

+ sin
(
b
√

1− k2 cosh(t− t0)
))
dt,

=
1√
2π

∫
R

sin
(
b
√

1− k2 cosh(t)
)
dt

=

√
π√
2
J0

(
b
√

1− k2
)
,

where we used the Mehline-Sonine integral representation of the Bessel function
[2, Eq.(9.1.23)].

◦ If |k| = 1, the integral (A.12) becomes

F [S|R](k) =
1

2
√

2π

∫
R

(
sin(bet) + sin(be−t)

)
dt =

1√
2π

∫
R

sin(bet)dt.

Substituting s = bet this integral has the explicit solution

F [S|R](k) =
1√
2π

∫ ∞
0

sin(s)

s
ds =

√
π

2
√

2
.

For k > 1 we use the Cauchy theorem to change the integration path to a semicircle in
the lower half space

F [S|R](k) = lim
R→∞

iR√
2π

∫ 2π

π
e−ikRe

iϕ
S(Reiϕ)eiϕdϕ. (A.13)

Choosing R > b, the function S in the integrand can be estimated by

|S(Reiϕ)| =
∣∣∣∣sin(

√
R2e2iϕ + b2)√
R2e2iϕ + b2

∣∣∣∣ ≤ e| Im(
√
R2e2iϕ+b2)|

√
R2 − b2

, ϕ ∈ [π, 2π]. (A.14)
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Using the representation (A.3) of the complex square root, we can estimate the exponent
by

2
∣∣ Im (√R2e2iϕ + b2

)∣∣2 = |R2e2iϕ + b2| − Re(R2e2iϕ + b2)

=

√
(R2 cos(2ϕ) + b2)2 +R4 sin2(2ϕ)−R2 cos(2ϕ)− b2

=

√
(R2 + b2)2 − 4b2R2 sin2(ϕ)−R2 cos(2ϕ)− b2

≤ R2 + b2 −R2 cos(2ϕ)− b2

= 2R2 sin2(ϕ).

Hence we can further estimate (A.14) by

|S(Reiϕ)| ≤ e−R sin(ϕ)

√
R2 − b2

, ϕ ∈ [π, 2π].

Using this inequality in the Fourier transform (A.13) can be estimated by

|F [S|R](k)| ≤ lim
R→∞

R√
2π(R2 − b2)

∫ 2π

π
e(k−1)R sin(ϕ)dϕ

=
1√
2π

∫ 2π

π
lim
R→∞

e(k−1)R sin(ϕ)dϕ = 0.

This proves, that F [S|R](k) = 0 for k > 1. By the symmetry of S we also conclude
F [S|R](k) = 0 for k < −1. Altogether we now proved the Fourier transform

F [S|R](k) =

√
π√
2
J0

(
b
√

1− k2
)

1, if |k| < 1,
1
2 , if |k| = 1,
0, if |k| > 1.

(A.15)

In Step 2 we now apply the inverse Fourier transform to (A.15) and obtain

S(x) =
1

2

∫ 1

−1
eikxJ0(b

√
1− k2)dk, x ∈ R.

Since J0 is a bounded function, the right hand side extends to an entire function when
x ∈ R is replaced by z ∈ C. Since the holomorphic extension is unique, it has to coincide
with S(z) and we conclude the stated integral representation

sinc
(√

z2 + b2
)

=
1

2

∫ 1

−1
eikzJ0(b

√
1− k2)dk, z ∈ C.

A.2. A modification of the error function

In order to write down the Green’s function for arbitrary point interactions (7.31) it is
convenient to use

Λ(z) := ez
2
(1− erf(z)), z ∈ C, (A.16)

where erf(z) = 2√
π

∫ z
0 e
−ξ2

dξ is the well known error function. Some important properties

of this function are collected in the following lemma.
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Lemma A.4. The function Λ in (A.16) has the following properties:

(i) The function Λ satisfies the differential equation

d

dz
Λ(z) = 2zΛ(z)− 2√

π
, z ∈ C. (A.17)

(ii) The function Λ admits the integral identity

Λ(z) =
2√
π

∫ ∞
0

e−s
2−2zsds, z ∈ C. (A.18)

(iii) The function Λ admits the power series representation

Λ(z) =
∞∑
n=0

(−1)n

Γ(n2 + 1)
zn, z ∈ C. (A.19)

(iv) The value of the function Λ at −z is given by

Λ(−z) = 2ez
2 − Λ(z), z ∈ C. (A.20)

(v) The function Λ is monotonically decreasing on R and its absolute value can be
estimated by

|Λ(z)| ≤ Λ(Re(z)), z ∈ C. (A.21)

(vi) The function Λ asymptotically behaves as

Λ(z) =

{
1√
πz

+O
(

1
|z|2
)
, if Re(z) ≥ 0,

2ez
2

+ 1√
πz

+O
(

1
|z|2
)
, if Re(z) ≤ 0,

as |z| → ∞. (A.22)

(vii) For every a > 0 and b, c ∈ C one has the integral identity∫ ∞
0

e−ax
2−bxdx =

√
π

2
√
a

Λ
( b

2
√
a

)
. (A.23)

as well as another identity

∫ ∞
0

e−ax
2−bxΛ

(√
a x+ c

)
dx =

−1

2
√
a


Λ(c)−Λ( b

2
√
a

)

c− b
2
√
a

, if c 6= b
2
√
a
,

Λ′(c), if c = b
2
√
a
.

(A.24)

Proof.

(i) Using the derivative d
dz erf(z) = 2√

π
e−z

2
it follows immediately, that

d

dz
Λ(z) =

d

dz

(
ez

2
(1− erf(z))

)
= 2zez

2
(1− erf(z))− 2√

π
= 2zΛ(z)− 2√

π
.
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(ii) Using
∫∞

0 e−s
2
ds =

√
π

2 in the definition (A.16) gives

Λ(z) =
2√
π
ez

2
lim
R→∞

(∫ R

0
e−ξ

2
dξ −

∫ z

0
e−ξ

2
dξ

)
.

Now we use that the complex integral over the entire function e−ξ
2

is path inde-
pendent to rewrite it as

Λ(z) =
2√
π
ez

2
lim
R→∞

(∫ z+R

z
e−ξ

2
dξ −

∫ z+R

R
e−ξ

2
dξ

)
. (A.25)

Since the integral along R→ z +R can be estimated as∣∣∣ ∫ z+R

R
e−ξ

2
dξ
∣∣∣ =

∣∣∣z ∫ 1

0
e−(R+sz)2

ds
∣∣∣ ≤ |z|e−R2

∫ 1

0
e−2RsRe(z)−s2 Re(z2)ds

≤ |z|e−R2
e2R|Re(z)|+|Re(z2)| R→∞−→ 0,

and hence vanishes in the limit R → ∞ This means, that in (A.25) only the first
integral survives which, after parametrization, gives

Λ(z) =
2√
π
ez

2
lim
R→∞

∫ R

0
e−(z+s)2

ds =
2√
π

∫ ∞
0

e−s
2−2zsds.

(iii) Using the integral representation (A.18) and writing the exponential as a power
series gives

Λ(z) =
2√
π

∫ ∞
0

e−s
2
∞∑
n=0

(−2sz)n

n!
ds =

2√
π

∞∑
n=0

(−2z)n

n!

∫ ∞
0

sne−s
2
ds.

Using the integral identity
∫∞

0 sne−s
2
ds = 1

2Γ(n+1
2 ) as well as the Legendre dupli-

cation formula Γ(n+1
2 )Γ(n2 + 1) =

√
π

2n Γ(n+ 1), further reduces this series to

Λ(z) =
1√
π

∞∑
n=0

Γ(n+1
2 )

n!
(−2z)n =

∞∑
n=0

(−1)n

Γ(n2 + 1)
zn.

(iv) Using the obvious property erf(−z) = − erf(z) it follows immediately, that

Λ(−z) = e(−z)2
(1− erf(−z)) = ez

2
(1 + erf(z)) = 2ez

2 − Λ(z).

(v) Firstly, the monotonicity is a direct consequence of (A.18). This integral represen-
tation can also be used to estimate the absolute value

|Λ(z)| ≤ 2√
π

∫ ∞
0

e−s
2−2 Re(z)sds = Λ(Re(z)).

(vi) Applying integration by parts in (A.18) gives

Λ(z) = − 1√
π

∫ ∞
0

1

z + s

d

ds
e−s

2−2zsds =
1√
π z
− 1√

π

∫ ∞
0

1

(z + s)2
e−s

2−2zsds
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In the case Re(z) ≥ 0 we can use e−2 Re(z)s ≤ 1 as well as |z + s| ≥ |z| to estimate
the integral as∣∣∣Λ(z)− 1√

πz

∣∣∣ ≤ 1√
π

∫ ∞
0

1

|z + s|2
e−s

2−2 Re(z)sds ≤ 1√
π |z|2

∫ ∞
0

e−s
2
ds =

1

2|z|2
.

The case Re(z) ≤ 0 then follows from (A.20).

(vii) For the identity (A.23), we substitute x = s√
a

in (A.18) and evaluate at z = b
2
√
a
.

This exactly gives

Λ
( b

2
√
a

)
=

2√
π

∫ ∞
0

e
−s2− b√

a
s
ds =

2
√
a√
π

∫ ∞
0

e−ax
2−bxdx.

In order to verify (A.24), we first use (A.17) to obtain the primitive

e−ax
2−bxΛ

(√
a x+ c

)
=

d

dx
e−ax

2−bx
Λ
(√
a x+ c

)
− Λ

(√
a x+ b

2
√
a

)
2
√
a c− b

.

Integrating both sides over the interval (0,∞) gives∫ ∞
0

e−ax
2−bxΛ

(√
a x+ c

)
dx =

1

2
√
a
e−ax

2−bx
Λ
(√
a x+ c

)
− Λ

(√
a x+ b

2
√
a

)
c− b

2
√
a

∣∣∣∣∞
x=0

=
Λ(c)− Λ( b

2
√
a
)

b− 2
√
a c

,

where the evaluation at x =∞ vanishes due to the asymptotics (A.22).

For the Green’s function (7.17) of the Pöschl-Teller potential we further need

R(t, z) := ezΛ
( z

2
√
it
−
√
it
)
− e−zΛ

( z

2
√
it

+
√
it
)
, t > 0, z ∈ C, (A.26)

This function then has the following properties, which are mainly consequences of
Lemma A.4.

Lemma A.5. For every t > 0, z ∈ C, the function R admits the following properties.

(i) The derivatives of R are given by

∂

∂t
R(t, z) = i

( z2

4t2
+ 1
)
R(t, z) +

iz sinh(z)
√
π (it)

3
2

+
2i cosh(z)√

iπt
, (A.27a)

∂

∂z
R(t, z) =

z

2it
R(t, z)− 2 sinh(z)√

iπt
. (A.27b)

(ii) R admits the symmetry
R(t,−z) = R(t, z). (A.28)

(iii) The function R can be estimated as

|R(t, z)| ≤ 2e|Re(z)|Λ
(
−
√
t√
2

)
. (A.29)
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Proof.

(i) Using the derivative of the function Λ in (A.17) immediately gives

∂

∂t
R(t, z) =

ez

2i
√
it

( z

2it
+ 1
)

Λ′
( z

2
√
it
−
√
it
)
− e−z

2i
√
it

( z

2it
− 1
)

Λ′
( z

2
√
it

+
√
it
)

= i
( z2

4t2
+ 1
)
R(t, z)− 1

i
√
iπt

(
ez
( z

2it
+ 1
)
− e−z

( z

2it
− 1
))

= i
( z2

4t2
+ 1
)
R(t, z) +

iz sinh(z)
√
π (it)

3
2

+
2i cosh(z)√

iπt
.

Using again (A.17) also gives the z-derivative

∂

∂z
R(t, z) = ezΛ

( z

2
√
it
−
√
it
)

+ e−zΛ
( z

2
√
it

+
√
it
)

+
1

2
√
it

(
ezΛ′

( z

2
√
it
−
√
it
)
− e−zΛ′

( z

2
√
it

+
√
it
))

=
z

2it
R(t, z)− 2 sinh(z)√

iπt
.

(ii) Using the property (A.20) of Λ with negative argument we get

R(t,−z) = e−zΛ
( −z

2
√
it
−
√
it
)
− ezΛ

( −z
2
√
it

+
√
it
)

= −e−zΛ
( z

2
√
it

+
√
it
)

+ ezΛ
( z

2
√
it
−
√
it
)

= R(t, z).

(iii) Due to the symmetry property (A.28), it is sufficient consider values z ∈ C with
Re(z)+Im(z) ≥ 0. With the estimate (A.21) and monotonicity in Lemma A.4 (iii)
we get

|R(t, z)| ≤ eRe(z)Λ
(

Re
( z

2
√
it
−
√
it
))

+ e−Re(z)Λ
(

Re
( z

2
√
it

+
√
it
))

≤ eRe(z)Λ
(Re(z) + Im(z)

2
√

2t
−
√
t√
2

)
+ e−Re(z)Λ

(Re(z) + Im(z)

2
√

2t
+

√
t√
2

)
≤ eRe(z)Λ

(
−
√
t√
2

)
+ e−Re(z)Λ

(√t√
2

)
≤ 2e|Re(z)|Λ

(
−
√
t√
2

)
.

A.3. Legendre Polynomials

In this section we consider for l ∈ N0, m ∈ {0, . . . , l} the functions

Pml (z) := Pml (tanh(z)), z ∈ C \ iπ
(
Z +

1

2

)
, (A.30)

which are a modification of the associated Legendre polynomials Pml . Since the Legendre
polynomials are holomorphic on C\{±1}, see [2, Eq.(8.1.1)], and since tanh never obtains
these values ±1, we only have to exclude the singularities iπ(Z + 1

2) of tanh from the
domain of definition. These functions are in particular used to write down the Green’s
function of the Pöschl-Teller potential in (7.17). Next we will derive some basic properties
of the functions (A.30).
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Lemma A.6. For every l ∈ N0, m ∈ {0, . . . , l} there holds

(i) The function Pml satisfies the differential equation

Pm′′l (z) +
( l(l + 1)

cosh2(z)
−m2

)
Pml (z) = 0, z ∈ C \ iπ

(
Z +

1

2

)
. (A.31)

(ii) For every α ∈ (0, π2 ) and h ∈ (0, π2 ) there exists some constant Cl,m,α,h ≥ 0, such
that

|Pml (z)| ≤
Cl,m,α,h
| cosh(z)|m

, z ∈ Sα,h, (A.32)

where Sα,h is the domain from (4.12).

(iii) The functions Pml satisfy for every x, z ∈ C \ iπ
(
Z + 1

2

)
the identity

l∑
m=1

m(l −m)!

(l +m)!
Pml (z) sinh

(
m(z−x)

)
Pml (x) =

l(l + 1)

4

(
tanh(z)− tanh(x)

)
. (A.33)

Proof.

(i) By [2, Eq.(8.1.1)] the functions Pml satisfy the Legendre differential equation

(1−w2)Pm
′′

l (w)− 2wPm
′

l (w) +
(
l(l+ 1)− m2

(1− w2)

)
Pml (w) = 0, w ∈ C \ {±1}.

After replacing w = tanh(z), z ∈ iπ(Z + 1
2), this equation becomes

Pm
′′

l (tanh(z))

cosh2(z)
−2 tanh(z)Pm

′
l (tanh(z))+

(
l(l+1)−m2 cosh2(z)

)
Pml (tanh(z)) = 0.

Since the derivatives of Pml are given by

Pm
′

l (tanh(z)) = cosh2(z)Pm′l (z)

Pm
′′

l (tanh(z)) = 2 sinh(z) cosh3(z)Pm′l (z) + cosh4(z)Pm′′l (z),

we immediately end up with the stated differential equation

Pm′′l (z) +
( l(l + 1)

cosh2(z)
−m2

)
Pml (z) = 0, z ∈ C \ iπ

(
Z +

1

2

)
.

(ii) First of all we note, that since 0 < h < π
2 , the domain Sα,h has positive distance

to the singularities ± iπ
2 and hence the hyperbolic tangens is bounded on Dα,h as

| tanh(z)| ≤ cα,h, z ∈ Dα,h, (A.34)

for some cα,h ≥ 0. Moreover, by [2, Eq.(8.6.6),(8.6.18)], the associated Legendre
polynomials are of the form

Pml (x) = (1− x2)
m
2

(
polynomial in x

)
, x ∈ (−1, 1).
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Hence also the modified function Pml is of the form

Pml (x) =
1

coshm(x)

(
polynomial in tanh(x)

)
, x ∈ R.

Since the analytic continuation is unique, this representation carries over to com-
plex arguments

Pml (z) =
1

coshm(z)

(
polynomial in tanh(z)

)
, z ∈ C \ iπ

(
Z +

1

2

)
.

Combining this representation with the estimate (A.34) it is now clear, that the
inequality (A.32) is valid.

A.4. Bessel and Hankel functions

In this section we derive asymptotics and estimates of the Bessel function Jν as well as

the Hankel functions H
(1)
ν and H

(2)
ν , Re(ν) ≥ 0, which are solutions of the differential

equations

z2J ′′ν (z) + zJ ′ν(z) + (z2 − ν2)Jν(z) = 0, z ∈ C \ (−∞, 0], (A.35a)

z2H(1,2)′′
ν (z) + zH(1,2)′

ν (z) + (z2 − ν2)H(1,2)
ν = 0, z ∈ C \ (−∞, 0]. (A.35b)

These functions will be needed in the investigation of the Green’s functions (7.21) and
(7.22) of the centrifugal potential. In particular for the Hankel functions it is more
suitable to consider the following adaption

H(1)
ν (z) :=

√
z e−izH(1,2)

ν (z), Re(z) > 0,

H(2)
ν (z) :=

√
z eizH(1,2)

ν (z), Re(z) > 0.

For a shorter notation we will introduced the signs ± or ∓ in the sense, that the upper

sign always belongs to H(1)
ν and the lower sign to H(2)

ν . For example, the above definition

of the functions H(1)
ν and H(2)

ν looks like

H(1,2)
ν (z) :=

√
z e∓izH(1,2)

ν (z), Re(z) > 0, (A.36)

using this convention. According to (A.35a), these functions then satisfy the differential
equation

z2H(1,2)′′
ν (z)− 2iz2wH(1,2)′

ν (z) +
(1

4
− ν2

)
H(1,2)
ν (z) = 0, z ∈ C \ (−∞, 0]. (A.37)

We start deriving an integral representation of the Hankel functions, which will be the
basis of the upcoming estimates in Lemma A.8.

Lemma A.7. For every Re(ν) ≥ 0 the functionH(1,2)
ν admits the integral representation

H(1,2)
ν (z) =

∓i
√

2
√
π Γ(ν + 1

2)

∫ ∞
0

( t2
2z
∓ it

)ν− 1
2
e−tdt, Re(z) > 0. (A.38)
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Proof. From [53, Equations (10.9.4) & (10.9.5)] and H
(1,2)
ν (z) = Jν(z)± iYν(z), see [53,

Equation (10.4.3)], we get

H(1,2)
ν (z) =

21−νzν+ 1
2 e∓iz

√
π Γ(ν + 1

2)

(∫ 1

0
(1− t2)ν−

1
2 e±iztdt∓ i

∫ ∞
0

(1 + t2)ν−
1
2 e−ztdt

)
(A.39)

=
21−νzν+ 1

2

√
π Γ(ν + 1

2)
e∓iz lim

ε→0+
lim
R→∞

(∫ 1−ε

0
(1− t2)ν−

1
2 e±iztdt∓ i

∫ R

0
(1 + t2)ν−

1
2 e−ztdt

)
.

For sufficiently small ε > 0 and sufficiently large R ≥ 0 we consider the integration path

γ1 := { ∓iz(1− t) | ε ≤ t ≤ 1 } ,
γ2 := { tz | 0 ≤ t ≤ R } ,
γ3 := { zε + t | 0 ≤ t ≤ Re(Rz − zε) } ,
γ4 := { Re(z)R+ i Im(zε) + it | 0 ≤ t ≤ Im(Rz − zε) } ,

Re

Im

γ1

γ2

γ3

γ4

zε

Rz

Re(z)R+ i Im(zε)

where for a shorter notation we defined zε := ∓iz(1− ε). Using complex path integrals
we can write (A.39) as

H(1,2)
ν (z) =

±21−νzν−
1
2 e∓iz

i
√
π Γ(ν + 1

2)
lim
ε→0+

lim
R→∞

(∫
γ1

(
1+

ξ2

z2

)ν− 1
2
e−ξdξ+

∫
γ2

(
1+

ξ2

z2

)ν− 1
2
e−ξdξ

)
.

If we interpret the complex power of the integrand as(
1 +

ξ2

z2

)ν− 1
2

= e(ν− 1
2

) ln(1+ ξ2

z2
),

with the complex logarithm holomorphic on C \ (−∞, 0]. In order to make sure that

1 + ξ2

z2 /∈ (−∞, 0] does not cross the negative semiaxis, we need ξ 6= izr, for any r ∈
R \ (−1, 1). However, since we introduced ε > 0, and zε respectively, this does not
happen in the above integration path. Hence the integrand is holomorphic and we are
able to apply Cauchy’s theorem to change the integration path to

H(1,2)
ν (z) =

±21−νzν−
1
2 e∓iz

i
√
π Γ(ν + 1

2)
lim
ε→0+

lim
R→∞

(∫
γ3

(
1+

ξ2

z2

)ν− 1
2
e−ξdξ+

∫
γ4

(
1+

ξ2

z2

)ν− 1
2
e−ξdξ

)
.

(A.40)
The first task is now to show that the integral along γ4 vanishes in the limit R → ∞.
To do so, we start with the estimate∣∣∣∣ ∫

γ4

(
1 +

ξ2

z2

)ν− 1
2
e−ξdξ

∣∣∣∣
= e−Re(z)R

∣∣∣∣ ∫ Im(Rz−zε)

0

(
1 +

(Re(z)R+ i Im(zε) + it)2

z2

)ν− 1
2
e−itdt

∣∣∣∣ (A.41)

≤ eπ| Im(ν)|−Re(z)R

∫ | Im(Rz−zε)|

0

∣∣∣1 +
(Re(z)R+ i Im(zε) + it)2

z2

∣∣∣Re(ν)− 1
2
dt,

where we used the estimate

|ab| =
∣∣eb ln(a)

∣∣ =
∣∣eb ln |a|+ibArg(a)

∣∣ = |a|Re(b)e− Im(b) Arg(a) ≤ |a|Re(b)eπ| Im(b)|, (A.42)

which holds true for every a ∈ C \ {0}, b ∈ C.
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◦ For 0 ≤ Re(ν) ≤ 1
2 we can further estimate the integrand as

∣∣∣1 +
(Re(z)R+ i Im(zε) + it)2

z2

∣∣∣ ≥ ∣∣∣Re(z)R+ i Im(zε) + it

z

∣∣∣2 − 1 ≥ Re(z)2R2

|z|2
− 1,

which leads for R ≥ |z|
Re(z) to the convergence

∣∣∣ ∫
γ4

(
1+

ξ2

z2

)ν− 1
2
e−ξdξ

∣∣∣ ≤ eπ| Im(ν)|−Re(z)R
(Re(z)2R2

|z|2
−1
)Re(ν)− 1

2 | Im(Rz−zε)|
R→∞−→ 0.

◦ For Re(ν) ≥ 1
2 , we estimate the integrand as

∣∣∣1 +
(Re(z)R+ i Im(zε) + it)2

z2

∣∣∣ ≤ 1 +
(Re(z)2R2 + (Im(zε) + t)2

|z|2
,

which means, that the integrand in (A.41) grows as R2 Re(ν)−1. Since also the upper
bound grows of order R, the whole integral grows as R2 Re(ν). Together with the
exponential prefactor e−Re(z)R, the whole right hand side of (A.41) converges to
zero as R→∞ and hence also in this case we proved that the γ4-integral vanishes
in the limit R→∞.

This shows, that in the limit R→∞ in (A.40) only the γ3-integral remains. Parametris-
ing the path integral gives

H(1,2)
ν (z) =

∓i21−νzν−
1
2

√
π Γ(ν + 1

2)
e∓iz lim

ε→0+
lim
R→∞

e−zε
∫ Re(z)R−Re(zε)

0

(
1 +

(zε + t)2

z2

)ν− 1
2
e−tdt

=
∓i21−νzν−

1
2

√
π Γ(ν + 1

2)
lim
ε→0+

∫ ∞
0

(
1 +

(zε + t)2

z2

)ν− 1
2
e−tdt. (A.43)

In the final step we now have to argue why we are allowed to carry the limit ε → 0+

inside the integral. In order to apply the dominated convergence theorem, we estimate
the integrand as follows.

◦ If 0 ≤ Re(ν) ≤ 1
2 we use the inequality

|1 + w| ≥

{
1, if Re(w) ≥ 0,
| Im(w)|
|w| , if Re(w) < 0,

which holds for all w ∈ C, to estimate the integrand as∣∣∣1 +
(zε + t)2

z2

∣∣∣ =
t2

|z|2
∣∣∣1∓ i(2− ε)z

t

∣∣∣∣∣∣1± iεz
t

∣∣∣ ≥ t2 Re(z)

|z|3
.

Since the right hand side is independent of ε and the factor e−t ensures convergence
on (0,∞), we found an integrable majorant.
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◦ If Re(ν) ≥ 1
2 , we simply estimate∣∣∣1 +

(zε + t)2

z2

∣∣∣ ≤ 1 +
(|zε|+ t)2

|z|2
≤ 1 +

(|z|+ t)2

|z|2
.

Again this upper bound is ε-independent and together with the factor e−t an
integrable majorant.

Hence we verified, that the dominated convergence theorem is applicable and we are
allowed to carry the limit ε → 0+ inside the integral (A.43) to finally end up with the
stated integral representation (A.38).

Next we give some estimates and limits of the modified Hankel function.

Lemma A.8. Let Re(ν) ≥ 0 and α ∈ (0, π2 ). Then there exist constants Cν,α, Dν,α ≥ 0,

such that the functions H(1,2)
ν and their derivatives are bounded by

∣∣H(1,2)
ν (z)

∣∣ ≤ Cν,α{ 1, if Re(ν) ≤ 1
2 ,

1 + 1

|z|Re(ν)− 1
2
, if Re(ν) ≥ 1

2 ,
|Arg(z)| ≤ α. (A.44a)

∣∣H(1,2)′
ν (z)

∣∣ ≤ Dν,α

{
1 + 1

|z| , if Re(ν) ≤ 1
2

1 + 1

|z|Re(ν)+ 1
2
, if Re(ν) ≥ 1

2 .
|Arg(z)| ≤ α. (A.44b)

Moreover, for Re(ν) ≤ 1
2 they admit the limits

lim
z→∞

|Arg(z)|≤α

H(1,2)
ν (z) =

(∓i)ν+ 1
2

√
2√

π
and lim

z→0
|Arg(z)|≤α

H(1,2)
ν (z) = 0. (A.45)

Proof. For the proof of the boundedness of H(1,2)
ν in (A.44a), we use the integral repre-

sentation (A.38) and estimate

∣∣H(1,2)
ν (z)

∣∣ ≤ √
2 eπ| Im(ν)|

√
π |Γ(ν + 1

2)|

∫ ∞
0

∣∣∣ t2
2z
∓ it

∣∣∣Re(ν)− 1
2
e−tdt, (A.46)

where we used the identity (A.42) for the complex power. For Re(ν) ≤ 1
2 , we need the

following lower bound of the integrand,∣∣∣ t
2z
∓ i
∣∣∣2 = 1± t Im(z)

|z|2
+

t2

4|z|2
≥ Re(z)2

|z|2
= cos2(Arg(z)) ≥ cos2(α), |Arg(z)| ≤ α,

(A.47)

where the first inequality comes from minimizing the parabola t 7→ 1 ± t Im(z)
|z|2 + t2

4|z|2 .

This gives

∣∣H(1,2)
ν (z)

∣∣ ≤ √2 eπ| Im(ν)| cos(α)Re(ν)− 1
2

√
π |Γ(ν + 1

2)|

∫ ∞
0

tRe(ν)− 1
2 e−tdt

=

√
2 eπ| Im(ν)| cos(α)Re(ν)− 1

2 Γ(Re(ν) + 1
2)

√
π |Γ(ν + 1

2)|
.
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For Re(ν) ≥ 1
2 on the other hand we use the inequality∣∣∣ t

2z
∓ i
∣∣∣Re(ν)− 1

2 ≤ 2Re(ν)− 1
2

(( t

2|z|

)Re(ν)− 1
2

+ 1
)
, (A.48)

to estimate∣∣H(1,2)
ν (z)

∣∣ ≤ 2Re(ν)eπ| Im(ν)|
√
π |Γ(ν + 1

2)|

∫ ∞
0

(( t2

2|z|

)Re(ν)− 1
2

+ tRe(ν)− 1
2

)
e−tdt

=

√
2 eπ| Im(ν)|Γ(2 Re(ν))

√
π |Γ(ν + 1

2)||z|Re(ν)− 1
2

+
2Re(ν)eπ| Im(ν)|Γ(Re(ν) + 1

2)
√
π |Γ(ν + 1

2)|
.

For the inequality (A.44b) we first use the recurrence relation [2, Eq.(9.1.27)] to write
the derivative as

H(1,2)′
ν (z) =

(ν + 1
2

z
∓ i
)
Hν(z)−Hν+1(z), Re(z) > 0.

Hence we can use the already derived estimate (A.44a) to get

|H(1,2)′
ν (z)| ≤


(
|ν+ 1

2
|

|z| + 1
)
Cν,α + Cν+1,α

(
1 + 1

|z|Re(ν)+ 1
2

)
, Re(z) ≤ 1

2 ,(
|ν+ 1

2
|

|z| + 1
)
Cν,α

(
1 + 1

|z|Re(ν)− 1
2

)
+ Cν+1,α

(
1 + 1

|z|Re(ν)+ 1
2

)
, Re(z) ≥ 1

2 .

≤ Dν,α

{
1 + 1

|z| , Re(z) ≤ 1
2

1 + 1

|z|Re(ν)+ 1
2
, Re(z) ≥ 1

2 .

For the proof of the first limit in (A.45), we once more use the integral representation
(A.38). With the inequality (A.47), where the right hand side is z-independent, we are
allowed to interchange limit and integral and get

lim
|z|→∞

|Arg(z)|≤α

H(1,2)
ν (z) =

∓i
√

2
√
π Γ(ν + 1

2)
lim
|z|→∞
|Arg(z)≤α

∫ ∞
0

( t2
2z
∓ it

)ν− 1
2
e−tdt

=
(∓i)ν+ 1

2

√
2

√
π Γ(ν + 1

2)

∫ ∞
0

tν−
1
2 e−tdt

=
(∓i)ν+ 1

2

√
2√

π
.

For the second limit in, we are allowed to carry the limit inside the integral once more
because of the inequality (A.47). This gives

lim
|z|→0

|Arg(z)|≤α

H(1,2)
ν (z) =

∓i
√

2
√
π Γ(ν + 1

2)
lim
|z|→0

|Arg(z)|≤α

∫ ∞
0

( t2
2z
∓ it

)ν− 1
2
e−tdt = 0,

where the integrand vanishes in the limit |z| → 0 since Re(ν) < 1
2 .

Also for the Bessel function we obtain the following inequalities.
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Lemma A.9. Let ν > 1
2 and α ∈ (0, π2 ). Then there exist constants Cν , Dν ≥ 0, such

that the Bessel function Jν is bounded by

∣∣Jν(z)
∣∣ ≤ Cν√

|z|
e| Im(z)| and

∣∣J ′ν(z)
∣∣ ≤ Dν

|z|
3
2

e| Im(z)|, Re(z) > 0. (A.49)

Moreover, for some Eν ≥ 0, the asymptotics for large arguments of Jν can be read off
the estimate∣∣∣Jν(z)−

√
2√
πz

cos
(
z − (2ν + 1)π

4

)∣∣∣ ≤ Eν( 1

|z|
1
2

+
1

|z|
3
2

)
e| Im(z)|, Re(z) > 0. (A.50)

Proof. According to [2, Eq.(9.2.5)], the Bessel function admits the representation

Jν(z) =

√
2√
πz

(
Pν(z) cos

(
z − (2ν + 1)π

4

)
−Qν(z) sin

(
z − (2ν + 1)π

4

))
, Re(z) > 0,

(A.51)
using the series

Pν(z) :=
∞∑
n=0

(−1)n

(2n)!(2z)2n

2n∏
k=1

(
ν2 − (2k − 1)2

4

)
, (A.52a)

Qν(z) :=
∞∑
n=0

(−1)n

(2n+ 1)!(2z)2n+1

2n+1∏
k=1

(
ν2 − (2k − 1)2

4

)
. (A.52b)

First of all, since obviously Pν(z) and Qν(z) are bounded for |z| ≥ 1 by some constant
C ≥ 0, we get

|Jν(z)| ≤ 2C
√

2√
π|z|

e| Im(z)|, |z| ≥ 1,

However, since Jν is continuous this inequality is obviously also fulfilled for |z| ≤ 1 and
hence (A.49) is satisfied. Using the connection formula J ′ν(z) = −Jν+1(z) + ν

zJν(z) from
[2, Eq.(9.1.27)] also the second inequality in (A.49) follows immediately.

For the proof of the asymptotic inequality (A.50), we will once more use the represen-
tation (A.51) and again start with |z| ≥ 1. The functions (A.52a) and (A.52b) can be
estimated as

|Pν(z)− 1| ≤
∞∑
n=1

1

(2n)!|2z|2n
2n∏
k=1

∣∣∣ν2 − (2k − 1)2

4

∣∣∣
=

1

2|z|

∞∑
n=0

1

(2n+ 2)!|2z|2n+1

2n+2∏
k=1

∣∣∣ν2 − (2k − 1)2

4

∣∣∣
≤ 1

2|z|

∞∑
n=0

1

(2n+ 2)!22n+1

2n+2∏
k=1

∣∣∣ν2 − (2k − 1)2

4

∣∣∣ =:
D

(1)
ν

|z|
|z| ≥ 1,
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and as

|Qν(z)| ≤
∞∑
n=0

1

(2n+ 1)!|2z|2n+1

2n+1∏
k=1

∣∣∣ν2 − (2k − 1)2

4

∣∣∣
=

1

2|z|

∞∑
n=0

1

(2n+ 1)!|2z|2n
2n+1∏
k=1

∣∣∣ν2 − (2k − 1)2

4

∣∣∣
≤ 1

2|z|

∞∑
n=0

1

(2n+ 1)!4n

2n+1∏
k=1

∣∣∣ν2 − (2k − 1)2

4

∣∣∣ =:
D

(2)
ν

|z|
, |z| ≥ 1.

Altogether, this leads to the following estimate of the Bessel function∣∣∣Jν(z)−
√

2√
πz

cos
(
z − (2ν + 1)π

4

)∣∣∣
=

√
2√
π|z|

∣∣∣∣(Pν(z)− 1) cos
(
z − (2ν + 1)π

4

)
−Qν(z) sin

(
z − (2ν + 1)π

4

)∣∣∣∣
≤
√

2 (D
(1)
ν +D

(2)
ν )

√
π |z|

3
2

e| Im(z)|, |z| ≥ 1. (A.53)

Since Jν is bounded as already proven in (A.49), we can also estimate∣∣∣Jν(z)−
√

2√
πz

cos
(
z − (2ν + 1)π

4

)∣∣∣ ≤ (Cν +

√
2√
π|z|

)
e| Im(z)|, |z| ≤ 1. (A.54)

Combining now (A.53) and (A.54) gives the stated estimate (A.50).
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[95] A. Kempf, B. Šoda: Efficient method to create superoscillations with generic
target behaviour. Quant. Stud. Math. Found. 7 (2020) 347-353.

[96] H. J. Landau: Extrapolating a band-limited function from its samples taken in a
finite interval. IEEE Trans. Inf. Th. 32 (1986) 464-470.

[97] L. Levi: Fitting a bandlimited signal to given points. IEEE Trans. Inf. Th. 11
(1965) 372-376.

[98] E. B. Manoukin: Explicit derivation of the propagator for a Dirac delta potential.
J. Phys. A 22 (1989) 67–70.

[99] R. B. Paris: Exponential asymptotics of the Mittag-Leffler function. Proc. Math.
Phys. Eng. Sci. 458 (2002) 3041-3052.

[100] H. Pollak, D. Slepian: Prolate spheroidal wave functions, Fourier analysis and
uncertainty. Bell Tel. Syst. J. 40 (1961) 43-64.

[101] E. Pozzi, B. D. Wick: Persistence of superoscillations under the Schrödinger
equation. Evol. Eq. & Contr. Th. (2021) .

[102] W. Qiao: A simple model of Aharonov-Berry’s superoscillations. J. Phys. A:
Math. Gen. 29 (1996) 2257-2258.

[103] A. A. G. Requicha: The zeros of entire functions: Theory and engineering ap-
plications. Proc. of the IEEE 68 (1980) 308-328.

[104] E. T. F. Rogers, K. S. Rogers, G. Yuan, N. I. Zheludev: Far-field metamaterial
superlens. CLEO (2018).

[105] J. M. Román, T. Tarrach: The regulated four-parameter one-dimensional point
interaction. J. Phys. A 29 (1996) 7073-6085.
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